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Abstract

Recovering 3D geometry shape, albedo, and lighting

from a single image is a typical ill-posed problem. To ad-

dress this challenging problem, we propose to utilize the

joint constraints from unconstrained photo collections of

one person to recover his or her identity shape and albedo.

Unconstrained photo collections include one’s photos cap-

tured under different times, backgrounds, and expressions,

e.g., photos posted on Instagram. We train our model in

a semi-supervised manner with adversarial loss to exploit

large amounts of unconstrained facial images. A novel cen-

ter loss is introduced to make sure that facial images from

the same subject have the same identity shape and albedo.

Besides, our proposed model disentangles identity, expres-

sion, pose, and lighting representations, which improves

the overall reconstruction performance and facilitates fa-

cial editing applications, e.g., expression transfer. Com-

prehensive experiments demonstrate that our model pro-

duces high-quality reconstruction compared to state-of-the-

art methods and is robust to various expression, pose, and

lighting conditions.

1. Introduction

Reconstructing 3D face from 2D images enables a wide

range of computer vision applications, such as face recog-

nition [3, 27, 23, 43], face puppetry [9], face reenactment

[33, 14], virtual make-up [21], etc. However, inferring 3D

face shape and texture from 2D images, especially from a

single image, is an ill-posed problem due to the missing

3D information during the imaging process. 3D morphable

model (3DMM) [2] learned from a collection of 3D face

scans often serves as a strong prior assumption for this prob-

lem. 3DMM linearly combines a set of bases to provide

a statistical parametric representation of 3D faces. Classi-

cal optimization-based methods [3, 20, 5] take a local op-

timal solution by regressing the 3DMM parameters, which

is time-consuming due to the high optimization complexity.

Input image  Shape, lighting, albedo Expression transfer

Figure 1: Our model is trained on unconstrained photo col-

lections and extracts four disentangled representations from

an input image: identity, expression, pose, and lighting,

which allows applications such as expression transfer.

On the other hand, learning-based methods learn deep re-

gression models via convolutional neutral networks (CNN)

[29, 31, 15, 46, 36, 13]. Despite the demonstrated success,

these methods only search for a solution in the restricted lin-

ear low-dimensional subspace of 3DMM and cannot gener-

alize well in the wild.

Furthermore, learning models from a single view causes

unresolvable ambiguities due to the lack of reliable 3D con-

straints. Multi-view geometric constraints using a set of fa-

cial images in different views can improve the reliability

and achieve favorable results [41]. However, multi-view

facial images are difficult and expensive to acquire. On

the other hand, people have large amounts of unconstrained

photos in smartphone’s photo albums and on social media,

e.g., Instagram and Wechat Moments. The unconstrained

photo collections are captured in various expression, pose,

lighting, and occlusion conditions. The joint constraints

from unconstrained photo collections of one person can be

used to recover his or her identity shape and albedo.

In this paper, we learns 3D face representations from

unconstrained photo collections without constrained by a

linear 3DMM. We propose a novel encoder-decoder archi-

tecture using inverse rendering that bridges computer vi-

sion and computer graphics techniques. The vision system

(i.e., encoder network) decomposes an input 2D face image

into disentangled and semantic representations: identity, ex-
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pression, pose, and lighting code. Two decoder networks

regress the 3D face shape and albedo from the extracted

representations, so that the graphics system can render back

a face image to match the input image. As such, we provide

a unique opportunity to leverage the vast amounts of read-

ily available unlabeled face images (i.e., without the ground

truth of 3D face shapes) from unconstrained photo collec-

tions through self-supervised learning.

Since 3D face reconstruction from a 2D image is am-

biguous and ill-posed, self-supervised learning with unla-

beled data through inverse rendering is not sufficient. In

this paper, we train the network in a semi-supervised man-

ner on hybrid batches of large amounts of unlabeled face

images and relatively small amounts of labeled face images

that are generated from a linear 3DMM using optimization-

based methods. Moreover, inspired by generative adversar-

ial networks (GAN) [16], we use a discriminator network

to ensure the reconstructed face shape not far away from

the distribution of human faces. Since the distribution of

human faces is unknown, we sample the 3D face shapes

from a linear parametric 3DMM during adversarial train-

ing, which prevents our model from generating unrealistic

3D face shapes and constrains our model to be close to but

not strictly limited to the linear 3DMM. Importantly, we are

able to exploit a large amount of unlabeled face images as

training data.

To reconstruct the 3D face shape, we use graph convo-

lutional network (GCN) [12, 19] instead of fully connected

layers or CNN as in [35, 34]. Since 3D face shape is usu-

ally modeled as a mesh that consists of a collection of ver-

tices, edges, and faces and can be viewed as an unstructured

graph. Performing graph convolutions on 3D meshes is

memory efficient and allows for processing high resolution

3D structures. GCN-based methods [28, 18, 7] have shown

promising results in reconstructing 3D face shapes. To re-

cover 3D face albedo, we first use a GCN that has the same

architecture with the shape decoder to learn an illumination-

independent face albedo. Then we apply a CNN-based de-

coder network that has skip connections with the encoder

network [30] to capture the facial texture details.

We apply a face recognition loss and a center loss [40]

to learn the identity representation (i.e., one’s identity) from

one’s unconstrained multiple face images. The center loss

ensures the identity representation’s compactness for each

person and separability for different people, so that the iden-

tity representation is disentangled from the pose, lighting,

and expression representations. In order to further disen-

tangle the identity and expression representations, we adopt

pairwise training approaches. Given a pair of labeled face

data, we keep the identity codes and interchange the expres-

sion codes of 3DMM to generate new 3D shapes as super-

vision. Comprehensive evaluation experiments show that

the proposed method achieves state-of-the-art performance

in 3D face reconstruction and can easily be used for the ap-

plications of face recognition and facial expression transfer.

The main contributions of this paper are summarized below:

• We propose an efficient semi-supervised and adver-

sarial training process to fully exploit unconstrained

photo collections and go beyond the limitation of a lin-

ear 3DMM.

• We design a novel framework to extract nonlinear dis-

entangled representations from a face image with the

help of face recognition losses and shape pairwise loss.

• Extensive experiments show that our model achieves

state-of-the-art performance in face reconstruction.

2. Related work

Linear 3D face models Blanz & Vetter [2] proposed the

first linear parametric 3DMM using principal component

analysis (PCA) to model the shape and texture of 3D faces.

Booth et al. [6] built a linear face model from around 10,000

facial scans of more diverse subjects but only in neutral ex-

pressions. Vlasic et al. [39], Cao et al. [10], and Li et

al. [22] developed bilinear/multilinear face models with

separate attributes of identity and expression to support a

wide variety of face manipulation applications. Bolkart &

Wuhrer [4] proposed a multilinear face model by jointly op-

timizing the model parameters and the facial scan registra-

tions. The most popular 3DMM [45] was built by merging

Basel Face Model (BFM) [27] with only 200 subjects in

neutral expressions and FaceWarehouse [10] with 150 sub-

jects in 20 different expressions.

Linear 3D face models based reconstruction 3DMM is

a strong prior for monocular 3D face reconstruction. The

methods of fitting 3DMM can be grouped into two types:

optimization-based approaches [3, 20, 5] that obtain the

3DMM parameters by solving complex optimization prob-

lems and learning-based approaches [29, 31, 15, 46, 36] that

directly regress the 3DMM parameters using CNN. How-

ever, these 3DMM fitting methods are based on a linear

3DMM learned from limited facial scans via PCA. Lin-

ear statistical models have limitations to construct 3D faces

with various ethnic groups, ages, occlusions, lightings, and

facial expressions. Tewari et al. [32], Tran et al. [38], and

Guo. et al. [17] further proposed 3D face models composed

of two networks: a coarse-scale linear 3DMM network and

a fine-scale corrective network. Even though the fine-scale

corrective model can generate more details, 3D face recon-

struction will fail if the foundation face shape generated by

the linear 3DMM network is not good enough. Liu et al.

[23] proposed an encoder-decoder network to extract dis-

entangled shape features from single images and directly

regress 3D face shapes from the features. Although this

method is not constrained by a pre-existing linear 3DMM,

it is still a linear face model since the decoders were imple-



mented as a fully connected (FC) layer.

Nonlinear 3D face models based reconstruction Tran et

al. [35, 34] proposed encoder-decoder networks to regress

the face shape and texture directly. The nonlinear net-

works have higher representation power compared to a lin-

ear model and are able to reconstruct high-fidelity facial tex-

ture. However, the nonlinear models were only trained on

the 300W-LP dataset [44] that was generated based on a

linear 3DMM with a face profiling technique. Besides, the

model training process does not consider each image’s fa-

cial identity. The face albedo and shape are decoded from

an albedo code and a shape code separately. In fact, facial

images from the same person have the same face albedo and

identity shape. Learning the albedo and shape parameter

separately is difficult to disentangle the face albedo from

lightings and occlusions. As a result, the albedo decoder

may reconstruct high-fidelity face albedo without aligning

with the face shape and thus fails to contribute to the face

shape reconstruction. At last, the identity and expression

representations are entangled in these methods, disabling a

large number of applications, such as face recognition, face

animation, and face reenactment.

3. Background

This section describes some background information re-

lated to our work, including face representations in conven-

tional linear 3DMM and the rendering process.

Linear 3DMM We first recap the conventional linear

3DMM. As described in [11], the linear 3DMM constructed

from facial scans via PCA can be expressed as:

s = s̄+Aidαid +Aexpαexp, (1)

where s ∈ R
3N×1 is a 3D face shape with N vertices,

s̄ ∈ R
3N×1 is the mean shape, Aid ∈ R

3N×K is the first

K principle components trained on facial scans with neu-

tral expression and αid ∈ R
K×1 is the identity parameter,

Aexp ∈ R
3N×L is the first L principle components trained

on the offset between neutral scans and expression scans

and αexp ∈ R
M×1 is the expression parameter.

The texture of 3D face can also be modeled via PCA as:

t = t̄+Atexαtex, (2)

where t ∈ R
3N×1 is a 3D face texture, t̄ ∈ R

3N×1 is the

mean texture, Atex ∈ R
3N×M is the first M principle com-

ponents trained on facial textures and αtex ∈ R
M×1 is the

texture parameter.

Rendering process The 3D face modeled by 3DMM is pro-

jected onto an image plane with weak perspective projec-

tion:

s2D = f ∗ Pr ∗R ∗ s+ t2D, (3)

where s2D ∈ R
2×N is the face shape located on the im-

age plane after projection, Pr =

[

1 0 0
0 1 0

]

is the or-

thographic projection matrix, R is the rotation matrix con-

structed from Euler angles (i.e., pitch, yaw, and roll), t2D =
[tx, ty]

⊺ is the translation vector on the image plane, and f

is the scale factor.

Following [17], we assume the face is Lambertian

surface and the global illumination is approximated us-

ing the spherical harmonics (SH) basis function. The

first three bands of SHs are used for the illumination

model. γ ∈ R
27×1 is the illumination parameter for

the RGB channels’ SH illumination coefficient. Thus,

the rendering process depends on the parameter set χ =
{αid,αexp,αtex, pitch, yaw, roll, f, t2D,γ}.

4. Method

We design an encoder-decoder architecture that allows

end-to-end semi-supervised adversarial training to extract

disentangled semantic representations of a single image, as

shown in Figure 2. We adopt inverse rendering technique

that utilizes parameterized illumination model and differ-

entiable renderer to render back the input face image un-

der varying identity, expression, pose, and lighting condi-

tions. Our model is trained on hybrid batches of unlabeled

face images from CelebA [24] and labeled face images from

300W-LP [44].

4.1. Encoder-decoder network

Encoder As shown in Figure 2, the encoder network is

a multi-task learning network, which takes a face image as

input and extracts its identity, expression, pose, and lighting

representations. A pre-trained ResNet-50 network is used

as the backbone of the encoder network. The ResNet-50

network is followed by four branches of fully connected

layers with outputs of 128-D identity code (cid), 64-D ex-

pression code (cexp), 6-D pose code (cpose), and 27-D light-

ing code (clgt).

Shape decoder The shape decoder network is a graph

convolutional network modified from the COMA architec-

ture [28] with an extra graph convolutional layer and up-

sampling layer at the beginning. We concatenate the iden-

tity code and expression code extracted from the encoder

network to get a 192-D vector as the input of the shape

decoder network. The output of the shape decoder is the

vertices of the corresponding 3D face shape in the stan-

dard position (i.e., without any translations or rotations).

We denote as FC(d) a fully connected layer, l the number

of vertices after the last down-sampling layer, GC(k, w)
a graph convolutional layer with k kernel size and w fil-

ters, and US(p) a up-sampling layer by a factor of p, re-

spectively. The shape decoder network is listed as follows:

FC(l ∗ 256) → US(2) → GC(6, 256) → US(4) →
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Figure 2: Framework overview. The encoder network takes an input face image and extracts four disentangled representa-

tions: identity code (cid), expression code (cexp), pose code (cpose), and lighting code (clgt). The albedo decoder network

reconstructs the face albedo from the identity code. The shape decoder network reconstructs the face shape from the combi-

nation of the identity code and expression code. The rendering layer takes the face albedo, face shape, pose, and lighting to

render back the face image. Multiple losses are applied on our network. Losses in gray rectangles are only used on labeled

face images and in green rectangles are used on all face images.

GC(6, 128) → US(4) → GC(6, 64) → US(4) →
GC(6, 32) → US(4) → GC(6, 16) → GC(6, 3).

Albedo decoder The albedo decoder network is also a

graph convolutional network and has the same architecture

as the shape decoder. The albedo decoder takes only the

identity code as input since the face albedo should be in-

dependent of different expression, pose, and lighting con-

ditions. Furthermore, the face albedo should be consis-

tent across one’s different photos with various facial occlu-

sions, such as different hair styles, glasses, microphones,

etc. Thus, we apply face segmentation by [26] to eliminate

the effect of facial occlusions. Note that, we do not con-

sider aging, injury, or other factors that may affect one’s

face albedo.

Lighting-independent albedo is critical when using in-

verse rendering to improve 3D face shape reconstruction. If

the learned albedo is entangled with lighting and shadow,

the albedo may not well align with the 3D face shape. After

the lighting representation is learned, we change the GCN-

based albedo decoder network to a CNN network that has

skip connections with the encoder network to improve the

details of facial texture. The architecture of the encoder and

CNN-based albedo decoder with skip connections is similar

to U-Net [30]

4.2. Loss functions

Our network is trained with multi-task losses that enable

us to regress the 3D face shape and albedo end-to-end. The

loss function combines face recognition loss, photometric

loss, sparse landmark loss, pairwise shape loss, adversarial

loss, and other regularization.

Face recognition loss In order to extract the identity

code that only represents the photo’s facial identity, we ap-

ply face recognition loss as follows:

Lrecog = Lsoft + λcenterLcenter, (4)

where Lsoft is the softmax loss that classifies each photo

to a specific identity class, Lcenter is the center loss to im-

prove the discriminative power of the deeply learned iden-

tity code [40], and λcenter is used for balancing the two loss

functions. Face recognition loss is essential to learn the fa-

cial identity without being influenced by other factors such

as facial expressions, poses, lightings, occlusions, etc.

Photometric loss The rendering layer renders back an

image to compare with the input image. The photometric

loss is formulated as

Lphoto = M ⊙ (‖Î − I‖2
2
+ Lgdl), (5)

where ⊙ is the element-wise Hadamard product, I is the

input image, Î is the rendered image, and M is the mask

obtained by [26] to eliminate the effect of facial occlusions

such as hair, glasses, and microphone. Moreover, a gradient

difference loss (GDL) [25], denoted as Lgdl, is applied to

recover more details in the albedo reconstruction.

Sparse landmark loss We add sparse landmark loss to

help learn the face pose and achieve better face reconstruc-

tion. The sparse landmark loss is defined as

Llmk = ‖ŝ2D[:,L]−U‖2
2
+ Lgdl,lmk, (6)



where ŝ2D is the projected face shape from our network, L
is the vertex indexes of the 68 landmarks in the 3D face

shape, U is considered as the ground truth of the corre-

sponding sparse 2D landmarks on the input image and is

obtained by [8]. The idea of GDL is also applied on the

sparse landmarks, denoted as Lgdl,lmk, which describes the

distance of two different landmarks should be close to the

corresponding distance in the ground truth. Especially, it

is important for the distances from the upper eyelids to the

lower eyelids and the upper lip to the lower lip that repre-

sent the conditions of eye’s opening and mouth’s opening,

respectively.

Shape loss In order to prevent the network from either

generating unrealistic 3D face shapes or being under the

constrain of a linear 3DMM, we train our network in a semi-

supervised manner on hybrid batches of unlabeled and la-

beled face images. For the labeled face images, we choose

300W-LP dataset that contains 122,450 images with fitted

3DMM shapes across large poses and was created by [44]

with face profiling technique, while we exclude half of the

dataset that are horizontally flipped images. The BFM tem-

plate that has 53,215 vertices is used for the fitted 3DMM

shapes. The 3DMM parameters αexp and αexp are pro-

vided to calculate each of the fitted 3DMM shapes, as pre-

sented in Eq. (1). In this paper, we remove the neck and

ears of the BFM model to create our own face shape tem-

plate with 37,202 vertices. The shape loss for the 300W-LP

dataset is formulated as

Lshp = ‖ŝ− s[:, T ]‖1, (7)

where s = s̄ + Aidαid + Aexpαexp is considered as the

ground truth of the face shape, ŝ is the 3D face shape recon-

structed by our network, and T is the vertex indexes of our

face template in the BFM model.

Pairwise shape loss To further disentangle the identity

code and expression code, we train the 300W-LP dataset in

pairwise manner. Given an input image, the corresponding

3DMM parameters αexp and αexp are provided. For a pair

of input images, IA and IB , we interchange the expression

parameters αexp,A and αexp,B to get the 3D face shape of

A’s identity with B’s expression. The pairwise shape loss

for the 300W-LP dataset is expressed as

Lpair = ‖fshape([cid,A, cexp,B ])− sA,B [:, T ]‖1, (8)

where fshape(·) is the shape decoder, [cid,A, cexp,B ] means

concatenation of A’s identity code and B’s expression code

from the encoder network, and sA,B = s̄ + Aidαid,A +
Aexpαexp,B is the 3DMM shape of A’s identity parameter

with B’s expression parameter.
Shape smooth loss Laplacian regularization is used on

the shape vertex to help remove undesired noise of 3D face
shapes. Conventional Laplacian smoothing assumes all the
vertices satisfy the equation Xi =

1

|Mi|

∑

j∈Mi
Xj , where

Xi is the ith vertex and Mi is the vertex indexes of the
first order neighbors of Xi. However, some vertices, like
on the edges, in the nostrils, at the eye corners, etc, do not
satisfy the Laplacian equation. In this paper, we propose
a novel shape smooth loss that calculates the difference of
each vertex with the mean of its first order neighbors bo be
close to the corresponding difference of the shape template,

Lsmth =
∑

i∈N

|(ŝi−
1

|Mi|

∑

j∈Mi

ŝj)− (s̃i−
1

|Mi|

∑

j∈Mi

s̃j)|, (9)

where s̃ is our face shape template cropped from the BFM

model.

Albedo symmetry loss Facial symmetry is a strong prior

for face albedo learning, which helps to disentangle facial

expression, lighting, and occlusions from the face albedo.

The albedo symmetry loss is defined as

Lsymm = ‖A− flip(A)‖1, (10)

where A is the output face albedo of the GCN-based albedo

decoder and flip(·) is an operation of flipping face albedos

left and right.
Adversarial loss Semi-supervised learning is not suffi-

cient to generate realistic 3D face shape for the unlabeled
face images. Following the idea of generative adversar-
ial network (GAN), an adversarial loss is used to train the
encoder-decoder network and a discriminator network al-
ternatively based on WGAN-div [42]. The discriminator
network D is a GCN-based encoder network and is used to
discriminate the fake shapes (i.e., shapes reconstructed from
our network) and real shapes (i.e., shapes sampled from
the linear 3DMM), so that the reconstructed face shapes
will not be too far away from the distribution of the linear
3DMM. The min-max optimization problem can be written
as

min
G

max
D

E
ŝ∼Pg

[D(ŝ)]− E
s[:,T ]∼Pr

[D(s[:, T ])]− k E
ṡ∼Pu

[∇ṡ‖D(ṡ)‖p] (11)

where Ladv = −D(ŝ) is the adversarial loss, ŝ, s[:, T ] are

the fake and real face shapes satisfying the probability mea-

sures Pg , Pr, and Pu is the distribution obtained by sam-

pling uniformly along straight lines between points from the

real and fake face shape distributions.

5. Experiments

We train our model on hybrid batches of unlabeled face

images from CelebA dataset [24], totally 10,176 identities

and 200,405 face images after removing some low quality

images and labeled face images from 300W-LP dataset [44],

totally 3,837 identities and 61,225 face images (horizontal

flipped images in the dataset are not included). The training

images are augmented on the fly with random horizontal flip

and random scaling of [0.8,1.0].

The whole model is trained in two steps. First, we train

the model with GCN-based albedo decoder for 100 epochs.



Method
Cooperative Indoor Outdoor

Mean Std. Mean Std. Mean Std.
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ty Tran17 [37] 1.93 0.27 2.02 0.25 1.86 0.23

Genova18 [15] 1.50 0.13 1.50 0.11 1.48 0.11

Ours 1.17 0.27 1.20 0.28 1.21 0.28

A
v
er

a
g

e
o
v
er
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e-
v
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w

Tran17 [37] 1.40 0.29 1.38 0.32 – –

Tewari17 [31] 1.37 0.32 1.29 0.27 – –

Genova18 [15] 1.37 0.35 1.26 0.31 – –

MVF-Net [41] 1.22 0.25 1.23 0.24 – –

Ours 1.16 0.29 1.24 0.30 1.22 0.28

Table 1: Mean error comparison on the MICC dataset. Note that

MVF-Net [41] is a multi-view 3D face reconstruction method.

1.25±0.88 1.33±1.04

OursSubject MVF-Net Tran17

No. 22

0.78±0.70 1.12±0.95 1.95±1.62No. 53

1.07±0.93No. 38 1.03±0.88 1.65±1.20 2.01±1.42

1.78±1.47

2.01±1.42

Genova18

1.65±1.20

Figure 3: Error map comparison of the examples

used in MVF-Net [41].

Then, we replace the GCN-based albedo decoder with

the CNN-based albedo decoder and train for another 100

epochs to improve the details of facial texture. The encoder-

decoder networks and discriminator network are optimized

using Adam optimizer with a learning rate of 0.0001 and

RMSprop optimizer with a learning rate of 0.00005, re-

spectively. MICC Florence dataset [1] and AFLW2000-3D

dataset [44] are selected for the quantitative and qualitative

evaluations. The face region of the BFM model is cropped

as the 3D face mesh template (i.e., 37202 out of the 53215

vertices).

5.1. Comparisons to the state-of-the-art

We evaluate our model quantitatively on the MICC Flo-

rence dataset [1], which contains the ground truth scans of

53 subjects in neutral expressions. Each subject is recorded

in three videos: Cooperative, Indoor, and Outdoor with in-

creasingly challenging conditions. We use the same eval-

uation metric in [15] — the face region of 95mm around

the nose tip of the ground truth scan is cropped to calculate

the point-to-plane L2 errors with the predicted face shape.

Two evaluation methods are used in this paper. First, as de-

scribed in [15], we run our method on each frame of the

videos to extract each frame’s facial identity, average the

identity codes over each video, and combine with the neu-

tral expression code to obtain a single reconstruction for

each video, called ‘Average over identity’. Second, we use

the same setting in [41]. The left, frontal, and right view of

each subject are selected from the Cooperative and Indoor

videos. The predicted 3D face shape is obtained by aver-

aging over the three reconstructed 3D face shapes, called

‘average over three-view’.

Table 1 shows that the proposed method outperforms

other single-view reconstruction methods. For the evalua-

tion of ‘average over identity’, our method is stable among

the conditions of Cooperative, Indoor, and Outdoor, which

means the identities extract from the frames of these three

A

B
0.776±0.706

0.923±0.775

input Reconstruction Lighting Shape Error map

C

D

0.930±0.838

0.688±0.632

Figure 4: Examples with different lightings and poses of

subject No. 05 from the MICC dataset. A and B are from

the video of Cooperative. C and D are from the videos of

Outdoor and Indoor, respectively.

videos are very close and our model is robust to facial iden-

tity recognition. The variance of our method is relative

higher because a few of the ground truth face shapes were

scanned not in a neutral expression, e.g., subject No. 10 was

scanned with a smile expression and the error is 1.89 in the

Cooperative condition. Compared to the multi-view recon-

struction method (MVF-Net) [41], we achieve better results

in the Cooperative condition and have slightly worse results

in the Indoor condition. Figure 3 presents three examples

(i.e., subject No. 22, No. 38, and No. 53) of detailed er-

ror maps. Figure 4 shows the reconstruction results of face

images from the same subject (No. 05) in the Coopera-

tive, Indoor, and Outdoor videos with different lightings

and poses. The reconstruction errors are small across dif-
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Figure 5: 3D reconstruction comparisons with [32] and [38]

ferent conditions.

We further evaluate our model qualitatively on the

AFLW2000-3D datasets [44]. Both Tewari et al. [32] and

Tran et al. [38] proposed two-stage models: a coarse-scale

linear model and a fine-scale corrective model. Even though

the fine-scale corrective model is able to add more details

on top of the linear model, the reconstructed face shape will

fail when the foundation face shape generated in the first

stage is not good. The foundation face shape is restricted

by the linear 3DMM and cannot generalize well in the wild

conditions with true diversity of poses, expressions, light-

ings, and occlusions. As shown in Fig. 5, the face shape

reconstructed by our model aligns better with the input face

image and looks more realistic from the frontal view. More-

over, the proposed method can reconstruct the facial texture

in more detail.

Tran et al. [34] proposed a nonlinear 3DMM and is the

most related work. The face shape and albedo are recon-

structed from CNN-based decoders and have higher rep-

resentation power compared to a linear 3DMM. However,

the model was trained on the 300W-LP dataset generated

based on a linear 3DMM. Even with higher representation

power, the nonlinear model is limited to fit the 300W-LP

dataset. Moreover, the identity and expression of face shape

are entangled, resulting in poor performance on face images

with diverse expressions. As shown in Figure 6, the face

shapes reconstructed by [34] tend to have smaller mouth

opening and some artifacts are introduced to the face shapes

and textures in challenging conditions. The proposed model

achieves better performance across various conditions: ex-

aggerated expressions, large poses, diverse lighting, differ-

ent ethnic groups, and different occlusions as presented in

the figures.

5.2. Ablation study

Shape reconstruction We study the effects of face

recognition loss, adversarial loss, and the proposed shape

smooth loss on the quality of 3D face shape reconstruction.

Tran19

Input image Overlay Shape

Ours

Overlay Shape

Figure 6: 3D reconstruction comparisons with [34].

Method
Cooperative Indoor Outdoor

Mean Std. Mean Std. Mean Std.

w/o Lrecog 1.39 0.73 1.40 0.82 1.54 0.76

w/o LAdv 1.27 0.27 1.23 0.26 1.24 0.26

Full model 1.17 0.27 1.20 0.28 1.21 0.28

Table 2: Shape ablation test of mean error comparison on

the MICC dataset using the evaluation method in [15].

Table 2 shows the quantitative results on the MICC dataset

without (i.e., w/o) face recognition loss (Lrecog) and ad-

versarial loss (LAdv) using the evaluation method of ‘aver-

age over identity’. Figure 7 shows two qualitative results.

Without Lrecog results in much higher reconstruction errors

and variances compared with the full model because the fa-

cial identity extracted from each frame is not consistent over

each video. Without LAdv results in higher reconstruction

errors as well. Table 2 shows the degradation is not very

obvious because only frontal facial images with neutral ex-

pressions are tested on the MICC dataset. The degradation

is more severe for images with large poses and expressions,

where the reconstructed face’s eyebrows extrude out and

two sides are shrunk, as shown in Figure 7.

Since our face model is not constrained by a pre-existing

linear 3DMM, the face meshes can potentially be deformed

to any shapes. The conventional smoothing loss causes ab-

normal effects on the edges and nostrils of face shapes. The

vertices on the mouth’s inner edge distance away from their

neighbors. The nostrils are prone to be flat or even sticking

out of the nose. This is because the vertices on the edges

and nostrils are not satisfied with the Laplacian regulariza-

tion which forces each vertex locates at the mean of its first

order neighbors.
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Figure 7: Shape ablation test showing failures when with-

out adversarial loss, face recognition loss, and with conven-

tional shape smooth loss.
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Figure 8: Texture ablation test showing failures of lighting

caused when without facial mask and albedo symmetric loss

(i.e., w/o mask+symm loss). We denote GCN-based albedo

decoder as GCN albedo, and CNN-based albedo decoder

with skip connections as CNN+bridge.

Texture reconstruction Figure 8 shows the effects of

different albedo decoders, the facial mask, and the albedo

symmetric loss. As shown in the last column, the recon-

structed face texture is almost identical with the original

face image, which means CNN-based albedo decoder with

skip connections to the encoder has very high representation

power for face texture reconstruction.

The facial mask and albedo symmetric loss are crucial

for lighting representation learning so that shade, lighting,

and facial occlusions are not confounded with the facial

albedo. When without applying facial mask and albedo

symmetric loss, especially if the representation power of the

albedo decoder is high (e.g., using the CNN-based albedo

decoder), the model may fail to learn the lighting even

though the generated texture looks very close to the input

image, as shown in the last column of Figure 8. As a re-

sult, reconstructing high fidelity texture makes limited con-

tributions to the face shape reconstruction because the high

fidelity texture may not align with the face shape and looks

odd when viewing from a different pose. The facial mask,

albedo symmetric loss, and the GCN-based albedo decoder

that is solely determined by the identity code help disen-

tangle the albedo from lighting and facial occlusions. Once

the lighting is learned, the CNN-based albedo decoder with

skip connections to the encoder is used to improve the detail

of facial albedo.

(b) Expression transfer between the same person

(a) Expression transfer between different people

Figure 9: Expression transfer between different face im-

ages. The left side is the expression transfer between differ-

ent people and right side is the expression transfer between

the same persian.

5.3. Applications

Disentangled representations of our model not only can

improve the performance of face reconstruction, but also

can facilitate many facial editing applications, such as face

recognition, face puppetry, face replacement, face reenact-

ment, expression transfer, and so forth. Figure 9 demon-

strates the function of expression transfer between different

face images. We keep the face image’s identity representa-

tion and replace the pose, lighting, and expression represen-

tations from another face image to generate a realistic new

face image with the same identity but another face’s pose,

lighting, and expression. When we apply the expression

transfer on different images of the same person, the results

are consistent after the expression transfer, demonstrating

high robustness of our model.

6. Conclusion

This paper proposes an encoder-decoder architecture to

reconstruct 3D face from a single image with disentangled

representations: identity, expression, pose, and lighting.

We develop an effective semi-supervised training scheme

to fully exploit the value of large amount of unlabeled face

images from unconstrained photo collections. An adver-

sarial loss is applied to prevent our model from generating

unrealistic 3D faces. We evaluate our model quantitatively

and qualitatively. Our model outperforms state-of-the-art

single-view reconstruction methods and can effectively dis-

entangle identity, expression, pose, and lighting features.
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