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Abstract

Depth estimation is crucial in several computer vision

applications, and a recent trend aims at inferring such a

cue from a single camera through computationally demand-

ing CNNs — precluding their practical deployment in sev-

eral application contexts characterized by low-power con-

straints. Purposely, we develop a tiny network tailored to

microcontrollers, processing low-resolution images to ob-

tain a coarse depth map of the observed scene. Our solution

enables depth perception with minimal power requirements

(a few hundreds of mW), accurately enough to pave the way

to several high-level applications at-the-edge.

1. Vision problem

Depth perception is a central and longstanding problem

in computer vision, and the recent spread of deep-learning

in this area yielded remarkable improvements in this field.

Additionally, it also enabled depth perception from a sin-

gle image with an unprecedented degree of accuracy even

through self-supervised training strategies as witnesses by

recent works [4, 13, 5, 10, 11]. Indeed, inferring depth from

a single image has countless of applications since it does

not impose constraint at all the acquisition setup as would

occur for other setups such as, for instance, for stereo vi-

sion. Nonetheless, despite the efforts carried out recently

[8, 12, 9], porting monocular depth estimation on tiny de-

vices with low-power processor cores and few KB of mem-

ory, such as microntrollers, is not feasible yet although rel-

evant in practical edge applications and services for the

Internet-of-Things (IoT).

2. Low-power solution

In order to tackle the issues mentioned above, we act

according to multiple fronts to enable a sufficiently accu-

Figure 1. On-the-edge depth estimation. Six examples of 32×32

images and inferred depth maps.

Figure 2. Deployment platform for the proposed solution. On a

microcontroller platform (OpenMV Cam M7), we deploy a com-

pact architecture made of about 100k parameters.

rate monocular depth perception system compatible with

the constrained computing architectures found at the very

edge. By processing low-resolution images (e.g., 48×48),

we can infer depth maps as shown in Figure 1 on a sub-W

power envelope with the accuracy reported in Table 1.

First and foremost, we propose a new shallow deep net-

work consisting of a lightweight CNN specifically designed

for low-resolution images (e.g., 48 × 48 or 32 × 32) accord-

ing to a pyramidal architecture yielding a depth map of the

same size of the input. Another peculiar solution adopted

by our method concerns the training procedure, based on

a supervisory signal provided by a conventional (i.e., not

learning-based) stereo algorithm like Semi Global Match-

ing (SGM [7]). Finally, we adopt for our architecture paral-

lel computation strategies and data quantization specifically

suited for ARM microcontrollers. Our network is extremely
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Lower is better Higher is better

Method Resolution Params Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

PyD-Net [9] 256× 512 1.9M 0.146 1.291 5.907 0.245 0.801 0.926 0.967

Proposed 48× 48 0.1M 0.193 2.312 6.952 0.277 0.735 0.890 0.953

Table 1. Quantitative evaluation of PyD-Net [9] and the proposed approach on the test set of KITTI dataset [3] using the split of Eigen et

al. [2] with maximum depth set to 80m.

Figure 3. Simple traffic monitoring application. At the right-

most position of each frame, we show, from top to bottom, the

input 32 × 32 input image, the depth map inferred by our network

from it, and the output of a simple detection system working in the

depth domain.

compact, with a footprint of about 100kB (i.e., about 100k

weights, quantized to 8bit) and trained in a self-supervised

manner in order to enable meaningful depth prediction, as

reported in Figure 1, at about 2 FPS on the popular ARM

M7 architecture (e.g., the OpenMV CAM M7 in Figure 2).

The proposed solution can easily break the 1FPS bar-

rier with less than 0.5W requirements. Respectively, depth

estimation carried out on 48×48 and 32×32 images takes

about 600 and 300 ms, with a totally memory requirement

lower than 512kB. Although some compact solution for

depth estimation on embedded systems exist [9, 12], they

are far from being competitive in terms of memory foot-

print, requiring about 2MB only for network weights (i.e.

20× larger than our solution).

To the best of our knowledge, our proposal is the first one

enabling monocular depth perception on low-power devices

such as microcontrollers. Although its accuracy is not com-

parable to state-of-the-art, we argue that for many high-level

applications, a coarse 3D representation of the scene is often

enough to manage the faced problem. Whereas state-of-the-

art single image depth perception systems [10] might some-

times represent an overkill, our proposal provides meaning-

ful depth maps, as reported in Figure 1, with an accuracy,

reported in Table 1, sufficient to a broader range of applica-

tions (e.g., people tracking, simple traffic monitoring, etc).

3. Stage of the project

The proposed network has been mapped on different

evaluation boards including the OpenMV platform of Fig-

ure 2, featuring an STM32F765VI ARM Cortex M7 pro-

cessor running at 216 MHz with 512KB of RAM, 2 MB of

flash and an OV7725 image sensor.

Figure 4. Privacy-preserving monitoring system. Top row, from

left to right: original VGA image [6], depth map obtained by a

Kinect [6], low-resolution image (32 × 32). Bottom row, from left

to right: depth map obtained by our network at 32 × 32, the output

of network [9] not compatible with the microcontroller, output of

a remote up-sampling module fed with the 32 × 32 depth map at

the leftmost position.

So far, we have developed two applications relying on

the depth maps inferred by our monocular network at the

edge. The first one is a simple traffic monitoring system for

counting, for instance, cars. The output of such a system

is depicted in Figure 3. Having processed a coarse depth

map of the monitored environment (top), at any time our

system infers depth maps allowing to detect vehicles in the

scene, by carrying out the detection in the depth domain. In

this case, our focus is on a task with relaxed timing con-

straints, like traffic congestion monitoring, and not fast de-

cision making needed, like on autonomous driving. How-

ever, in case of stringent latency constraints for real-time

response, our solution can be easily ported to high-end mo-

bile CPUs (e.g., ARM Cortex-A53) in order to gain about

100× performance at the cost of only 10× power consump-

tion.

The second application concerns a privacy-preserving

monitoring system, enabling a simple remote analysis with-

out revealing the identity of the user [1]. Such a system

would be useful, for instance, in a hospital to monitor peo-

ple preserving their privacy by transmitting only the depth

maps inferred by the microcontroller. Moreover, the low-

resolution depth maps inferred at the edge by the microcon-

troller, if required, could be upsampled at a higher resolu-

tion remotely thought a network hosted in the cloud, where

more resources are available. An example of this strategy is

depicted in Figure 4. Among advantages, this collaborative

edge-cloud strategy allows improving the scalability of the

whole infrastructure significantly.
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