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Abstract

This paper introduces our approach to the EmotioNet

Challenge 2020. We pose the AU recognition problem as

a multi-task learning problem, where the non-rigid facial

muscle motion (mainly the first 17 AUs) and the rigid head

motion (the last 6 AUs) are modeled separately. The co-

occurrence of the expression features and the head pose

features are explored. We observe that different AUs con-

verge at various speed. By choosing the optimal checkpoint

for each AU, the recognition results are improved. We are

able to obtain a final score of 0.746 in validation set and

0.7306 in the test set of the challenge.

1. Introduction

Facial Action Unit (AU) recognition is a difficult task,

because AUs are defined by local and subtle changes in fa-

cial expressions. Early researchers use handcraft-features to

recognize AU, but those manual shallow features are usu-

ally not discriminative enough for capturing the facial mor-

phology [7]. With the development of deep learning, neu-

ral networks have been increasingly used in facial repre-

sentation learning for more effective AU recognition and

detection [8]. Existing deep learning methods usually re-

quire enough training data with precise labels. However,

the EmotioNet challenge, one of the largest AU dataset,

only provides 25k images with precise labels, which may

result in over-fitting. Inspired by the spirit of multi-view

co-regularization semi-supervised learning [5], we train two

deep neural networks to generate multi-view features. A

multi-view loss is used to enforce the features to be con-

ditionally independent. And a co-regularization loss is de-

signed to make the predictions of the two views to be con-

sistent. We further find that the multi-view loss and the co-

regularization loss also benefit supervised training, and the

result can be better than semi-supervised training. So in this

challenge, we train the multi-view co-regularization method

as our base model, and then use the base model to filter the

noisy data.

Another important topic of AU recognition is how to

model the co-occurrence relationship between correlated

AUs. Kaili et al. [7] point that there exist strong probabilis-

tic dependencies between different AUs. E.g. AU1 (inner-

brow raise) has a positive correlation with AU2 (outerbrow

raise) and a negative correlation with AU6 (cheek raiser). In

this challenge, we categorize the 23 AUs into two groups.

The first group contains the first 17 AUs, and the second

group contains the last 6 AUs. We use this division because

AUs in the second group are about head pose recognition

problem, which is different from the other emotion recog-

nition problem (the first 17 AUs). Intuitively, AUs in dif-

ferent group should not have strong probabilistic dependen-

cies. The data augmentation strategies of the two groups are

also different. For instance, face alignment is important for

the first group but is improper for the second group. Hence

two separate models for the two groups are then trained to

exploit dependencies among co-occurring AUs and facial

features. The training of each model can be treated as a

multi-task learning problem. We then find an interesting

phenomenon that different AUs have diverse convergence

speed. By choosing the best checkpoint for each AU, the

final score can be obviously boosted.

The contents of this report are organized as follows. Sec-

tion 2 presents the details of our method. In section 3, we

present some experimental results. Section 4 concludes the

report .

2. Methods

In this section, we first introduce the data utilization in

our experiment. We then show how we use the multi-view

co-regularization method as our base framework. We finally

analyze the multi-task model-chosen problem and present

what strategy we use in detail.
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2.1. Data utilization

As one of the largest AU dataset, EmotioNet 2020 con-

tains 23 classes of AU in various scenarios. It includes 950k

images with noisy labels, 25k optimization images with pre-

cise labels, 100k validation images and 200k testing images.

Participants of the challenge can obtain the noisy images

and optimization images. Because the noisy images are

automatically labeled by machine and the accuracy is only

81% [1], we cannot directly use them to train models.

We randomly divide the optimization images into

dataset-A (22.5k) for training and dataset-B (2.5k) for vali-

dating in our experiments. The head pose recognition prob-

lem (the last 6 AUs) is different from the other emotion

recognition problem (the first 17 AUs), because it requires

more context of the face area.

For the first model, we use RetinaFace [2] to detect and

align the face, and conduct online data augmentation in-

cluding random down sampling, random flipping, and ran-

dom black square occluding as mentioned in [1]. For the

second model, we use RetinaFace to detect faces (the face

box’s length is expanded to 1.5 times the original one)

and conduct online data augmentation including down sam-

pling and black square occluding. We follow [1] to expand

dataset-B by 4 times in order to fit the distribution of the

official testing dataset.

To utilize the noisy data, we first use our base model

to predict the label for each noisy image. We then choose

to use the label only if it is the same as the official given

noisy label and the prediction probability is larger than a

pre-defined threshold. After filtering the noisy images, we

obtain dataset-C that contains 300k images. We use dataset-

A and dataset-C to obtain a pre-trained model and finally

fine-tune the model using dataset-A.

2.2. Multi­view Co­regularization AU Recognition

Recently, inspired by the idea of co-training, many semi-

supervised training methods are used to recognize AU. We

follow the multi-view co-regularization method [5] as our

base framework, but the difference is that we only use la-

beled data. Instead of semi-supervised learning, we use the

co-training idea as a constraint of our supervised training.

The purpose is to capture multi-view features to enhance

the model discrimination.

We use two backbone models (two efficientnet-b4 [6] or

two resnet-101[4]) pre-trained on ImageNet as feature ex-

tractors. For each image, we denote fi as the i-th view fea-

ture that generated by the i-th feature extractor. Then two

classifiers are trained to predict the probabilities of the j-th

AU using f1 and f2:

pij = σ(wT
ijfi + bij),

where σ denotes the sigmoid function, wT
ij and bij are the

respective classifier parameters.

Figure 1. The positive and negative numbers of each AU in the

optimization dataset.

As mentioned in Niu et al. [5], f1 and f2 are supposed to

be conditional independent multi-view features, so a multi-

view loss is used to orthogonalize the weights of the AU

classifiers of different views. The multi-view loss Lmv is

defined as:

Lmv =
1

C

C∑

j=1

WT
1jW2j

‖W1j‖ ‖W2j‖

where Wij = [wij , bij ] denotes the parameters of the j-th

AU’s classifier of the i-th view.

The classifiers of different views should get consistent

predictions by minimizing the Jensen-Shannon divergence

between the two predicted probability distributions [5], and

the co-regularization loss is defined as

Lcr =
1

C

C∑

j=1

(H(
p1j + p2j

2
)−

H(p1j) +H(p2j)

2
),

where H(p) = −(p log p+ (1− p) log(1− p)).
For the final output, we use the average of two view’s

output:

p =
(p1 + p2)

2
.

We thus use four losses to train the models: recogni-

tion losses of two views, the multi-view loss and the co-

regularization loss.

2.3. Multi­task learning

Multi-label can be treated as a special multi-task prob-

lem, where each task predicts a 0/1 label. There are many

successful attempts of multi-task learning [2].

We believe that there are relations between different AUs

[7]. For instance, AU 6 and AU 12 are known co-occur in
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F1 Accuracy Final score

17AU Baseline 0.6740 0.9330 0.8030

Ensemble 0.6913 0.9435 0.8174

Ensemble-multicrop 0.6985 0.9461 0.8223

Ensemble-multicrop-pretrained 0.7033 0.9486 0.8259

Ensemble-multicrop-pretrained-chosen 0.7232 0.9490 0.8361

Ensemble-multicrop-pretrained-chosen-threshold 0.7393 0.9514 0.8454

6AU Baseline 0.3628 0.8708 0.6168

Ensemble 0.3916 0.8574 0.6245

Ensemble-chosen 0.4068 0.8633 0.6350

Ensemble-chosen-threshold 0.4148 0.8644 0.6396

Table 1. The results of 17 AUs and 6 AUs that trained on dataset-A and evaluated on dataset-B. “Baseline” means the multi-view framework.

“Ensemble” means combining the results of several models with different backbone by using linear model. “Multicrop” means using

multi-crop strategy during inference. “Pretrained” means the models are pretrained on dataset-A + dataset-C and finetuned on dataset-A.

“Chosen” means choosing different best checkpoint for each AU individually. “Threshold” means using different threshold to judge the

label.

Figure 2. Average, AU1, AU3, AU5, AU9, AU15 final scores

changes along with epochs. The black star means the best final

score of each line. As we can see, the best average final score is

around the 23-th epoch, and the AU5 best final score is around

the 80-th epoch. We can conclude that with the training process

going, some AU may have been over-fitted, while others are still

under-fitted.

expressions of enjoyment and embarrassment. We catego-

rize the 23 AUs into two groups. The 6 head pose AUs

are in a group and the other AUs are put in another group.

We then train the AUs in the same group together through

multi-task learning.

We analyze the label distribution of the optimization

dataset and find that the positive and negative ratio of each

AU can be very unbalanced, as shown in Figure 1. In order

to balance the positive and negative samples, batch balanc-

ing [3] is adopted. In our experiment, a hyper-parameter

α = 0.2 is used to balance the data distribution. If α times

the number of negative samples is larger than the number of

positive samples, we randomly select a subset of negative

samples to calculate loss and ignore the others. For exam-

ple, if the batch size is 100, the number of negative sample

is 90 and the number of positive sample is 10. Because

0.2×90 > 10, we randomly select 18 negative samples and

ignore other negative samples.

As multiple AUs are trained by the same model, we

guess that their convergence speed may be different. We

show the final scores on dataset-B of different AUs during

training in Figure 2, and find an interesting phenomenon

that the convergence speed of different AU can be very di-

verse. With the training process going, some AU may have

been over-fitted, while others are still under-fitted. Based

on the above observation, we choose the best checkpoint for

each AU, and the final score can be obviously boosted than

choosing the best checkpoint based on the average. Further-

more, since each AU in the multi-task training has inconsis-

tent convergence speed, the threshold for judging the AU

label should also be different. We show the experimental

results of model and threshold chosen in the next section.

3. Experiments

The evaluation criteria of the challenge is the average of

F1 score and mean accuracy:

Final score =
accuracy + F1

2
.

We summarize the results of 17 AUs and 6 AUs on

dataset-B with different strategies in Table 1. As to the

result of 17 AUs, the base model obtains a final score of

0.8030 and the ensemble of multiple base models obtain a

final score of 0.8174. By adding the multi crop strategy,

the final score increases 0.0049. By adding the pre-training

strategy, the final score increases 0.0036. By adding the

model chosen strategy, the final score increases 0.0102.
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Group Mean Accuracy F1 Final score

The validation phrase TAL 0.9200 0.5720 0.7460

University of Magdeburg 0.9198 0.5706 0.7452

SIAT-NTU 0.9195 0.3531 0.6363

The testing phrase TAL 0.9147 0.5465 0.7306

University of Magdeburg 0.9124 0.5478 0.7301

SIAT-NTU 0.9013 0.4410 0.6711

USTC-alibaba 0.8609 0.3497 0.6053

Table 2. The results of the validation phrase and the testing phrase. In both phrases, we rank the 1st among the teams

F1 Accuracy Final score

w/o Lmv 0.6447 0.9592 0.8019

w/o Lcr 0.6188 0.9583 0.7885

w/o batch balancing 0.6446 0.9593 0.8019

Baseline 0.6556 0.9604 0.8080

Table 3. The results of 12 AUs (defined by the EmotioNet chal-

lenge 2018). Models are trained on dataset-A and evaluated on

dataset-B. When we remove Lmv , Lcr , batch balancing, the final

score descends 0.0061, 0.0195, 0.0061 respectively.

By adding the threshold strategy, the final score increases

0.0093. As to the result of 6 AUs, we tried some similar

strategies, but only model chosen and threshold strategy are

useful. The performance gains are 0.0105 and 0.0046 re-

spectively.

In the official validation and testing datasets, we combine

all the strategies motioned above and obtain the final scores

of 0.7460 and 0.7306, both place the 1st among the teams.

The results are presented in Table 2.

In Table 3, we compare the results of our base model and

the model that without multi-view loss, co-regularization

loss, or batch balancing. Removing the co-regularization

loss Lcr causes the largest performance gap, which verifies

the results that reported in [5].

4. Conclusion

In our submission to the EmotioNet challenge 2020, we

use the multi-view co-regularization framework as our base-

line. By adding checkpoints and threshold chosen strate-

gies, we boost the performance by a large margin and rank

the 1st in the challenge. A more thorough and systematic

research will be done in our future work.
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