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Abstract

Direct pose regression using deep convolutional neural

networks has become a highly active research area. How-

ever, even with significant improvements in performance in

recent years, the best performance comes from training dis-

tinct, scene-specific networks. We propose a novel archi-

tecture, Multi-Scene PoseNet (MSPN), that allows for a sin-

gle network to be used on an arbitrary number of scenes

with only a small scene-specific component. Using our ap-

proach, we achieve competitive performance for two bench-

mark 6DOF datasets, Microsoft 7Scenes and Cambridge

Landmarks, while reducing the total number of network pa-

rameters significantly. Additionally, we demonstrate that

our trained model serves as a better initialization for fine-

tuning on new scenes compared to the standard ImageNet

initialization, converging to lower error solutions within

only a few epochs.

1. Introduction

Humans are extremely adept at localizing a camera from

image content alone. If the general location is known,

this process typically involves identifying recognizable geo-

graphic or architectural features to estimate how and where

one would have had to position themselves to produce the

image. In computer vision and robotics this task is often

referred to as image-based localization, or camera localiza-

tion, and represents the problem of estimating the position

and orientation of the camera from which an image was

taken, i.e., its corresponding camera pose, with respect to

some underlying scene representation.

The predominant approach to solving this problem in-

volves constructing a 3D model of the scene and estimating

the camera pose using feature-based localization, or identi-

fying 2D-3D correspondences between the image and the

known scene model. Though this approach tends to be

extremely accurate, it is slow and resource intensive. Re-

cently, learning-based approaches [6,11,13] have used con-

volutional neural networks (CNNs) to regress camera pose

in an end-to-end fashion. In such approaches, the weights

of the network implicitly model the underlying scene lay-

out, as opposed to feature-based methods which explicitly

take advantage of a 3D model. In these absolute pose re-

gression techniques, each model is specialized to a single

area or scene. In other words, for each scene, a network

is trained using a scene-specific set of training images and

corresponding ground-truth camera poses.

The major benefit of an end-to-end approach is that es-

timating the pose of an image requires only a single for-

ward pass through the network, which is much faster than

structure-based methods. For example, PoseNet [12] takes

less than 10ms per image, while DSAC++ [4] takes over

100ms per image. However, there are several drawbacks.

First, adding new data requires completely retraining the

model. Second, existing datasets are limited and provide

very few training examples for each scene. In the case of

Cambridge Landmarks [13], for example, there are as few

as 250 training samples for a given scene. Finally, recent

work has shown that learning-based approaches are still sig-

nificantly less accurate than structure-based methods [16].

Despite these issues, we believe absolute pose regres-

sion has many practical benefits over more accurate meth-

ods. Pose regression using a CNN can perform spontaneous

relocalization in a way that (1) is deterministic, (2) is fast,

and (3) runs in constant time regardless of scene size. No

other method has all three of these properties simultane-

ously. These properties make CNN-based pose regression

ideal for many tasks ranging from autonomous navigation

to mixed reality where real-time, reliable performance is

crucial. However, the use case is limited to the single lo-

cation in which the network was trained. In this work, we

propose a method to regress camera pose across several dif-

ferent scenes without loss of accuracy or the need to store

several large networks.

We propose a variant of PoseNet which we refer to as

Multi-Scene PoseNet (MSPN). Our key insight is that we

can make scene identification explicit in the network ar-

chitecture. We implement this as a two stage network,

shown in Figure 1. The first part of the network is shared

across scenes and learns a general camera localization fea-

ture. This feature is then used for scene prediction, which

indexes a database of scene-specific weights, as well as final

pose regression using the indexed weights. Since each scene
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Figure 1: Our proposed Multi-Scene PoseNet architecture for multi-scene pose estimation. A convolutional neural network

regresses an F dimensional image feature. This feature then goes through two branches. The first branch uses the image

feature to predict a probability distribution over N possible scenes which is then used to index into a scene-specific weights

database. The second branch uses the weights extracted from the weights database to construct a dense layer to transform the

image features into the P dimensional pose parameters. The pose parameters are then used to construct the camera pose C.

effectively has a unique head in the network, our approach

can be thought of as multi-task learning where each scene

is a unique task. This allows us to move beyond memoriz-

ing each scene individually to learning a common model for

camera localization across scenes. Further, MSPN enables

training of the feature extractor using an order of magni-

tude more images, which we hypothesize may lead to more

robust localization performance and improved accuracy.

We evaluate our proposed approach extensively on com-

mon benchmark datasets. Our key contributions include:

• A general method that allows for training pose regres-

sion networks on multiple scenes without sacrificing

performance.

• A thorough evaluation on two benchmark datasets for

absolute pose regression across multiple scenes.

• Demonstrating the value of our approach as pretraining

for learning to localize in novel scenes.

2. Related Work

Estimating camera pose, i.e., the position and orienta-

tion of a camera relative to a scene, from a captured image

is a fundamental problem in computer vision. Applications

include 3D Reconstruction, mixed reality, and autonomous

driving. Unsurprisingly, there are a wide variety of meth-

ods. For a thorough overview of work in this area, see Sat-

tler et al. [16].

Image retrieval has been used extensively as part of lo-

calization systems. For example, a standard approach for

image localization is to build a large database of images

with known location, and then infer the location of a query

image from the closest match (or some combination of the

set of closest matches). Hays and Efros [9] demonstrated

the success of image retrieval for image geolocalization us-

ing a large dataset of 6 million images. Other methods

[1,20] learn a low-level image feature and perform nearest-

neighbors search to predict the location and pose of a query

image. Image retrieval has been successfully applied for

problems in structure-based pose regression (matching 2D

to 3D) [21] and relative pose regression (estimating pose

relative to a set of training images) [7]. In this work we

focus on direct absolute pose regression with no retrieval

step.

A large body of work has explored methods for di-

rectly estimating camera pose from an image using convo-

lutional neural networks [6,11,13]. Though not as accurate

as structure-based methods [16], these methods are attrac-

tive as they have fast, constant time inference regardless of

scene complexity. The standard approach for such methods

is to learn a feature embedding using a CNN, which implic-

itly captures details of the scene in the weights of the net-

work, and then use features from this embedding to regress

the camera pose. This requires only a single forward pass

of the network. However, each scene typically has its own

specialized model.

Methods for direct pose regression largely differ in

choice of architecture or loss function. The simplest ap-

proach, PoseNet [13], trains a feed forward neural net-

work using absolute error in orientation and position as a

loss function. MapNet [6] enforces a relative pose cor-

rectness constraint that makes the final predictions more

spatially consistent. LSTM PoseNets [19] replace a fully

connected layer with an LSTM for feature reduction be-

fore final pose regression. Hourglass PoseNets [14] use

an encoder-decoder network with skip connections. De-

spite the differences in these approaches, they tend to have

similar performance overall. In our work, we focus on

the PoseNet framework for absolute pose regression and



explore how to take advantage of multiple scenes during

model training. To our knowledge, our work is the first to

explore methods for multi-scene absolute pose regression.

AnchorNet [15] explicitly partitions space into anchor

points and regresses relative camera positions to every

point. This work is similar to ours in that they take the

first step towards a unified network that operates on dis-

tinct regions. However, AnchorNet still operates on a sin-

gle scene at a time. The fundamental difference with our

approach is that the final pose prediction is computed us-

ing a weighted average of relative anchor point poses. We

instead directly regress a single absolute pose without av-

eraging across many predictions. Our approach can be im-

plemented in tandem with AnchorNet and we view them as

complementary.

A separate branch of CNN-based pose regression is

scene coordinate regression. DSAC [2] and the follow

up DSAC++ [3] train a CNN to predict the 3D locations

of pixels to establish 2D-3D correspondences. Next, the

Perspective-3-Point algorithm and RANSAC [8] are used

to compute the final camera pose. These methods are ex-

tremely accurate and compete with traditional structure-

based approaches. However, they are much harder to im-

plement and training takes much longer to converge. Also,

due to the inherent randomness of RANSAC, these methods

are not deterministic and have longer run-time. While some

work has been done on performing pose regression across

multiple scenes using these approaches [5,18], they still re-

quire a separately trained expert network for each scene.

Instead, we use a largely shared network with only a small

scene-specific component.

3. Background

We describe the current paradigm of learning-based

methods for absolute pose regression in a specified scene.

Given a single image, the model output is a vector repre-

senting camera pose p, composed of location t and orienta-

tion q:

p = [t, q]. (1)

Camera location t is a triple, [x, y, z], which defines the

spatial location of the camera center relative to the origin

of the scene in 3D Cartesian coordinates. Camera orienta-

tion q defines a relative rotation to a canonical pose origin.

Typically, for absolute pose, this is represented as a quater-

nion [13] instead of more traditional angle parameterization

due to the inherent non-uniqueness of Euler angles. Recent

approaches have had success using the log-quaternions [6].

The log-quaternion is desirable because it has fewer param-

eters (3 vs. 4) and naturally defines a unit quaternion with-

out the need for explicit normalization.

During training the mean absolute error of each pose

component, weighted by a hyperparameter β, is minimized:

L(p̂, p) =
∥

∥t̂− t
∥

∥

1
+ β ‖q̂ − q‖

1
, (2)

where p̂ is the ground truth pose and p is the output of the

network. The value of β is specific to each scene. Some

approaches [13] set β before training begins, typically be-

tween 300 and 500 for indoor scenes and between 500 and

1000 for outdoor scenes. More recent works learn this

weighting as part of the training process with a Laplace like-

lihood [11]:

L(p̂, p) =
∥

∥t̂− t
∥

∥

1
e−st + st + ‖q̂ − q‖

1
e−sq + sq, (3)

where st and sq are optimized during training. By allowing

the loss to be weighted dynamically, training can be per-

formed without the need for hyperparameter tuning.

3.1. Theory of Absolute Pose Regression

The standard deep CNN method for absolute pose re-

gression can be segmented into three stages [16]:

1. A function that extracts a localization feature from the

image.

2. A non-linear embedding of this feature into high di-

mensional pose components.

3. A linear mapping from pose components to final pose

using the learned basis poses.

In many learning-based approaches, the entire process is

represented as a single CNN and a separate model is then

trained end-to-end for each scene. For example in recent

work on PoseNet [12], stage 1) is a standard ResNet-34 net-

work, stage 2) is a fully connected layer with a ReLU acti-

vation, and stage 3) is another fully connected layer which

outputs the final pose parameters. The fact that these meth-

ods use separate networks for each scene makes them very

costly in terms of training time and number of stored pa-

rameters.

We propose an alternative, in which feature extraction is

shared entirely by all scenes and only the final pose regres-

sion layer is trained to be scene-dependent. Additionally,

We show that stage 1) and 2) above can be merged to reduce

the network complexity without losing accuracy. In fact,

our modification boosts performance in many cases. Our

proposed alternative is more efficient in terms of learned pa-

rameters and can quickly learn to localize cameras in new

scenes.

4. Multi-Scene Absolute Pose Regression

A naı̈ve approach to estimating pose across multiple

scenes is to train a single PoseNet with a training set con-

taining images from all scenes, with no further modifica-

tion. While this approach is simple, it often suffers a loss

in performance over a single network per scene. We show



that this decrease in performance can be overcome in many

cases without a significant increase in model complexity.

We propose Multi-Scene PoseNet to decouple scene and

pose using a database of scene-specific weights, shown in

Figure 1. First, we use a CNN to extract an F dimensional

image feature. This image feature is then used to regress

an N dimensional probability distribution over each of the

N possible scenes. The most likely scene (maximum prob-

ability) is used to index into a database of scene-specific

weights producing an F × P fully connected layer, where

P is the dimension of the pose parameters. Finally, the im-

age feature is passed through the selected fully connected

layer for final pose prediction. This is similar to ESAC [5],

which uses a set of scene-specific expert networks and a gat-

ing network for expert selection. However, in our method

a majority of the network is shared between all scenes and

only the final layer is specific to a given scene.

The network is trained to predict the image scene and

pose parameters jointly in an end-to-end manner. Pose re-

gression is optimized using (3) and scene prediction is opti-

mized using cross entropy. This results in features that are

explicitly discriminative by scene as well as being useful for

pose regression. The final loss function for pose prediction

p and scene prediction s, with corresponding labels p̂ and ŝ

becomes

Loss = L(p̂, p)−
1

n

N
∑

i=1

ŝilog(si), (4)

where N is the number of scenes.

With the exception of the fully connected layers in the

weights database, all other parts of the network are shared

by all scenes. This results in an extreme reduction in re-

quired parameters per scene. For example, using the ap-

proach of [12] each new scene requires its own model with

over 22 million parameters. In our approach, the base net-

work contains 22 million parameters and each new scene

adds approximately 14 thousand parameters. For 10 scenes,

our method uses 10% of the parameters. For 100 scenes,

our method uses only 1% as many parameters. Having such

a significant portion of the network shared across scenes al-

lows for the use of deep network based localization over

diverse areas, even in memory starved environments such

as embedded vision systems on small autonomous drones.

4.1. Improving Network Efficiency

As described in Section 3.1, the theoretical model of ab-

solute pose regression has three stages: feature extraction,

non-linear projection of the feature vector to contravariant

components in the learned pose basis, and finally a linear

mapping from the learned pose basis to the canonical basis

of the dataset. These components are represented explicitly

in PoseNet as ResNet-34 feature extraction and global aver-

age pooling, a fully connected layer with ReLU activation,

and a final fully connected layer with no activation, respec-

tively. The ReLU activation in the second stage is trouble-

some as it removes the possibility of negative components

to be present in the final linear mapping. Since negative

pose values are not only possible, but as likely as positive

values, this means that the network must learn two effective

copies of any useful basis pose to be able to produce both

positive and negative poses. Methods have been explored

to solve this redundancy with different activations [17], but

we found removing this fully connected layer altogether

to be effective. Using only a single fully connected layer

also results in a more compact representation for our weight

database.

4.2. Implementation Details

For our experiments we use a ResNet-34 [10] feature ex-

tractor initialized from pretrained ImageNet weights. We

do this to be consistent with PoseNet and MapNet for fair

comparison. We train for 100 epochs with a batch size

of 64 using the Adam optimizer with a learning rate of

10−4. During training, we scale all input images such that

their smaller dimension is 256 and then train on random

224×224 crops. At test time, we use a 224×224 square cen-

ter crop. As in [12], each scene has 2 learned loss weight-

ing parameters that are specific to the scene. For example,

this means there are 14 unique loss weighting parameters

learned when training with 7 unique scenes. We opt to use

the log-quaternion representation of orientation due to the

fact that it requires no explicit normalization for conversion

to a rotation [6]. During training, the true scene is used

for determining which final layer to use for pose regression.

During inference, we use the most likely scene as predicted

from the scene prediction branch.

5. Evaluation

We show comparisons with our method to the current

state-of-the-art methods, PoseNet and MapNet. As is con-

vention in these works, we provide median position and ori-

entation error. All networks, including PoseNet and Map-

Net, use ResNet-34 as the backbone CNN.

5.1. Datasets

We train and evaluate using two common 6DOF cam-

era pose datasets, Microsoft 7Scenes [18] and Cambridge

Landmarks [13]. These two datasets have become the stan-

dard benchmarks for learning-based direct pose regression.

7Scenes is composed of 7 small indoor scenes ranging in

difficulty and size, but all scenes are less than 10 meters

wide. Cambridge Landmarks on the other hand is com-

posed of 6 large-scale outdoor scenes on the order of 100s of

meters wide. Both datasets were collected with hand-held

cameras and ground truth data was computed using highly

accurate structure-from-motion algorithms.



Method Chess Fire Heads Office Pumpkin Red Kitchen Stairs

PoseNet (Single) 0.14/4.50 0.27/11.8 0.18/12.10 0.20/5.77 0.25/4.82 0.24/5.52 0.37/10.60

MapNet (Single) 0.08/3.25 0.27/11.7 0.18/13.3 0.17/5.15 0.22/4.02 0.23/4.02 0.30/12.10

Naı̈ve (Multiple) 0.15/4.85 0.28/13.13 0.30/11.54 0.23/6.34 0.29/5.34 0.29/6.98 0.35/10.63

MSPN (Multiple) 0.09/4.76 0.29/10.50 0.16/13.10 0.16/6.80 0.19/5.50 0.21/6.61 0.31/11.63

Table 1: Results on 7Scenes dataset. Both PoseNet and MapNet are single scene approaches. The naı̈ve approach is a

single PoseNet with no modification trained on each of the scenes simultaneously. MSPN is our method. We report median

translation / median orientation error. Values are highlighted red when they are significantly worse than what we are able to

achieve with our modified network.

Method Kings College Old Hospital Shop Facade St. Mary’s Church Street Great Court

PoseNet (Single) 0.99/1.06 2.17/2.94 1.05/3.97 1.49/3.43 20.7/25.7 -

MapNet (Single) 1.07/1.89 1.94/3.91 1.49/4.22 2.00/4.53 - -

Naı̈ve (Multiple) 1.72/3.12 2.58/5.96 1.97/9.25 2.55/6.92 48.37/45.46 12.04/10.99

MSPN (Multiple) 1.73/3.65 2.55/4.05 2.02/7.49 2.67/6.18 26.78/54.22 9.2/10.42

Table 2: Similar to Table 1 for Cambridge Landmarks. The difference between our method and the naı̈ve approach are less

significant here. We postulate that due to the capacity of the network and the small size of the training sets, our method

provides less benefit for these scenes.

5.2. Effect of Joint Training

We first test the effects of the scene-specific component

in the case of a scene oracle. That is to say, the true scene in-

dex is used to query the weights database instead of the out-

put of the scene prediction head. By jointly training several

scenes together with our method, we not only match, but in

many cases improve upon the accuracy for each scene. By

training on multiple scenes, the shared feature extraction

network gets orders of magnitude more examples to learn

from. Although different scenes can be seen as different do-

mains in the context of localization, increasing the number

of training examples may help increase the generality of the

feature extraction, perhaps reducing over-fitting to the train-

ing sequences in each scene. Note that the batch size for

an individual scene is on average batch size
N

for N scenes,

so the effective batch size for the scene-specific weights is

small for a large number of scenes.

A comparison with other methods is shown in Table 1

and Table 2. To verify that the network capacity is not sim-

ply large enough to learn all scenes, we also train a single

PoseNet without any scene-specific layers on all scenes si-

multaneously as a baseline. Although it performs remark-

ably well, performance is typically much worse than our

method. These results show that simply training a single

model does not work well in general. Note that one method

is not dominant over any other for either dataset. Keep in

mind that the fundamental challenge we are trying to solve

is parameter reduction for scaling to multiple scenes, but it

tends to perform as well as or better than other methods. We

believe forcing only the feature extraction to be generic is

imposing implicit regularization, reducing the tendency of

the network to overfit to the training data. Note that some

scenes Cambridge Landmarks do not show the metric gain

from our method compared to the baseline that is observed

for 7Scenes. Due the the high capacity of the network, low

number of training examples per scene, and low number of

individual scenes, the naı̈ve baseline can still perform rea-

sonably well on this dataset. However, our methods exhibits

a clear benefit for the 7Scenes dataset.

5.3. Stability With Different Scenes

As the key component of our method is training on a set

of scenes at once, it is of interest to see if it performs simi-

larly regardless of the scenes used for training. To test this,

we train multiple networks where each network is trained

using a different subset of all scenes in the dataset and each

subset is missing a single scene. Table 3 and Table 4 show

the general stability of our method to different scenes. With

a few outliers, the error for a given scene remains similar

regardless of which scenes we trained on. However, some

scenes do seem to make learning difficult. For example,

training the Landmarks dataset together without the Street

scene results in uniformly improved performance by 10’s

of centimeters, which is a sizeable improvement. Upon in-

spection of the dataset, this is somewhat unsurprising as the

Street training set was collected only along cardinal direc-

tions. While the strangeness of this specific scene is ap-

parent to us, it is not trivial to determine that this scene is



Great Court Kings College Old Hospital Shop Facade St. Mary’s Church Street

w/o Great Court - 1.13/7.04 2.16/9.41 1.33/13.49 1.59/10.69 15.20/61.03

w/o Kings College 8.16/20.33 - 2.33/9.54 1.56/14.34 1.56/11.75 15.09/58.52

w/o Old Hospital 7.51/18.51 1.01/7.71 - 1.68/16.08 1.61/10.39 14.63/60.02

w/o Shop Facade 6.85/17.08 0.98/6.81 2.15/9.01 - 1.51/10.55 18.63/55.41

w/o St. Mary’s Church 6.92/16.04 1.07/5.84 1.79/8.27 1.36/12.74 - 14.28/51.75

w/o Street 6.18/13.33 0.91/5.31 1.96/8.54 1.07/11.52 1.29/8.13 -

Table 3: We experiment with leaving one scene out during training of the Cambridge Landmarks dataset. We observe

relatively stable performance with respect to the left out scene. Note that in some cases, we can see that a particular scene

hinders performance for other scenes, most notably the model trained without the Street dataset performs much better on all

other scenes than the other training setups. We report median translation / median orientation error.

Fire Heads Stairs Office Red Kitchen Chess Pumpkin

w/o Fire - 0.13/13.86 0.34/12.38 0.16/6.78 0.21/7.43 0.09/4.66 0.20/4.97

w/o Heads 0.27/9.70 - 0.29/11.04 0.16/6.75 0.22/7.92 0.10/4.90 0.21/5.53

w/o Stairs 0.26/10.94 0.15/13.62 - 0.16/6.35 0.23/7.51 0.10/4.90 0.20/5.19

w/o Office 0.26/10.95 0.14/12.95 0.30/11.70 - 0.22/7.47 0.10/5.14 0.19/5.12

w/o Red Kitchen 0.26/11.01 0.13/14.08 0.30/12.31 0.16/6.55 - 0.13/5.67 0.21/5.00

w/o Chess 0.27/10.92 0.14/12.72 0.28/13.00 0.16/6.54 0.22/7.65 - 0.21/5.66

w/o Pumpkin 0.28/10.69 0.14/12.93 0.34/11.88 0.16/6.52 0.22/7.38 0.11/4.95 -

Table 4: Similar to Table 3 for the 7Scenes dataset. We train a network using only 6 of the scenes to show the stability of our

method.

Initialization Fire Heads Stairs Office Red Kitchen Chess Pumpkin

ImageNet 0.94/82.19 1.19/148.11 0.99/92.36 0.79/44.37 0.86/19.54 0.56/30.91 0.79/48.19

MPSN 0.57/19.35 0.41/20.12 0.70/15.38 0.51/16.95 0.43/13.86 0.54/16.34 0.48/16.6

Table 5: We trained each 7Scenes scene independently for 1 epoch. Training of a new scene typically converges much

faster when initializing from a MSPN trained on several other scenes as opposed to ImageNet pretraining. We report median

translation / median orientation error.

challenging for a network to train on. Being able to quanti-

tatively show how a scene effects training is a beneficial and

unique ability of the proposed multi-scene pose regression

framework.

5.4. Quickly Training New Scenes

The backbone of our method is a generalized localiza-

tion feature extractor. Though the extracted features may

have learned some amount of scene-specific information

due to the high capacity of the network, the feature extrac-

tor acts as a good starting point for training localization of

new scenes. There are two ways to approach this, freez-

ing the feature extractor and training only the final scene-

specific layer, or fine-tuning the whole network for the new

scene. Unfortunately, fine-tuning only the final layer re-

sults in very poor performance. As mentioned above, we

believe that this is because the network has the capacity to

learn scene-specific features for the small number of scenes

used in our experiments, meaning the resulting feature ex-

tractor is not completely independent of the scenes it was

trained on. However, we do find that the resulting mod-

els serve as much better initialization for fine-tuning than

ImageNet pretraining. Table 5 and Table 6 shows the final

performance of networks trained for one epoch on specific

scenes. We chose to train for only one epoch to highlight

the improvement in performance on the new scene after just

seconds of training. In all cases, one or both of position

and orientation has much lower error after just one epoch

when initialized from a MSPN. Figure 2 shows the full loss

curve of 10 epochs for the Fire scene using both initializa-

tion methods. Overall we see that the model initialized us-

ing our method has nearly converged within only 10 epochs



Initialization Great Court Kings College Old Hospital Shop Facade St. Mary’s Church Street

ImageNet 72.58/140.71 30.82/102.77 31.43/119.15 9.81/229.48 19.65/96.58 119.69/73.29

MSPN 73.16/45.71 33.75/11.05 30.23/92.15 10.19/47.54 23.45/29.46 123.81/33.79

Table 6: Similar to Table 5 for Cambridge Landmarks.
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Figure 2: Error in position and orientation on Fire test set

as training continues. “ImageNet” signifies the network was

initialized from ImageNet pretrained weights. “MSPN” sig-

nifies that the network was pretrained for pose regression on

other scenes. Fine-tuning a new scene from a network pre-

trained for pose regression converges much faster than from

ImageNet pretraining even if the original scenes are very

different from the new scene.

compared to still high error with the ImageNet pretrained

models. The faster convergence allows for fine-tuning a

new scene with significantly less computation. This means

new scenes can be trained in a couple of minutes instead

of nearly an hour (5 minutes vs 50 minutes for our experi-

ments).

5.5. Stability Across Datasets

While many applications require accurate localization of

the same camera across many different scenes, it is also

possible that a method should be agnostic to camera and

work across drastically different scenes. To evaluate our

method on this scenario, we use all 13 scenes collectively

between both datasets to train a single model. Results are

shown in Figure 3 for the 7Scenes dataset. We show perfor-

mance for single scene training, training on all scenes from

the 7Scenes datasets, and training with all scenes from both

7Scenes and Cambridge Landmarks using our method. Per-

formance is roughly the same in all cases, with no signif-

icant increase in error even when training with all scenes

from both datasets. These results are surprising consider-

ing the vast difference in appearance and spatial extents be-

tween the two datasets. We believe this offers more evi-

dence that the features extracted by our approach are better

for the localization task in general.

5.6. Scene Detection

We also verify the ability of the network to infer in which

scene the image is located for end-to-end inference. During

training, scene prediction is trained along with pose regres-

sion using (4). At inference time, the maximum probability

scene from the network is used. This allows for completely

end-to-end pose regression framework for an arbitrary num-

ber of scenes. We compare this to the scene oracle approach

in which the scene id is known at inference time. The results

are shown in Table 7 and Table 8. We found that scene pre-

diction accuracy is very good in general. Even in the case

of the Pumpkin scene where accuracy is only around 85%,

the resulting change in pose prediction error compared to

the oracle approach is not particularly significant. This is

likely because images that are hard to correctly classify are

also hard to localize, so the resulting pose will be an outlier

in each case. Note that there is a difference in error even

when the scene accuracy is 100% because one network is

trained with the scene detector and the other without. The

additional loss provided by the scene classification results

in a different intermediate feature vector.

6. Conclusion

We proposed a multi-scene approach to camera pose re-

gression, Multi-Scene PoseNet, that enables accurate lo-

calization across multiple scenes using a single network.

Our approach works by learning a set of scene-specific

fully connected layers for final pose regression while main-

taining a shared feature extractor that is applied across all

scenes. This allows a majority of the network to be shared

across scenes, and drastically increases the amount of ex-

amples that can be used for training. Compared with exist-

ing techniques, our approach can support multiple scenes

at a fraction of the computational cost of existing meth-



Figure 3: Comparison of final position and orientation error for 7Scenes scenes with various training methods. Single scene

means that the network was trained with only images from the specified scene. Note that this is trained with our modified

network without the intermediate fully connected layer. Single dataset training means all scenes from 7Scenes were used

for training. Similarly, multiple dataset means all scenes from both 7Scenes and Cambridge Landmarks were used. Training

across both datasets does not significantly degrade performance even in the worse cases.

Fire Heads Stairs Office Red Kitchen Chess Pumpkin

Scene Oracle 0.29/11.20 0.16/13.10 0.31/11.63 0.16/6.80 0.21/6.61 0.09/4.76 0.19/5.50

End-to-end 0.30/10.88 0.16/13.33 0.30/13.78 0.17/6.89 0.22/7.19 0.12/6.10 0.23/6.95

Scene Accuracy 0.9895 0.9990 1.000 1.000 1.000 0.977 0.847

Table 7: End-to-end inference for 7Scenes scenes. End-to-end pose error is comparable to the scene oracle case where the

scene id is known at inference time.

Great Court Kings College Old Hospital Shop Facade St. Mary’s Church Street

Scene Oracle 9.2/10.42 1.73/3.65 2.55/4.05 2.02/7.49 2.67/6.18 26.78/54.22

End-to-end 7.0/11.05 1.22/5.82 2.31/6.19 1.17/11.27 2.2/8.45 25.04/53.25

Scene Accuracy 0.9987 0.9971 1.000 0.9709 0.9981 0.6743

Table 8: End-to-end inference for Cambridge Landmarks scenes. End-to-end pose error is comparable to the scene oracle

case where the scene id is known at inference time.

ods, and yet still achieves competitive results on standard

benchmark datasets, even achieving state-of-the-art perfor-

mance on some scenes. We showed that this method is sta-

ble across various datasets and number of unique scenes.

Finally, we showed how our approach captures a general

camera localization feature that can be used to quickly un-

derstand new scenes, allowing for faster training of unseen

scenes than typical ImageNet pretraining. We believe our

method can act as a foundation for many useful extensions

to absolute pose regression.
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