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Abstract

In this paper we address the problem of dynamic scene

motion deblurring. We present a model that combines high-

resolution processing with a multi-resolution feature aggre-

gation method for single frame and video deblurring. Our

proposed model consists of 2 stages. In the first stage, sin-

gle image deblurring is performed at a very high-resolution.

For this purpose, we propose a novel network building block

that employs multiple atrous convolutions in parallel. We

carefully tune the atrous rate of each of these convolutions

to achieve complete coverage of a rectangular area of the

input. In this way we obtain a large receptive field at a

high spatial resolution. The second stage aggregates in-

formation across multiple consecutive frames of a video

sequence. Here we maintain a high-resolution, but also

use multi-resolution features to mitigate the effects of large

movements of objects between images. The presented mod-

els rank first and fourth in the NTIRE2020 challenges for

single image deblurring and video deblurring, respectively.

We apply our framework on current benchmarks and chal-

lenges and show that our model provides state-of-the art

results.

1. Introduction

Motion blur in images is one of the most common and

noticeable artifacts that can occur during image capture.

Due to technical constraints, an image captured by a cam-

era represents the scene over a short period of time. Camera

shake and moving objects during the exposure time of the

image sensor can cause significant motion blur. Reversing

the motion blur in an image can be very difficult because

the exact reason for it, such as the movement of all objects

in the image and the camera itself, is usually unknown. As

a result, image deblurring is a challenging problem in com-

∗indicates equal contribution

Figure 1: [Best viewed in color] Results of the proposed

image deblurring method. Left: Blurred Image. Right:

Deblurred Image.

puter vision. Blurred images can be problematic in many

computer vision applications, such as object detection or

structure-from-motion. For example, in camera-based ap-

plications such as head motion tracking in virtual reality

applications where a camera is used, rapid head movements

can lead to a high degree of motion blur and consequently to

a loss of tracking. In this work we try to recover the details

of blurred images given a set of pairwise data with blurred

images and correspondingly sharp images.

Early work on image deblurring used preliminary in-

formation such as the type of blur kernel and additive

noise [9]. In real world scenarios and applications, however,

this information is unknown, which leads to poor perfor-

mance of such methods. Recently, methods based on deep

learning have shown significant success in image deblur-

ring [24, 36, 35, 33, 16]. Common Convolutional Neural

Networks (CNNs) use multiple down-sampling layers to ex-

pand their internal receptive field. To extract features from

larger and more semantically more meaningful areas of the

input, many methods use some sort of sub-sampling inter-

nally. Common options are pooling operations like max-

pooling and average-pooling as well as strided convolution.

For image-to-image tasks such as motion deblurring, dense

spatial output at full input resolution is required. How-

ever, sub-sampling leads to a loss of spatial information and

therefore has a negative effect on predictions when detailed

spatial information is required. Furthermore, up-sampling

layers usually follow down-sampling layers to recover the
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spatial dimensions. However, current up-sampling tech-

niques such as deconvolution can produce checkerboard ar-

tifacts caused by uneven overlap [28]. This has a negative

effect on the performance of deep image-to-image models.

To overcome these disadvantages, we simply omit most of

the down-sampling and therefore do not need most of the

up-sampling layers. Figure 1 shows an exemplary output of

our proposed model. We analyze the use of atrous convo-

lution for the task of image deblurring. Atrous convolution

has already been used effectively in other dense-prediction

tasks such as semantic image segmentation [38]. Atrous

convolutions is a method that allows increasing the spatial

area covered by a convolutional kernel without increasing

the number of parameters. It is also known as dilated con-

volution. Instead of down-sampling, we use atrous convo-

lution to increase the receptive field without reducing the

spatial dimensions of the deep features of our CNN. Thus

we are able to maintain a high-resolution representation of

our data in all layers of our proposed model. Our contribu-

tions are as follows:

1. We propose a high-resolution model that heavily uti-

lizes atrous convolution to obtain a large receptive field

achieving state-of-the-art performance for the task of

single image deblurring.

2. We propose a Multi-Level Feature Aggregation

method for video deblurring that improves upon our

single image performance.

3. We conduct an ablation study, that confirms that

high-resolution is the primary reason for our out-

performance.

We evaluate our proposed models for single image as

well as video deblurring on the REDS dataset [23] pro-

vided by the NTIRE 2020 workshop challenges on image

and video restoration and enhancement [25]. We further

provide results on the GoPro dataset [24] and compare our

results to state-of-the art approaches.

2. Related Work

Many approaches tried to estimate unknown blur kernels

in order to reverse their effects [2, 3, 29]. Nowadays, due

to the creation of synthetic data-sets using high-frame-rate

cameras, we are able to use supervised techniques to train

deep deblurring networks in an end-to-end fashion. Vari-

ous approaches to image deblurring using CNNs have been

proposed in recent years. Encoder-decoder architectures

and multi-scale networks have been particularly success-

ful [24, 36, 35, 33, 16]. These networks typically make use

of representations on at least 3 different resolutions inter-

nally. Nah et al. [24] proposed a multi-scale architecture for

blind image deblurring using a residual network structure.

Their model takes a blurred image pyramid as input and

residual blocks are used on every level. The output is again

an image pyramid representing an estimate for the sharp-

ened image on every level. Tao et al. [36] used encoder-

decoder residual blocks. They alternate down-sampling and

up-sampling of deep features with additional residual con-

nections. Thus, they are able to increase the receptive field

while keeping a high-resolution representation. In contrast,

we omit all but one down-sampling operation as well as one

up-sampling operation to keep a high-resolution represen-

tation throughout the network.

Atrous convolution, or dilated convolution, allows to

enlarge the receptive field of a single convolution ker-

nel to incorporate a larger context. Atrous convolution

has been successfully employed in many spatially-dense

tasks [4, 38, 42]. Yu and Koltun [38] applied atrous convo-

lution for semantic segmentation and significantly improved

segmentation performance. They showed that for tasks re-

quiring high-resolution results, high-resolution operations

throughout the network are feasible and promising. Their

introduced context module consists of 7 layers that apply

3 × 3 convolutions with different dilation factors of 1, 1,

2, 4, 8, 16 and 1, resulting in a receptive field of 67 × 67
pixels. Recently, Zhou et al. [42] proposed a full resolution

CNN for medical image segmentation. They use cascaded

atrous blocks, which are similar to standard residual blocks

but with different atrous rates of 1 and 3 in the convolu-

tion layers. This setting of the atrous rate was used to force

each pixel within the receptive field to be covered such that

there are no missing gaps. An atrous rate setting of 1 and

4 in two successive convolutions would result in a receptive

field without complete coverage of all pixels. They showed

that networks without down- and up-sampling layers and

reasonable receptive field through atrous settings can out-

perform U-Net architectures with less trainable parameters.

Similarly to their work, we carefully tune atrous rates to

obtain a receptive field with almost full coverage.

Others analyzed the deblurring of images in videos,

where the main challenge is to find corresponding content

in multiple frames. Recent deep learning methods incorpo-

rate this search in networks that are trainable in an end-to-

end fashion [41]. Sim and Kim [33] stacked several frames

and fed them into a residual network to deblur a single im-

age. Their model is equipped with an adaptive per-pixel

kernel module to restore image details for small motion

blur. Wang et al. [37] learn a model that utilizes deformable

convolutions [5]. Deformable convolutions allow to per-

form convolution with adaptive kernel shapes. This allows

aggregation of information taken from different locations.

Our model instead aggregates spatio-temporal information

on multiple resolutions to mitigate the effects of inter-frame

movements.



Figure 2: Residual block with atrous convolution used in

our model. It performs four parallel convolutions on the in-

put features with different atrous rates. The outputs are con-

catenated and now have twice the size of the input channels.

The second convolution reduces the channel dimension to

the same as the input, and the residual is added.

3. Methodology

We use a two-stage strategy where the first stage tries

to remove blur in a single image and the second stage tries

to align different features of a sequence of images to im-

prove the deblurring result. We argue that the aggregation

of spatio-temporal information is easier on images that have

already been deblurred to a certain degree. Especially for

images that are heavily blurred, aggregating details from

different consecutive frames can be very difficult. There-

fore, our work consists of two different networks, one with

the task to deblur only a single image and one with the task

to aggregate features of predictions from the first stage.

3.1. Stage 1 ­ Single Image Deblurring

In our single image deblurring model we try to avoid

down-sampling in favour of atrous convolution. However,

there is no standard way for setting the atrous rate. Never-

theless, choosing a suitable atrous rate is crucial for perfor-

mance. In this section, we describe our proposed model for

single image deblurring and give motivation and intuition

leading to the proposed atrous configuration within the pre-

sented residual block.

Atrous Rate Setting We propose to use multiple parallel

convolutions with different atrous rates. This allows each

convolutional layer to learn specific parameters for a given

viewing distance, thus simulating a multi-scale approach

without reducing spatial resolution. The layout of the pro-

posed residual block is shown in Figure 2. Each block per-

forms four 3 × 3 convolutions in parallel with 128 filters

each and atrous rates of 1, 2, 3 and 4. We concatenate the

output of all four convolutions to obtain a feature block that

consists of 512 feature maps. Subsequently, we use another

3× 3 convolution to combine these features and reduce the

number of feature maps to 256. We add the output of this

layer to the input of the block. The intuition behind this

is that expanding feature depth within the residual block

allows more information to pass through and can improve

performance [39]. Each atrous block has a receptive field of

size 11 × 11 pixels on the input feature map. Through the

stacking of blocks the receptive field grows iteratively.

Figure 3 visualizes the receptive field after four paral-

lel convolutions with atrous rate 1, 2, 3 and 4, respectively,

with missing gaps in between (a) and the receptive field af-

ter the last 3 × 3 convolution (b). The resulting receptive

field now has an almost square shape.

A similarly shaped receptive field could be achieved with

five sequential convolution layers with a kernel size of 3×3
and atrous rate of 1 per residual block. In such a setting

every convolution layer incorporates information from a

growing region as the receptive field grows from layer to

layer. Our approach instead allows individual layers to spe-

cialize for a specific viewing distance. This is compara-

ble to sub-sampling the input features and applying con-

volution on multiple scales. This way, our approach pre-

serves high-resolution information while simulating multi-

scale processing.

The last convolution layer in every block combines the

outputs of the four parallel atrous convolution layers. In

Figure 3 we show that using a kernel size of 3× 3 is a good

choice because it combines the input features in a way that

results in an almost completely filled square receptive field.

The resulting weight for individual pixels is indicated by the

color intensity in Figure 3. Compared to the work of Zhou et

al. [42], where all pixels are weighted equally, we found the

increased weight towards the center of the receptive field to

be beneficial for image deblurring.

(a) (b)

Figure 3: Receptive field of our proposed atrous residual

block. (a) shows the receptive field after concatenating the

output of 4 different convolutions with atrous rates of 1, 2, 3

and 4. All layers are applied to the same input feature map.

(b) shows the final receptive field of the residual block after

the second 3× 3 convolution.
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Figure 4: Proposed model architecture for atrous convolution.

Network Architecture Figure 4 gives an overview of the

architecture of our first-stage model. We first employ two

consecutive convolution layers, where the first layer uses a

large convolutional kernel with a size of 9 × 9 to extract

low-level features. In the second layer we perform down-

sampling by strided convolution with a stride of 2 and ker-

nel size of 3×3. This is followed by a total of 20 of our pro-

posed atrous residual block to iteratively increase the size

of the receptive field of the network. We up-sample the re-

sulting features with a single deconvolution followed by 2

standard convolution layers. The output represent a resid-

ual image that we add to the blurred input image. Due to

the high resolution of images from the REDS dataset and

limited time for the experiments during the NTIRE 2020

challenge we used a single down-sampling layer.

3.2. Stage 2 ­ Video Deblurring

Qualitative analysis of the output of stage 1 showed that

many details such as fine textures or facial expressions are

not recovered equally well in different images. We ob-

served huge local differences in reconstruction quality be-

tween consecutive frames. In such cases we should be able

to improve the deblurring from stage 1 by aggregating in-

formation across multiple neighboring images in a video.

However, depending on the movement of the camera and

the movement of objects in the scene, finding correspond-

ing image contents can be very difficult for CNNs. This

is mainly due to the local operation of convolutions. If an

object has moved too far between frames, it is almost im-

possible to use the additional information. We approach

this problem with our proposed Multi-Level Feature Ag-

gregation (MLFA) method. We aggregate information from

consecutive frames on multiple different resolutions in the

feature space of a CNN. This allows the aggregation of in-

formation over long distances at low resolutions while also

maintaining high resolution details.

Network Architecture Figure 5 shows the high level

architecture of our second stage model. Processing of

video data can be categorized into three phases: feature

extraction, intra-resolution feature aggregation and inter-

resolution feature aggregation.

We extract features from the image at the current time-

step t as well as the previous image t−1 and the subsequent

image t + 1 separately. We use shared weights here. This

is achieved by 4 consecutive convolutions with stride s = 2
and increasing feature depth. Note that, all images are pre-

deblurred by our stage 1 model.

In phase two we aggregate image features of a certain

resolution across time-steps t − 1, t and t + 1. Here we

scale all features based on their similarity to the features of

time-step t. Like Wang et al. [37] we use the dot product of

pixel-wise feature vectors to measure the similarity. Note

that, unlike Wang et al. [37] we do not squash the resulting

features to a range between 0 and 1, but instead calculate

the dot product on unit vectors. Given two vectors a and b

the dot product a · b is defined as

a · b = |a||b| cos(θ) (1)

Here θ is the angle between a and b. Thus, if a and b are

both unit vectors, i.e., |a| = 1 and |b| = 1, the result is the

cosine of the angle between the vectors. Hence, our simi-

larity measure gives values between -1 and 1. A value of

1 means that features from both images are identical. A

value of zero means that feature vectors are orthogonal, and

as such are completely different. A value of -1 means that

feature vectors are pointing in opposite directions. Scal-

ing features by this similarity measure means reducing the

impact of time-series features that do not describe locally

similar data. If the content of a region described by the

current pixel in the feature space has changed completely

from one frame to another, this information is not relevant

for the output at the current position. Reducing the weight

for such pixels makes it easier to focus on locally relevant

features from neighbouring images. Note that it is impor-
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Figure 5: Top: High level representation of our multi-

level feature aggregation method. We use strided convo-

lutions with a stride of 2 for down-sampling. All frames

are processed independently using identical weights. The

result is a feature block per image and per spatial resolu-

tion. First we fuse features with identical resolution. Ag-

gregation across multiple resolutions is achieved by up-

sampling lower resolutions by a factor of two and subse-

quent element-wise addition with features of the higher res-

olution. Bottom: Detailed fusion method. We scale pixel-

wise feature vectors to unit length. Features from time-steps

t−1 and t+1 are then re-weighted by their similarity mea-

sured by dot-product with time-step t. We fuse the resulting

features with a convolution layer that is followed by three

residual blocks (two consecutive convolutions with kernel

size 3).

tant to perform this re-weighting scheme at multiple feature

resolutions that represent different areas of the input image

in order to adapt to different amounts of movement between

images.

We merge the similarity-weighted features by concate-

nating them along the channel-axis. We use a single con-

volution layer followed by three residual blocks to further

improve the combined features.

In the third phase we use deconvolution to up-sample

the features from phase two. We achieve inter-resolution

aggregation by adding the up-sampled features to features

of the new resolution in an element-wise fashion.

3.3. Experimental Framework

In this section we describe our experimental framework

and detail relevant information regarding the used datasets,

optimization methods, data processing methods as well as

some insight on different learning objectives that we exper-

imented with.

Dataset We trained our network on the REDS dataset

[23], which has been provided by the NTIRE2020 Image

Deblurring Challenge [25]. It consists of 300 videos with

100 images of size 720 × 1280 each, where 240 videos

are used for training, 30 for validation and 30 for testing.

The blurred images were synthesized by overlaying multi-

ple sharp frames captured by a high-frame-rate camera. The

sharp images of the test set are unknown. We report results

on the validation set and test set if available.

We further trained our models on the GoPro dataset [24],

which is a standard benchmark for evaluation of deblurring

algorithms. It consists of 3214 pairs of blurred and sharp

images with the same image resolution as in the REDS data

set (2103 pairs for training and 1111 pairs for testing). Like

the REDS dataset, the GoPro dataset is a synthetically cre-

ated dataset for single image as well as video deblurring.

Optimization We trained our models using the Adam

method [15] with initial learning rate η = 0.0001, β1 = 0.9
and β2 = 0.999. We constantly reduced the learning rate

manually by a factor of 10 whenever training progress, mea-

sured on the validation set, stalled for a longer time. We

trained both stage 1 and stage 2 models for about 2.5 mil-

lion iterations each, independently of each other.

Data Augmentation and Preprocessing For training we

use random image crops with a size of 320 × 320 pixels.

This is mainly due to the enormous run-time and memory

consumption when using full sized images. Preliminary ex-

periments have shown that we are able to achieve identical

results in ≈ 70% of the time by simply using image crops

instead of full sized images during training. We varied im-

age brightness, hue, saturation, and image contrast by small

amounts for every image crop. We also flip and rotate im-

ages at a 50% rate each. Due to the combination of all these

image augmentations, it is almost impossible to get the ex-

act same image twice during training. All images were nor-

malized to a range between -1 to 1. Each mini-batch con-

sisted of 2 random image crops taken from different images

for our stage 2 model and a batch size of 1 has been used

for our stage 1 model.

Training Objectives Training of both stage 1 and stage 2

networks was guided by pixel-wise absolute error in RGB-

Space. In both stages we used the RGB image of the current

time-step t as label. However, we have conducted prelimi-

nary experiments using different error formulations, which

we will detail below. The baseline model for these exper-

iments achieved 32.3dB PSNR and a SSIM of 0.901. All

of these experiments were conducted in the single image

deblurring setting.

GAN Learning pixel-wise tasks in an adversarial setting



has become very popular lately [12, 18]. How-

ever, our experiments showed no useful results. We

tried various discriminator architectures and multi-

ple GAN formulations such as StandardGAN [10],

LSGAN[22] and Relativistic Average LSGAN[14].

None of these experiments converged to anything

meaningful. These results are in line with results

from Kupyn et al. [16], who found their GAN-

based approach to not converge without adding an

additional perceptual loss. In contrast to [16], we

were able to learn a model that converged to a

score of 29.00dB PSNR and 0.869 SSIM by com-

bining a StandardGAN with an absolute error. This

is still considerably worse than our baseline of

32.3dB PSNR and 0.901 SSIM.

VGG We added a perceptual loss [13] based on the

conv3 3 layer of the VGG16 [34] network pre-

trained on ImageNet [6]. The resulting model

showed faster convergence in terms of the number

of parameter updates during training. However, we

did not see any improvement to our baseline model

in terms of PSNR and SSIM.

Edge Edges are very important for a visually pleasing re-

construction. Recent work tried to learn edges and

deblurred images subsequently [7] and showed im-

provements. To emphasize this, we tried to improve

our baseline by adding an additional absolute er-

ror between the edges of the output image and the

edges of the corresponding sharp image. However,

the resulting model performed worse than our base-

line with 31.32dB PSNR and 0.880 SSIM.

It is commonly known that both adversarial and percep-

tual loss improve visual quality at the cost of quantitative

performance measured by PSNR and SSIM [1]. It should

be noted that we have not made a qualitative analysis of the

above mentioned preliminary results.

Other Details In all reported models we use Leaky

ReLU [21] activation functions in all convolution layers ex-

cept for the output layer. Here, we use a linear activation

function. At test time we simply clip the output to the cor-

rect range of values. Despite being very similar to the con-

ventional ReLU [27] activation function, Leaky ReLU al-

lowed us to train for a much longer time with continuous

improvement in validation performance. This is probably

because it does not suffer from the “dying ReLU” prob-

lem [20], as it does not have zero-slope parts. In contrast,

ReLU activation functions stop gradient flow for all neg-

ative values. In our tests, training with ReLU converged

much earlier to stable but lower results. Further note that

we do not use any common feature normalization technique

Method PSNR SSIM

ours (stage 1) 34.44 0.9412

Attentive Fractal Band Learning 1 34.20 0.9392

DRU-prelu (ensemble)1 33.35 0.9283

Two-stage Edge-Conditioned Network1 33.07 0.9242

Reg.-Ada. Patch-hierarchical Net1 32.61 0.9198

Simplified SRN1 30.04 0.8616

V-Stacked Deep CNN1 29.78 0.8629

Table 1: Comparison of methods on the REDS Motion Blur

Dataset of the NTIRE2020 Challenge. Single Image De-

blurring Test Data. 1 scores are taken from [25].

such as batch-normalization [11], but instead simply in-

clude a learned scaling factor for each individual feature

map right before adding the bias term. In our experiments

this technique was sufficient to keep the training stable.

To mitigate the effects of image boundaries on our re-

sults, we used reflection padding instead of zero-padding

wherever possible.

4. Evaluation

We give a comparison of various methods trained on the

REDS dataset in Table 1 and Table 3 for single image and

video, respectively. We achieved our best video score by

separately deblurring all images with our stage 1 model and

subsequently aggregating spatio-temporal information with

our stage 2 model. We performed geometric self-ensemble

[33, 19] to further improve performance by augmenting the

input frames to four different versions by rotating and flip-

ping. All combinations are fed into the network, trans-

formed back to their original shape and the mean pixel value

of all combinations is taken as final prediction.

Ablation Study To compare the effectiveness of our pro-

posed atrous residual block, we implemented a simple

encoder-decoder network with three down-sampling lay-

ers and skip connections, followed by 12 standard resid-

ual blocks with 512 filters each and a constant atrous rate

of 1. The differences between this network and our atrous

network are the two additional layers for down- and up-

sampling and the four parallel convolutions with less fil-

ters and different atrous rates compared to a single convolu-

tion. Considering the two additional down-sampling layers,

this network achieves a similar receptive field compared to

our atrous network. Both networks were trained with the

same data augmentation strategies, patch size and learning

rate adjustment. Our proposed atrous residual network has

fewer trainable parameters, but it takes longer to calculate a

sharp image. Table 2 summarize the ablation study results.

This model achieved 32.3dB PSNR on the REDS valida-

tion set, while our atrous network achieved 33.9dB PSNR.



Method type PSNR SSIM

stage 1+stage 2 (ensemble) video 34.67 0.9422

stage 1 (ensemble) single 34.19 0.9378

stage 1 single 33.93 0.9352

stage 1(w/o atrous conv) single 32.34 0.9019

stage 2 video 33.17 0.9135

stage 2 single 32.06 0.8971

Table 2: Quantitative comparison of model performance

measured in PSNR and SSIM. We compare our atrous net-

work (stage 1) to a model without atrous convolution. This

model is built with standard residual blocks and additional

down-sampling layers to achieve a similar receptive field.

We also compare variants of MLFA (stage 2) trained on sin-

gle images and video. In this way we are able to quantify

the influence of spatio-temporal data provided by videos.

The scores are measured on the validation set of the REDS

dataset. Bold font indicates the full models for single image

and video.

We find that operations on a higher resolution increase per-

formance at the cost of computing time, which is caused by

the higher spatial dimension used in all stages.

We also conducted an ablation study to show the influ-

ence of the time series data on our results. For this we com-

pare our Multi-Level Feature Aggregation (MLFA, stage 2)

model trained on videos to a model that is trained on sin-

gle images. We keep the architecture identical and remove

the feature extraction for time-step t − 1 as well as time-

step t + 1. To keep things simple, we compare models that

we have trained directly on the REDS data, i.e., we do not

use our stage 1 model here. The model trained on video

data achieves 33.17dB PSNR and 0.9135 SSIM, while the

model trained on single images achieves 32.06dB PSNR

and 0.8971 SSIM. This shows that MLFA utilizes spatio-

temporal information provided by video data.

Benchmark Results We compare our model on the Go-

Pro dataset with already known older methods and newer

state-of-the art methods from previous work and the NTIRE

2019 challenge. The result of our stage 1 and stage 2 models

on the GoPro dataset is shown in Table 4. We observe that

both our stage 1 (single image) and stage 2 (video) achieve

a lower mean squared error compared to other works (which

can be seen by the PSNR score). When comparing the

SSIM score, our models achieve comparable results, but

cannot surpass previous work. The SSIM scores tries to

model visual quality using various components such as lu-

minance, contrast and structure.

We further provide the test results from the NTIRE 2020

challenge [25] in Table 1 and Table 3 for single image and

video deblurring, respectively. For single image deblurring,

Method PSNR SSIM

HelloVSR2[37] 36.96 0.966

PAFU1 36.93 0.965

UIUC-IFP2 35.71 0.952

WDVR+1 35.58 0.950

PROMOTION1 35.42 0.952

ours (stage 1+stage 2) 34.68 0.944

KAIST-VICLAB2 34.09 0.936

BMIPLUNISTDJ2 33.71 0.936

(modified) DMPHN + GridNet1 31.85 0.907

(modified) DMPHN1 31.43 0.895

Multi-loss Optimization1 29.44 0.853

Table 3: Comparison of methods on the REDS Motion Blur

Dataset of the NTIRE2020 Challenge. Video Deblurring

Test Data. 1 scores are taken from [25]. 2 scores are taken

from [26].

Method PSNR SSIM

Nah et al. [24] 29.23 0.916

Kupyn et al. [17] 29.55 0.934

Shen et al. [32] 30.26 0.940

Tao et al. [36] 30.26 0.934

Purohit et al. [31] 30.58 0.941

Fu et al. [7] 31.02 0.912

Sim and Kim [33] 31.34 0.947

Zhang et al. [40] 31.50 0.948

Gao et al. [8] 31.58 0.948

Purohit [30] 32.15 0.956

ours (stage 1) 32.61 0.935

ours (stage 1+stage2) 33.23 0.944

Table 4: Comparison of methods on GoPro dataset [24].

Our methods have been trained on the GoPro dataset.

our model surpasses other works and shows best perfor-

mances for both PSNR, and SSIM score. In video deblur-

ring, our model could not surpass other work, which indi-

cates that there is still room for improvement in combin-

ing the information in image sequences. Note that our fi-

nal scores are determined with the geometric self-ensemble

strategy.

We also provide a qualitative analysis of the deblurring

performance of our model on the REDS validation and Go-

Pro test dataset in Figure 6. We compare our results to the

work of Sim and Kim [33], which is also a video deblur-

ring method and one of the top rankings in the NTIRE 2019

video deblurring challenge [23]. From these figures we find

that both networks are able to remove motion blur very well.

However, our model is better at restoring fine details in e.g.

faces, grid patterns and text information.

The proposed model requires 175 ms and 400 ms com-

puting time for stages 1 and 2 without self-ensemble. Note



(a) (b) (c) (d)

Figure 6: [Best viewed in color] (a) Input blurred images. (b) Results of Sim and Kim [33]. (c) Results of our proposed

method. (d) Ground truth sharp image. The images of the 1st-3rd row are from REDS dataset [23], those on 4th-5th row are

from the GoPro dataset [24]. Our proposed method is able to deblur fine details better.

that, in stage 2 we need to feed 3 images at once. Timings

were obtained on a single NVIDIA Tesla V100m.

5. Conclusion

We proposed a high-resolution motion deblurring net-

work with novel atrous residual block for the task of single

image deblurring. We have extended this model for the task

of video deblurring by aggregating information of differ-

ent frames. Our experiments on benchmarks demonstrate

the superiority of our approach in comparison to previous

work.

We assume that an atrous network without any internal

down-sampling could achieve further improvements. Thus,

future work could remove the single down-sampling layer

that we have used due to memory and run-time limitations.

First experiments have shown that a full resolution model

converges faster in terms of the number of parameter up-

dates. This prospect is promising for future work. Another

promising perspective is to combine the benefits of the pro-

posed stage 1 and stage 2 networks in a single network that

could be learned in an end-to-end fashion.
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