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Abstract

Image denoising and demosaicking are the first two cru-

cial steps in digital camera pipelines. In most of the liter-

ature, denoising and demosaicking are treated as two inde-

pendent problems, without considering their interaction, or

asking which should be applied first. Several recent works

have started addressing them jointly in works that involve

heavy weight neural networks, thus incompatible with low

power portable imaging devices. Hence, the question of

how to combine denoising and demosaicking to reconstruct

full color images remains very relevant: Is denoising to be

applied first, or should that be demosaicking first? In this

paper, we review the main variants of these strategies and

carry-out an extensive evaluation to find the best way to

reconstruct full color images from a noisy mosaic. We con-

clude that demosaicking should applied first, followed by

denoising. Yet we prove that this requires an adaptation of

classic denoising algorithms to demosaicked noise, which

we justify and specify.

1. Introduction

Most digital cameras capture image data by using a sin-

gle sensor coupled with a color filter array (CFA). At each

pixel in the array, only one color component is recorded,

in a mosaic image. The most common CFA is the Bayer

color array [6], in which two out of four pixels measure the

green component, one measures the red and one the blue.

The process of completing the missing red, green and blue

values at each pixel is called demosaicking. Noise is in-

evitable, especially in low light conditions and for small

camera sensors like those used in mobile phones. The con-

ventional approach in raw image restoration pipelines has

long been to apply denoising and demosaicking as two in-

dependent steps [49]. Furthermore, the immense majority

of image processing papers addressing one of both opera-

tions do not address its combination with the other one. All

classic denoising algorithms have been designed for color

or grey level images with white noise added. Yet the realis-

tic data are different: either a mosaic with white noise or a

demosaicked image with structured noise.

Joint denoising/demosaicking methods. This has

led several recent works to propose joint demosaick-

ing/denoising methods [9, 21, 26, 32]. For example [22]

proposed a variational model for joint demosaicking,

denoising and deblurring. It uses a sparsifying prior based

on wavelet packets applied to decorrelated color channels.

More detail about this complex method can be found in [2].

Life has become far easier for joint denois-

ing/demosaicking with the emergence of machine learning

methods. It is, indeed, easy to simulate as much training

data as needed. This methodology was used in [55] to

train a convolutional neural network (CNN) for demo-

saicking outperforming the best handcrafted methods,

including ARI [47], by nearly 2 decibels. One of the first

joint denoising/demosaicking methods based on machine

learning was proposed in [32] along with a public ground

truth dataset. From there, results improved rapidly, first

with deeper CNNs architectures [21], or cascaded energy

minimization methods tuned by learning [37]. Then,

by optimizing the perceptual quality using generative

adversarial networks [15], and more recently by inserting

many residual denoising layers in a CNN [38].

These joint denoising/demosaicking methods can handle

a range of noise levels, but unlike traditional methods, they

fail outside the trained range. The “mosaic-to-mosaic” fine-

tuning introduced in [17] provides a way to adapt to un-

known noise without requiring ground truth, by using bursts

of raw images. The method is analogous to the noise-to-

noise [42] and frame-to-frame [18] frameworks to handle

noisy mosaicked raw data. However, bursts may not be

available and the fine-tuning is computationally demand-

ing.

Yet, the question of how to combine denoising and

demosaicking algorithms, when conceived as independent

blocks, remains very relevant. This is especially true in the

context of low power or portable devices, but also given the

fact that the main effort in denoising and demosaicking has



addressed them independently. In addition, they can cope

with a wide range of noise levels without retraining.

A big argument in favor of performing denoising be-

fore demosaicking is that most existing demosaicking al-

gorithms have been developed under the unrealistic as-

sumption of noise-free data [8, 10, 21, 24, 25, 28, 33–

36, 38, 43, 47, 52, 56–59, 63]. Yet the performance of these

algorithms can degrade dramatically when the noise level

increases on the CFA raw image. Therefore, a previous de-

noising step is implicitly required by these algorithms.

In this paper we focus on the early CFA processing in

the imaging pipeline (operating in linear space). We assume

that the noise in the raw mosaic is additive white Gaussian

(AWGN) and that its variance is known. This is realistic be-

cause, first, a variance stabilizing transform (VST) [5] ap-

plied to a raw image results in a nearly AWG noise and, sec-

ond, because an accurate noise model is often known or can

be estimated [11, 53]. In general, image denoising methods

can be grouped into two major categories, the model based

methods such as non-local means [7, 29, 30], nlBayes [39],

CBM3D [12] and WNNM [23], and deep learning methods

such as [27, 60]. The ensuing CNNs are sometimes flexible

in handling denoising problems with various noise levels.

Our question here is simple: Is it better to apply de-

noising and then demosaicking (which we will denote

DN&DM : DN and DM indicate denoising and demo-

saicking respectively), or to apply first demosaicking and

then denoising (DM&DN )?

DN&DM methods (i.e. denoising then demosaicking):

advantages and drawbacks. Many state of the art works

[31, 49, 50, 61] support the opinion that DN&DM outper-

forms DM&DN . Their first convincing argument is that

after demosaicking noise becomes correlated, thus losing

its independent identically distributed (i.i.d.) white Gaus-

sian property. This increases the difficulty of applying ef-

ficient denoising and actually seems to discard all classic

algorithms, that mostly rely on the AGWN assumption. A

second obvious argument is that the best demosaicking al-

gorithms have been designed with noise-free images.

For example, Park et al. [50] considered the classic

Hamilton-Adams (HA) [24] and [16] for demosaicking,

combined with two denoising methods, BLS-GSM [54]

and CBM3D [13]. This combination raises the question

of adapting CBM3D to a CFA. To do so, the authors ap-

ply a sparsifying 4D color transform to the 4-channel im-

age formed by rearranging the Bayer pixels. Then apply

BM3D to each channel and inverse the color transform. In

the very same vein, in the BM3D-CFA method [14] BM3D

is applied directly on the CFA color array. To do so, “only

blocks having the same CFA configuration are compared

to build the 3D blocks. This is the only modification of

the original BM3D”. A little thought leads to the conclu-

sion that this amounts to denoise four different mosaics of

the same image before aggregating the four values obtained

for each pixel. The authors compare two denoising algo-

rithms with two different setups: a) filtering CFA as a sin-

gle image and b) splitting the CFA into four color compo-

nents, filtering them separately, and recombining back the

denoised CFA image. This paper showed a systematic im-

provement over [61]. They use the Zhang-Wu demosaick-

ing method [62] for the comparisons. In our comparisons

the method of [14] will be mentioned every time we con-

sider the DN&DM setup with BM3D. We will neverthe-

less replace the demosaicking of [62] by RCNN [57], which

clearly outperforms it.

Similarly in [9] denoising is performed by an adaptation

of NL-means to the Bayer pattern, where only patches with

the same CFA configuration are being matched. This paper

formulates the demosaicking as a super-resolution problem,

assuming that the observed values are actually averages of

four values in the high resolution image. It then guides this

super-resolution problem by the NL-means weights. The

method is compared with [46] and [61]. The authors of

[61] also propose an DN&DM method, where the demo-

saicking method is [62] and the the denoising method is an

adaptation of nlBayes [39] to a Bayer pattern. The method

extracts blocks with similar configuration in the Bayer ar-

ray and groups them by similarity. Then, applies principal

component analysis (PCA) to the groups and a Wiener de-

noising procedure which can be interpreted as a linear mini-

mum mean square error estimator. In our experiments, this

PCA method [61] will be considered every time we evaluate

the DN&DM scheme (but combined with a more recent

demosaicking such as RCNN [57]). The more recent pa-

per [64] involves similar arguments. This paper uses a linear

filter [4] to extract the luminance from the CFA. Then it re-

marks that this luminance is correlated, so it applies a vari-

ant of NL-means that attempts to decorrelate the noise. The

same method is applied to each downsampled color channel

and the high frequency of the grey level is transported back

to the color channels. This method under-performs with re-

spect to others considered here, so we shall not include it to

our final comparison tables.

The paper [51] is another method promoting denoising

before demosaicking, involving dictionary learning meth-

ods to remove the Poisson noise from the single channel

images prior to demosaicing. Experimental results on sim-

ulated noisy images as well as real camera acquisitions,

show the advantage of these methods over approaches that

remove noise subsequent to demosaicing. The paper never-

theless uses [44], an outdated demosaicking method.

To summarize, in the DN&DM strategy all classic de-

noising algorithms such as CBM3D, nlBayes, nlMeans have

been adapted to handle a noisy mosaic. Several of them

[31, 49, 50, 61] address this realistic case by processing the



noisy CFA image as a half-size 4-channel color image (with

one red, two green and one blue channels) and then apply

a multichannel denoising algorithm to it. The advantage of

the denoising step of DN&DM is that the Poisson noise

can be led back by the classic case of i.i.d. white Gaussian

noise by an Anscombe transform. The disadvantage is that

the resolution of the image is reduced and, as a result, some

details might be lost after denoising. Another issue of this

strategy is that the spatial relative positions of the R, G, and

B pixels are lost by handling the image as a four channel

half size image.

In this paper, we address the above mentioned issues.

We first delve into the advantages and disadvantages of

DN&DM and DM&DN approaches. We then analyze

noise properties after demosaicking and adjust two exist-

ing classic denoising algorithms (CBM3D and nlBayes) to

accommodate them to this type of noise. Then, we per-

form a thorough experimental evaluation, to conclude that

DM&DN (with an adjusted noise parameter) is superior

to DN&DM . This result is opposite to the conclusion of

[31, 49, 50, 61]. The advantages of DM&DN seem to be

linked to the fact that this scheme does not handle a half size

4-channels color image; it therefore uses the classic denois-

ing methods directly on a full resolution color image; this

results in more details being preserved and avoids checker-

board effects.

Section 2 presents in detail the problem and the main

ideas behind the proposed DM&DN strategy. Section 3

is a detailed evaluation of the proposed strategy. Section 4

concludes.

2. The demosaicking and denoising framework

Consider a CFA block as shown in Fig. 1. The raw

Bayer CFA images are scalar mosaics matrices with noise,

which are converted to photo-finished images by the imag-

ing pipeline. The simple pipeline proposed in [1] performs:

1. black level and dark frame correction, 2. white balance,

3. demosaicking/denoising, 4. colorspace conversion, and

5. tone curve.

Modern camera image processing chains may include

multiple denoising stages, before and after the tone curve.

Here, we focus on the early CFA processing of step 3. At

this stage image values are linear and noise cannot be as-

sumed white Gaussian. However, a VST leads back to the

classic white Gaussian setting. When considering real im-

ages with non Gaussian noise, we shall apply a VST before

the denoising step (DM ) and its inverse afterwards. But,

in our experiments with simulated noise we shall consider

AWG noise.

Park et al. [50] argued that demosaicking introduces

chromatic and spatial correlations to the noisy CFA image.

Then the noise is no longer i.i.d. white Gaussian, which

makes it harder to remove. In [31], some experiments were

Figure 1. Bayer color filter array, CFA, which is used by most

cameras.

done to show that DN&DM schemes are more efficient to

suppress noise than DM&DN schemes. Based on this ar-

gument several denoising methods [3, 41, 50, 61] for raw

CFA images before demosaicking were introduced. Other

denoising methods that are not explicitly designed to handle

raw CFA images (such as CBM3D and nlBayes) can also be

applied on noisy CFA images by rearranging the CFA im-

age into a half-size four-channels image with two greens on

which the denoising algorithm is applied [50]. The denoised

CFA is then recovered by undoing the pixel rearrangement.

However, this strategy reduces the resolution of the image

seen by the denoiser, and we observed checkerboard effects

resulting from chromatic aberrations in the two green chan-

nels after denoising. To address this issue, Danielyan et

al. [14] proposed BM3D-CFA which amounts to denoise

four different mosaics of the same image before aggregat-

ing the four values obtained for each pixel.

Modeling demosaicking noise. In order to solve the

above two problems, we shall revisit the DM&DN scheme

which, in contrast to the DN&DM scheme, does not halve

the image size. This is a way around the above mentioned

problems. A serious drawback, though, is that chromatic

and spatial correlations have been introduced by the demo-

saicking in the raw noise, which is no longer white. We

must therefore analyze the demosaicked noise.

Definition Given a ground truth color image (R,G,B)
we define the demosaicked noise associated with a demo-

saicking method DM in the following way: first the im-

age is mosaicked so that only one value of either R,G,B
is kept at each pixel, according to a fixed Bayer pattern.

Then white noise with standard deviation σ0 is added to the

mosaicked image, and the resulting noisy mosaic is demo-

saicked by DM , hence giving a noisy image (R̃, G̃, B̃). We

call demosaicked noise the difference (R̃−R, G̃−G, B̃ −
B). In short, it is the difference between the demosaicked

version of a noisy image and its underlying ground truth.

The model of the demosaicked noise depends on the

choice of the demosaicking algorithm DM . For the demo-



(a1) Ground truth (a2) Ground truth

(b1)DN&DM /26.92dB (b2)DN&DM /26.92dB

(c1) DM&DN /25.38dB (c2) DM&DN /25.38dB

(d1) DM&1.5DN /26.95dB (d2) DM&1.5DN /26.95dB

(e1) JCNN /27.46dB (e2) JCNN /27.46dB

Figure 2. Comparison of eight denoising and demosaicking

schemes with noise σ0 = 20. Left, detail of the demosaicked

and denoised image; right, the difference with original that should

contain mainly noise. DN : CBM3D denoising; DM : demo-

saicking (here we use RCNN). 1.5DN means that if noise level

is σ0, the input noise level parameter of denoising method DN is

σ = 1.5σ0; DN&DM : uses the BM3D-CFA framework [14] for

denoising.

saicking step we will evaluate the following state of the art

methods, which have an increasing complexity: HA [24],

RI [33], MLRI [34], ARI [47], LSSC [43], RCNN [57] and

JCNN [21]. We are interested in algorithms with low or

moderate power; only HA, RI, MLRI and RCNN have a

reasonable complexity in this context. For the denoising

step we shall likewise consider two classic hand-crafted al-

gorithms, CBM3D and nlBayes.

Fig. 2 (c1) and (c2) shows an example where noisy CFA

images with noise of standard deviation σ0 were first demo-

saicked by RCNN and then restored by CBM3D assuming

a noise parameter σ = σ0. The output of CBM3D with

σ = σ0 has a strong residual noise. Similar results are also

obtained with nlBayes (see the supplementary material). To

understand empirically the right noise model to adopt af-

ter demosaicking, we simulated this DM&DN pipeline

Table 1. Denoising after demosaicking DM&DN , where DN is

CBM3D [13] with noise parameter equal to C σ0, while noise in

the raw image has standard deviation σ0 = 20. Each row shows

the CPSNR result for C ranging from 1.0 to 1.9. Each column

corresponds to a different demosaicking method DM . The best

result of each column is in red, the second best is in green and

the third in column is in red, the second best is in blue. The best

factor C for all methods is C ≃ 1.5, the same is true for different

values of σ0 as well (see supplementary material).

C HA GBTF RI MLRI ARI LSSC RCNN

1.0 28.15 27.58 28.46 27.95 28.70 27.19 27.28

1.1 28.56 28.15 28.83 28.44 28.98 27.89 28.05

1.2 28.85 28.55 29.08 28.80 29.18 28.43 28.67

1.3 29.05 28.81 29.23 29.03 29.29 28.78 29.09

1.4 29.18 28.96 29.31 29.17 29.35 29.00 29.34

1.5 29.23 29.00 29.32 29.22 29.35 29.06 29.41

1.6 29.25 29.01 29.30 29.23 29.33 29.06 29.41

1.7 29.25 28.97 29.26 29.20 29.29 29.02 29.36

1.8 29.22 28.92 29.20 29.15 29.23 28.95 29.28

1.9 29.17 28.85 29.13 29.08 29.17 28.88 29.20

Table 2. RMSE between original and demosaicked image for var-

ious demosaicking algorithms in presence of noise of std σ0.

σ0 HA GBTF RI MLRI ARI LSSC RCNN

1 5.04 5.10 4.17 4.06 3.72 4.40 3.21

5 6.78 6.87 6.12 6.10 5.74 6.36 5.59

10 10.18 10.27 9.53 9.74 9.09 9.96 9.65

20 17.75 17.83 16.77 17.56 16.06 18.16 18.04

40 32.67 32.76 30.77 32.64 29.36 33.68 33.98

60 46.14 46.35 43.43 46.11 41.44 48.11 47.95

for different levels of noise σ0, and applied CBM3D after

demosaicking with a noise parameter corresponding to σ0

multiplied by different factors (1.0, 1.1, · · · , 1.9).
The results are shown in Table 1, where the classic color

peak signal-to-noise ratio (CPSNR) [4] is adopted as a log-

arithmic measure of the performance of the algorithms. It is

defined by

CPSNR(X) = 10 log10
2552∑

X=R,G,B
MSE(X)/3 , with

MSE(X) = 1
|Ω|

∑
(i,j)∈Ω(X̂(i, j)−X(i, j))2,

where X̂ denotes the ground truth image and X is the esti-

mated color image. From 1.0 to 1.9, the CPSNR increases

first and then decreases. The best values are distributed on

the lines with factors from 1.4 to 1.7. A similar behavior

was also observed using nlBayes for denoising as well as

for other levels of noise (see the supplementary material).



(a) AWG (b) HA (c) MLRI (d) RCNN

Figure 3. AWG noise image and demosaicking noise with stan-

dard deviation σ = 20 for respectively HA, MLRI, RCNN. Last

row: the color spaces (in standard (R,G,B) Cartesian coordinates)

of each noise, presented in their projection with maximal area.

As expected, the AWG color space is isotropic, while the color

space after demosaicking is elongated in the luminance direction

Y = R +G+ B and squeezed in the others. This amounts to an

increased noise standard deviation for Y after demosaicking, and

less noise in the chromatic directions.

This does not mean that the overall noise standard devi-

ation has increased after demosaicking. Table 2 reports the

standard deviation of the demosaicked noise for different

noise levels. Which is estimated as the mean RMSE of de-

mosaicked images from the McMaster-IMAX [63] dataset

(Imax). We observe that for low noise (σ0 = 1) there is

a serious demosaicking error, of about 4, not caused by the

noise, but by the demosaicking itself. However, for σ0 > 10
we see that the RMSE of the demosaicked image tends to

roughly 3/4 of the input noise.

At first sight, this 3/4 factor seems to contradict the

observation that denoising with a parameter 1.5σ0 yields

better results. This leads us to analyzing the structure of

the demosaicked noise. For that we use an orthonormal

Karhunen-Loève transform to maximally decorrelate the

color channels [45, 48]. This type of transforms are com-

monly used in denoising algorithms [40] such as CBM3D

and nlBayes. Here, we use a transform in which the lumi-

nance direction is Y = R+G+B√
3

and the orthogonal vectors

C1 and C2 are arbitrarily chosen as in [45].

Fig. 3 shows an image contaminated with AWG noise

with standard deviation σ0 = 20 and its resulting demo-

saicked noise for respectively HA, MLRI, RCNN. In the last

row of the figure, one can observe the color spaces (in stan-

dard (R,G,B) Cartesian coordinates) of each of these noises,

each cloud being presented in its projection with maximal

area. As expected, the AWG color space is isotropic and has

an apparent diameter proportional to 4σ0 ≃ 80. The color

Table 3. Variance and covariance of (R,G,B) and (Y, U, V )
(each first row) and the corresponding correlations (each second

row) between pixels (i, j) and (i + s, j + t), s, t = 0, 1, 2 first

for AWGN (a) with standard deviation σ = 20, then for its demo-

saicked versions MLRI (b) and RCNN (c)

(i,j) (i,j+1) (i,j+2) (i+1,j) (i+1,j+1) (i+1,j+2) (i+2,j) (i+2,j+1) (i+2,j+2)

R 400.6 0.6 0.4 0.7 0.1 0.7 0.3 0.2 0.8

G 401.7 0.5 1.1 0.1 0.3 0.9 1.0 0.6 0.4

B 400.2 1.2 0.1 0.5 0.6 0.0 1.9 0.3 1.9

Y 399.6 1.1 0.1 0.3 0.1 0.9 0.2 0.5 1.2

C1 401.5 0.1 0.8 0.6 0.3 0.3 0.9 0.5 1.3

C2 401.4 0.2 1.8 0.9 0.2 1.0 0.6 0.2 0.2

(a) AWG noise

(i,j) (i,j+1) (i,j+2) (i+1,j) (i+1,j+1) (i+1,j+2) (i+2,j) (i+2,j+1) (i+2,j+2)

R 361.4 128.4 18.9 130.5 46.4 20.6 21.6 21.5 19.8

G 298.9 93.0 0.5 95.1 19.1 0.9 1.0 0.5 3.8

B 370.9 127.8 19.3 130.4 46.0 20.6 21.2 20.3 19.0

Y 772.2 177.7 33.0 181.3 9.6 9.2 32.6 10.9 21.4

C1 164.8 107.1 43.7 108.8 72.8 29.3 46.1 30.2 10.1

C2 94.3 64.4 28.1 65.8 48.2 21.9 30.3 23.1 11.1

(b) MLRI

(i,j) (i,j+1) (i,j+2) (i+1,j) (i+1,j+1) (i+1,j+2) (i+2,j) (i+2,j+1) (i+2,j+2)

R 359.9 47.8 5.0 51.9 21.8 17.8 5.1 19.4 9.2

G 354.8 32.6 4.4 36.3 5.8 8.4 6.4 8.8 0.6

B 356.0 49.6 6.3 53.7 23.6 18.8 7.3 19.4 9.2

Y 972.3 69.0 20.8 76.4 3.6 18.6 28.9 17.3 2.2

C1 55.1 33.8 15.3 36.0 26.1 14.6 19.0 16.6 11.8

C2 43.3 27.3 12.3 29.4 21.5 11.7 16.0 13.7 9.4

(c) RCNN

space of the demosaicked noise is instead elongated in the

luminance direction Y to about 6σ0 ≃ 120 and squeezed

in the others. This amounts to an increased noise standard

deviation for Y after demosaicking, and much less noise in

the chromatic directions.

This is confirmed by Table 3, which shows variances

and covariances of (R,G,B) and (Y,C1, C2) respectively

for an AWG noise with σ0 = 20, and then for the demo-

saicked noise obtained after demosaiciking it with MLRI

and RCNN. In Table 3 (a) these statistics are computed on a

pure white noise image with σ = 20. Hence the variance of

Y is 400, as the (R,G,B) → (Y,C1, C2) transform is im-

plemented as an isometry of R3. The variance of Y grows

with the sophistication of the demosaicking: 772 for MLRI

and 972 for RCNN. In contrast, the demosaicked noise is

reduced in the chromatic axes C1 and C2, with a standard

deviation divided by a factor between 2 and 3. But, Table 3

also shows that the residual noise on C1 and C2 is strongly

spatially correlated, it is therefore a low frequency noise,

which will require stronger filtering than white noise to be



Table 4. Covariances (each first row) and correlations (each sec-

ond row) of the three color channels (R, G, B) of the demosaicked

noise, when the initial CFA white noise satisfies σ0 = 20.

R G B

R
361.42 224.39 201.41

1.0000 0.6826 0.5501

G
224.39 298.94 216.86

0.6826 1.0000 0.6512

B
201.41 216.86 370.92

0.5501 0.6512 1.0000

(a) MLRI

R G B

R
359.90 320.44 302.85

1.0000 0.8967 0.8461

G
320.44 354.83 299.85

0.8967 1.0000 0.8437

B
302.85 299.85 355.99

0.8461 0.8437 1.0000

(b) RCNN

Table 5. Comparison in CPSNR(dB) of average restoration per-

formance between DN&DM and DM&DN for a fixed level of

noise σ0 = 20. We test two denoisers DN namely CBM3D, and

nlBayes, and 1.5DN means that if noise level is σ0, the noise

level parameter for the denoising method DN is σ = 1.5σ0.

Both denoisers can be adapted to handle mosaics in the DN&DM
schemes (see in the text). The best result of each column is marked

with a box . The best result of each line is in red and the second

best one is in green.

DN Algorithm HA RI MLRI ARI RCNN

C
B

M
3

D

DN&DM 28.11 28.45 27.97 28.69 27.27

DM&DN 28.15 28.46 27.95 28.70 27.28

DM&1.5DN 29.24 29.32 29.22 29.36 29.41

n
lB

ay
es

DN&DM 28.17 28.17 28.17 28.18 28.28

DM&DN 28.67 28.99 28.57 29.21 28.02

DM&1.5DN 29.29 29.26 29.22 29.31 29.36

removed. This table also shows that the Y component of

the demosaicked noise remains almost white.

This leads to a simple conclusion: since image denoising

algorithms are guided by the Y component [13, 39], we can

denoise with methods designed for white noise, but with a

noise parameter adapted to the increased variance of Y .

To understand why the variance of Y is far larger than

the AWG noise it comes from, let us study in Table 4 the

correlation between the three channels (R,G,B) in the de-

mosaicked noise of MLRI and RCNN. We observe a strong

(R,G,B) correlation, which is caused by the “tendency to

grey” of all demosaicking algorithms. Assuming that the

demosaicked noisy pixel components (denoted ǫ̃R, ǫ̃G, ǫ̃B)

have a correlation coefficient close to 1 then we have

Y = ǫ̃R+ǫ̃G+ǫ̃B√
3

∼
√
3N(0, σ0).

This factor of about 1.7 corresponds to the case with maxi-

mum correlation. Our observation of an optimal factor near

1.5 responds to a lower correlation between the colors.

3. Experimental evaluation

We evaluated the proposed framework using two classic

noise free color image datasets: Kodak [20] and Imax [63],

composed on 18 and 25 images respectively. We also

evaluated it on a set of 14 real raw images from the SIDD

dataset [1], which comes with ground truth acquisitions.

Evaluation of DN&DM and DM&DN strategies. We

performed simulations with the schemes: DN&DM and

DM&DN . The considered demosaicking methods range

from classic to very modern: HA[24], RI[33], MLRI[34],

ARI [47], and RCNN[57]. For the denoising stage two

classic hand-crafted patch-based denoising algorithms were

considered: CBM3D [13] and nlBayes [39]. As commented

in the introduction, both methods can be adapted to han-

dle mosaics (in the DN&DM setting). In the case of

CBM3D this amounts to applying the method by Danielyan

et al. [14], while for nlBayes this is done by denoising the 4-

channel image associated to the mosaic. The schemes were

applied the mosaic images of the Imax dataset corrupted by

AWGN with standard deviations σ0 ∈ [1, · · · , 60].
From Table 5, we can see that DM&DN with parame-

ter σ = σ0 is not better than DN&DM , but DM&1.5DN
(which denotes denoising DN with parameter σ = 1.5σ0)

beats clearly DN&DM . Other values of σ0 are shown

in the supplementary material, though with similar behav-

ior. This might explain why many researchers think that the

scheme DN&DM was superior to the scheme DM&DN .

In addition to the good CPSNR results, one important ad-

vantage of the DM&DN schemes is the high visual quality

of the final restored images. Fig. 2 demonstrates the differ-

ences between the various solutions (based on BM3D) ob-

tained on image #3 of the Imax dataset. To save space, only

crops of the full-color results and corresponding differences

with the ground truth are shown here.

The DN&DM scheme shown in Fig. 2 (b1) and (b2)

uses BM3D-CFA [14] for denoising; we can observe some

minor checkerboard artifacts. From Fig. 2 (c1) and (c2),

we can deduce that there is no checkerboard effect but that

much noise remains in the restored image by DM&DN
schemes with parameter 1.0σ0. The result of DM&1.5DN
(Fig. 2 (d1) and (d2)) are smooth without checkerboard ef-

fects. Fig. 2 (e1) and (e2) correspond to the outputs of the

CNN joint denoising and demosaicking method JCNN [21].

One can observe thin structures in the upper left corner

of Fig. 2 (a1), but they disappear in the restored image by

DN&DM . The proposed DM&1.5DN scheme restores

them. The second column of Fig. 2 illustrates a similar situ-

ation in which thin details are recovered by DM&DN and

DM&1.5DN but not in the others.

In short, it appears that the DM&DN scheme with an

appropriate parameter (namely DM&1.5DN ) outperforms
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Ground Truth JCNN [21]

29.46dB 30.97dB
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30.77dB 30.84dB

RCNN+nlBayes (DM&1.5DN ) MLRI+BM3D (DM&1.5DN )

Figure 4. Demosaicking and denoising results on an image from

the Kodak dataset with σ = 20. We compare a DN&DM scheme

BM3D+RCNN [14], with three DM&1.5DN : RCNN+CBM3D,

RCNN+nlBayes and MLRI+BM3D. As a reference we also in-

clude the result of a joint CNN method JCNN [21]. (Limited to

σ ≤ 20, as the network is not trained beyond that level.)

the competition in terms of visual quality. This is due to the

fact that it efficiently uses spatial and spectral image char-

acteristics to remove noise, preserve edges and fine details.

Indeed, contrary to the DN&DM schemes, DM&1.5DN
does not reduce the resolution of the noisy image. Using

an DN&DM scheme ends up over-smoothing the result.

It comes to no surprise that JCNN performs slightly better

than the other methods; however, it is much more computa-

tionally demanding and only works for σ ≤ 20.

In a systematic comparison between the schemes involv-

ing CBM3D and nlBayes, schemes with CBM3D proved

to perform slightly better. Furthermore, CBM3D is about

four times faster than nlBayes. Hence, the following exper-

iments are more focused on CBM3D.

Comparison with methods from the literature. To

complete this comparison we went back to all DN&DM
schemes proposed in the literature, and performed a sys-

tematic comparison for the two classic Kodak and Imax

datasets. These databases are always used in demosaick-

ing evaluations, because they illustrate different challenges

of the demosaicking problem, Imax being difficult by its

color contrast, and Kodak challenging for the recovery

of fine structure. In Tables 6 and 7 we compare rep-

resentative DN&DM methods from the literature with

the best DM&DN methods identified above (all of them

DM&1.5DN ):

– The two best DM&1.5DN from on Table 5 are

considered. Namely, RCNN for demosaicking fol-

lowed by CBM3D (denoted RCNN+CBM3D) or nlBayes

(RCNN+nlBayes) for denoising.

– We also consider a “low-cost” DM&1.5DN combina-

tion using MLRI [34] for demosaicking and CBM3D for

denoising (MLRI+CBM3D).

The considered DN&DM methods from the literature are:

– The BM3D-CFA algorithm proposed in [14] to avoid the

checkerboard effects resulting from independently apply-

ing BM3D to the color phases of CFA images. We eval-

uate BM3D-CFA [14] followed by Hamilton Adams de-

mosaicking (BM3D+HA), as well as followed by a state-

of-the-art RCNN demosaicking [57] (BM3D+RCNN).

– The Park et al. [50] CFA denoising framework apply-

ing PCA to the RGB color space in the Kodak dataset

and then removing noise in each channel by BM3D. This

preprocessing is advantageous for the Kodak image set,

but inadequate for the Imax image set. We evaluate this

framework [50] with BM3D [12] followed by the RCNN

demosaicking [57] (Park+RCNN).

– The PCA-CFA method proposed in [61] is a spatially-

adaptive denoising based on principal component anal-

ysis (PCA) that exploits the spatial and spectral corre-

lations of CFA images to preserve color edges and de-

tails. We evaluate PCA-CFA [61] followed by DLMM

demosaiciking [62] (PCA+DLMM) and RCNN demo-

saicking [57] (PCA+RCNN).

– Finally, as a reference, we include the CNN-based joint

denoising and demosaicking (JCNN) of [19, 21]. But its

results are only available for noise with σ ≤ 20 because

the network is not trained beyond that level.

From Tables 6 and 7 we see that the DM&DN method

RCNN+CBM3D as well as RCNN+nlBayes yield the best

results on the Kodak dataset, and the margin with respect to

the best DN&DM method (BM3D+RCNN, i.e. BM3D-

CFA [13] with RCNN [57]) is quite large: more than 1.5dB

on average. In Fig. 3 we compare some results obtained

on an image from the Kodak dataset. From the upper-left

extract we can see that textures are better restored with

RCNN+CBM3D and MLRI+CBM3D, while JCNN intro-

duces some defects. From the extract we see that the

DM&1.5DN methods preserve much more details than

BM3D+RCNN, and the result is comparable to JCNN.

On the Imax database RCNN+CBM3D has the high-

est CPSNRs on high noise levels, by a small gap though.



Table 6. Comparison of the results (CPSNR in dB) between dif-

ferent denoising and demosaicking methods for the Imax image

set. The best result of each line is in red, the second best one is in

green and the third best one is in blue.

DN&DM DM&1.5DN

BM3D BM3D Park PCA PCA RCNN RCNN MLRI

σ + + + + + + + + JCNN

HA RCNN RCNN DLMM RCNN CBM3D nlBayes CBM3D

1 34.63 38.53 35.37 33.99 37.52 38.36 38.42 36.52 38.59

5 33.43 35.62 32.86 32.69 34.87 35.39 35.29 34.60 33.48

10 31.84 32.92 30.06 30.73 31.89 32.75 32.59 32.36 33.09

20 29.22 29.55 26.86 27.57 27.99 29.41 29.25 29.22 29.79

40 25.50 25.51 23.86 23.50 23.57 25.52 25.09 25.39 –

60 21.55 21.34 21.75 20.89 20.89 22.78 22.31 22.63 –

Av 28.09 28.88 26.89 26.71 27.53 28.99 28.72 28.58 –

Table 7. Comparison of the results (CPSNR in dB) between dif-

ferent denoising and demosaicking methods for the Kodak image

set. The best result of each line is in red, the second best one is in

green and the third best one is in blue.

DN&DM DM&1.5DN

BM3D BM3D Park PCA PCA RCNN RCNN MLRI

σ + + + + + + + + JCNN

HA RCNN RCNN DLMM RCNN CBM3D nlBayes CBM3D

1 34.70 40.55 40.36 38.19 39.12 40.98 40.98 38.52 41.15

5 32.84 34.89 34.87 34.99 35.42 36.55 36.42 35.71 34.13

10 30.34 30.93 30.85 31.83 32.01 33.36 33.18 32.94 33.27

20 27.59 27.70 27.42 28.11 28.14 29.98 29.87 29.70 29.95

40 24.79 24.78 24.88 24.15 24.08 26.71 26.29 26.44 –

60 22.58 22.55 23.19 21.77 21.70 24.42 23.93 24.16 –

Av 27.47 28.35 28.36 27.96 28.09 30.19 29.93 29.64 –

For low noise levels BM3D+RCNN is better, but the dif-

ference with RCNN+CBM3D is very small. The joint

denoising-demosaicking network JCNN [21] yield the best

results on the Imax dataset for σ ≤ 20 yet, the margin

with respect to RCNN+CBM3D is again small. Over-

all, by looking at the average CPSNR we can say that

RCNN+CBM3D (DM&1.5DN ) is indeed much more ro-

bust than BM3D+RCNN.

Evaluation on real images. We evaluated on a set of 14

raw images taken from the Small SIDD dataset [1]. For sim-

plicity, the selected images correspond to phones from the

same manufacturer. We adopted the simple pipeline pro-

posed by the authors, which yields photo finished images

that can be compared with the ground truth. The considered

methods (RCNN+CBM3D, CBM3D+RCNN, and JCNN)

were applied at the demosaicking stage (in linear space).

Before any denoising step (DN ) we applied a VST (squared

root [5]), which whitens the noise, and invert it afterwards.

28.46dB 34.30dB 35.84dB

28.82dB 37.03dB 38.48dB

noisy demosaicked DN&DM DM&1.5DN

Figure 5. Details of a real images (enhanced contrast) from the

SIDD [1] dataset. From left to right: noisy input (demosaicked),

BM3D+RCNN , and RCNN+CBM3D.

Table 8. Average CPSNR over 14 raw images taken from the Small

SIDD dataset [1]. The reported average noise level is scaled to the

range 0-255.

mean σ CBM3D+RCNN RCNN+CBM3D JCNN

7.65 38.19 39.64 38.54

The noise level was estimated using [11] and provided to

the denoising algorithms and JCNN.

Table 8 reports the average CPSNR obtained on these

images and the average of the estimated noise levels (after

whitening). These values are consistent with the simulated

results obtained on the Kodak database (Table 7). The result

in Fig. 5, and the supplementary material, support the case

in favor of the DM&1.5DN schemes (RCNN+CBM3D).

4. Conclusions

This paper analyzed the advantages and disadvantages

of denoising before demosaicking (DN&DM ) schemes,

versus demosaicking before denoising (DM&DN ), to re-

cover high quality full-color images. We showed that for

the DM&DN schemes a very simple change of the noise

parameter of the denoiser DN coped with the structure of

demosaicked noise, and led to efficient denoising after de-

mosaicking. This has allowed a better preservation of fine

structures often smoothed by the DN&DM schemes. Our

best performing combination in terms of quality and speed

is a DM&1.5DN scheme, where demosaicking DM is

done by a fast algorithm RCNN [57] followed by CBM3D

denoising 1.5DN with noise parameter equal to 1.5σ0.

Nevertheless, we anticipate joint demosaicking and denois-

ing methods obtained by deep learning to win the end game

when they become more compact or rapid.

Acknowledgments : Work partly financed by Office of

Naval research grant N00014-17-1-2552 and DGA Astrid

project n◦ ANR-17-ASTR-0013-01.



References

[1] Abdelrahman Abdelhamed, Stephen Lin, and Michael S.

Brown. A High-Quality Denoising Dataset for Smartphone

Cameras. In 2018 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 1692–1700. IEEE, jun

2018. 3, 6, 8
[2] Jan Aelterman, Bart Goossens, Jonas De Vylder, Aleksandra
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[21] Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo
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