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Figure 1. We train deep networks using a new loss function for perceptual ×16 super-resolution, and fine details are successfully restored.

Left image is input and right one is output. Please zoom-in for details.

Abstract

The performance of image super-resolution (SR) has

been greatly improved by using convolutional neural net-

works. Most of the previous SR methods have been studied

up to ×4 upsampling, and few were studied for ×16 up-

sampling. The general approach for perceptual ×4 SR is

using GAN with VGG based perceptual loss, however, we

found that it creates inconsistent details for perceptual ×16
SR. To this end, we have investigated loss functions and we

propose to use GAN with LPIPS [23] loss for perceptual

extreme SR. In addition, we use U-net structure discrimi-

nator [14] together to consider both the global and local

context of an input image. Experimental results show that

our method outperforms the conventional perceptual loss,

and we achieved second and first place in the LPIPS and PI

measures respectively for NTIRE 2020 perceptual extreme

SR challenge.

1. Introduction

Super-resolution (SR) is the task of generating a high-

resolution (HR) image from a given low-resolution (LR)

image. SR has been used for many applications like surveil-

lance, satellite, medical, microscopy imaging, and so on.

Recently, compression and SR could be a solution for high-

quality multimedia streaming services to reduce network

bandwidth usage.

Now in the era of deep learning, the performance of im-

age SR has been greatly improved by using convolutional

neural networks [2]. However, most of the methods have

been studied up to ×4 upsampling, and few were studied for

×16 upsampling [1, 17]. There are three aspects to consider

for the new perceptual ×16 upscaling method: datasets, net-

work designs, and loss functions.

Several studies have focused on developing effective

deep network structures using datasets containing high-

quality images, while the loss function remains unchanged.

In general, the adversarial training [3] and the VGG [15]

based perceptual loss [7] have been used for perceptual SR.

However, we empirically found that they give insufficient

performance due to inconsistently hallucinated details for

the perceptual ×16 SR.

To this end, we have focused on investigating new loss

functions and we found that learned perceptual similar-

ity (LPIPS) [23] is a better choice for the loss function.

Also, we adopt U-net structure discriminator to fully uti-

lize the global and local context for better details [14]. We

will show that our method generates visually pleasing re-

sults with consistent details in the experiments section. Es-

pecially in NTIRE 2020 perceptual extreme SR challenge

[22], our method ranked second and first in the LPIPS and

PI [1] measures respectively for the results.1

1Codes are available at https://github.com/kingsj0405/

ciplab-NTIRE-2020



Figure 2. Our generator structure for ×16 SR. We adopt the generator structure of ESRGAN [19], and double the backbone layers. First

half of the whole network performs ×4 upsampling and the other half performs remaining ×4 upsampling.

Figure 3. Structure of RRDB. β is the scaling parameter.

2. Related Work

Perceptual Super-Resolution In the early days of deep

SR, mean squared error (MSE) has been used to train the

model for achieving higher peak signal noise to the ra-

tio (PSNR) – a common image quality assessment metric.

However, PSNR is known to be not correlated well to the

human visual perception [7, 23], and it suffers from blurry

results as it does not consider to create high-frequency de-

tails.

To create realistic details, SRGAN [9] used generative

adversarial networks (GAN) with the perceptual loss based

on VGG features [7]. Since then, many new deep net-

work architectures have been devised to improve the per-

formance. SFTGAN [18] proposed a spatial feature trans-

form layer to efficiently incorporate the categorical condi-

tions information. ESRGAN [19] introduced a residual-in-

residual dense block (RRDB) to effectively train a deeper

model showing superior performance.

In other directions, EnhanceNet [13] used texture loss

to enhance detailed textures, SRFeat [11] suggested an ad-

ditional discriminator in feature domain, NatSR [16] intro-

duced natural manifold for maintaining the naturalness of

results, SROBB [12] exploited texture segmentation labels

for region adaptive SR, and RankSRGAN [24] adopted a

ranker to force the results get higher ranking.

They are mostly based on the GAN with the VGG per-

ceptual loss, and there were few considerations about the

loss functions. In this paper, we have investigated loss func-

tions for perceptual extreme SR and replace the VGG per-

ceptual loss with the LPIPS perceptual loss.

Extreme Super-Resolution A number of methods have

emerged for ×4 SR, however, there were few studies for ×8
SR and over. For ×8 SR, LapSRN [8] proposed a progres-

sive upsampling approach using Laplacian pyramid, DBPN

[6] proposed an iterative up and downsampling approach

to exploit HR features, and RCAN [25] proposed a resid-

ual channel attention network to adaptively weight across

channels.

The 2018 PIRM challenge on perceptual image super-

resolution [1] and NTIRE 2018 challenge on single image

super-resolution [17] were held for perceptual ×4 SR. Re-

cently, in AIM 2019 challenge on image extreme super-

resolution [4], DIV8K dataset [5] for extreme SR was re-

leased and several methods were proposed for ×16 SR

[10, 20]. They focused on the network architectures for the

performance, however, less on the loss function.

3. Method

For ×16 SR, using MSE hardly restores high-frequency

details. Therefore, we adopt the GAN [3] framework which

is widely known to be able to hallucinate details for SR [9].

Our method consists of a generator and a discriminator, and

we focus on investigating the loss functions for the percep-

tual performance.

3.1. Generator

There are few studies for the network structures for ×16
SR. Several methods appeared in the last year AIM chal-

lenge [4], and most of them cascade two ×4 SR networks

for ×16 SR task. Similarly, we adopt one of the state-of-

the-art ×4 SR network ESRGAN [19] as our generator net-

work, and double the backbone layers for having enough

network capacity for ×16 SR (Fig. 2). ESRGAN removes

batch normalization layers from SRGAN [9] to avoid un-

pleasant artifacts and replaces the original residual block

with the RRDB to boost performance (Fig. 3). Specifically,

we double the existing 23 RRDBs to 48 RRDBs. The first

half of the network performs ×4 upsampling and the other

half performs the remaining ×4 upsampling. Formally, the

generator produces ×16 super-resolved output image IGen

from an input image IIn:

IGen = G(IIn). (1)



Figure 4. Our discriminator network. To provide per-pixel feedback to the generator, U-net structure [14] is adopted. There are 6

downsampling and 6 upsampling stages, with skip-connections between them.

Note that our method focuses on investigating loss function

combinations for better performance.

3.2. Discriminator

Most GAN based SR methods used to encoder struc-

ture discriminator [9, 19, 24]. Compressed representation

from the discriminator determines whether an input image

is real or fake. Recently, there has been a study to im-

prove the performance of image generation using an U-net

structure discriminator [14]. On top of the normal encoder

structure Denc, they successively attached a decoder struc-

ture Ddec for providing per-pixel feedback to the generator

while maintaining global context (Fig. 4). We empirically

found that this gives more details for ×16 SR rather than

normal encoder structure discriminator.

In practice, discriminator loss LD is computed at both

the encoder head LDenc
and the decoder head LDdec

. We

can formulate the discriminator loss as hinge loss.

LDenc
=− E

[

∑

i,j

min(0,−1 + [Denc(I
GT )]i,j)

]

− E

[

∑

i,j

min(0,−1− [Denc(I
Gen)]i,j)

]

,
(2)

LDdec
=− E

[

∑

i,j

min(0,−1 + [Ddec(I
GT )]i,j)

]

− E

[

∑

i,j

min(0,−1− [Ddec(I
Gen)]i,j)

]

,
(3)

where IGT is the ground truth image, and [D(I)]i,j is the

discriminator decision at pixel (i, j). The corresponding ad-

versarial loss for the generator is as follows:

Ladv = −E

[

∑

i,j

[Denc(I
Gen)]i,j +

∑

i,j

[Ddec(I
Gen)]i,j

]

.

(4)

To explicitly encourage the discriminator to focus more

on semantic and structural changes, a technique called con-

sistency regularization was additionally used in [14]. It syn-

thesizes a new training sample by using CutMix transforma-

tion [21], and minimizes the loss LDcons
. We apply it to our

SR problem, and the total discriminator loss is:

LD = LDenc
+ LDdec

+ LDcons
. (5)

3.3. Loss Functions

General choice of the loss functions for the perceptual

SR methods is the adversarial loss Ladv [3] with the VGG

[15] based perceptual loss Lvgg [7]. This loss combination

has worked well for ×4 SR [9, 19], however, we empirically

found that it does not output satisfactory results for ×16
SR due to highly hallucinated noise and less precise details.

Because VGG network is trained for image classification, it

may not the best choice for the SR task.

To this end, we use LPIPS [23] for the perceptual loss:

Llpips =
∑

k

τk(φk(IGen)− φk(IGT )), (6)

where φ is a feature extractor, τ transforms deep embed-

ding to scalar LPIPS score, and the score is computed and

averaged from k layers (Fig. 5). Assume there is a refer-

ence image, and we transform the image in two different

ways – small translation and blurring. Traditional image

quality metrics like PSNR and SSIM prefer the blurred im-

age, but humans are more likely to prefer the translated one.

LPIPS is trained with a dataset of human perceptual simi-

larity judgments and more appropriately reflects the human

perception preferences than the VGG perceptual loss.

Figure 5. LPIPS [14] is computed from deep feature embeddings.



We additionally use the discriminator’s feature matching

loss Lfm to alleviate the undesirable noise from the adver-

sarial loss:

Lfm =
∑

l

H(Dl(IGen), Dl(IGT )), (7)

where Dl denotes the activations from the l-th layer of the

discriminator D, and H is the Huber loss (smooth L1 loss).

We also use a loss on the pixel space Lpix for preventing

color permutation:

Lpix = H(IGen, IGT ). (8)

To sum up, the total loss for our generator is:

LG = λadvLadv + λfmLfm + λlpipsLlpips + Lpix, (9)

where λs are scaling parameters.

4. Experiments

Dataset For training, we use DIV8K [5] dataset which

contains 1500 training images with the resolution up to

8K. It highly covers diverse scene contents and is designed

for ×16 SR and further. We randomly crop 384 × 384
size patches from the training images and synthesize corre-

sponding input patches by bicubic downsampling to 24×24
size. To augment the training data, rotation and left-right

flip are randomly applied. For the validation dataset, we

uniformly select 10 images from the training images (i.e.

0150.png, 0300.png, ..., 1500.png).

Implementation details Our method is implemented in

PyTorch 1.2.0 and trained on a single NVIDIA TITAN XP

GPU (12G). The negative slopes of leaky relu are 0.2 and

0.1 for our generator and discriminator respectively. We

first pretrain the generator using Lpix only for 50K iter-

ations with mini-batch size of 3, and it takes 12 hours

(Pretrained). We further train the generator using our

full loss functions for about 60K iterations with mini-batch

size of 2, and it takes about 15 hours (Ours). We empiri-

cally set λadv = 1E−3, λfm = 1, and λlpips = 1E−6. We

use Adam optimizer and learning rate is set to 0.00001 for

training both the generator and the discriminator networks.

The number of parameters for our generator and discrimi-

nator is 33M and 13M respectively.

4.1. Comparisons with other methods

There were no public codes for other ×16 SR methods.

Instead, we compare with bicubic upsampling and our net-

work trained using the VGG perceptual loss (Adv+VGG,

LG = 1E − 3 · Ladv + 1E − 5 · Lvgg + Lpix).

Quantitative result on our validation set is shown in Ta-

ble 1. We use two conventional image quality assessment

metrics PSNR and SSIM (the higher the better). However,

they may not reflect the human visual perception, we addi-

tionally measure LPIPS for the perceptual quality (the lower

the better). In perceptual SR, LPIPS metric is more consid-

ered than PSNR and SSIM, and our method achieves the

best score. Note that we crop border 16px to avoid bound-

ary artifacts when measuring.

Qualitative results on the DIV8K testset are shown in

Fig. 6. In general, as in hair and lines, our results look qual-

itatively improved than Adv+VGG. This is the effect of us-

ing LPIPS loss as it provides better feature space than VGG

for improving the perceptual quality. This is also the effect

of U-net discriminator as it considers both the global and

local context and gives effective feedback to the generator.

More results on general image super-resolution test sets

(Set5, Set14, BSDS100, Urban100, and Manga109) are also

shown in Table 2 and Fig. 7. On those test sets, our method

increases sharpness with consistent details and achieves

the lower LPIPS score at the same time (we will describe

Ours-New model in the following section).

NTIRE challenge Using the results of Ours model, we

obtained 22.77 (15th), 0.5251 (16th), 0.352 (2nd), and 3.76

(1st) for PSNR, SSIM, LPIPS, and PI respectively in the

results of NTIRE 2020 perceptual extreme SR challenge.

They are calculated on the center 1000 × 1000 subimages

of the DIV8K testset.

4.2. Ablation study

To investigate the effect of each loss term, we run the

ablation study on our validation set. Detailed loss config-

urations and the corresponding quantitative and qualitative

results are shown in Table 3 and Fig. 8 respectively. When

only Llpips is used without GAN framework (Ours w/o

Ladv), the LPIPS value is the lowest, however, the actual

visual results are not the best and repetitive pattern artifacts

occur to create inconsistent details. Even if LPIPS value

increases, better visual results are generated by using our

proposed full losses. We can see that better LPIPS value

does not always guarantee better visual quality.

We further adjust λlpips from 1E − 6 to 1E − 3 and

Method PSNR↑ SSIM↑ LPIPS↓

Bicubic 25.05 0.1211 0.6620

Pretrained 26.22 0.1704 0.5559

Adv+VGG 24.14 0.1178 0.4115

Ours 23.42 0.1183 0.3357

Table 1. Quantitative results with other methods on our valida-

tion set. Our proposed method shows better LPIPS value than the

VGG based perceptual loss, and it is also appeared qualitatively in

Fig. 6. Best values are shown in bold and second best values are

underlined.



Bicubic Pretrained Adv+VGG Ours

Figure 6. Qualitative results with other methods on our validation set (images are 1601, 1608, 1624, 1638, and 1658 from top to bottom).

Pretrained model has limitations in restoring sharpness. Adv+VGG model produces realistic results while it sometimes produces color

artifacts and inconsistent details at the same time. However, Ours model generates more visually pleasing results. Please zoom for better

comparison.



Method
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Bicubic 21.37 0.1730 0.6836 20.73 0.1389 0.7536 21.74 0.1086 0.8347 18.92 0.0892 0.8474 19.12 0.1349 0.6979

Pretrained 23.27 0.2602 0.4726 22.18 0.1925 0.5818 22.75 0.1491 0.6989 20.32 0.1630 0.6086 20.97 0.1877 0.4564

Adv+VGG 21.53 0.1842 0.3554 20.95 0.1455 0.4363 21.29 0.1035 0.5016 19.22 0.1138 0.4816 20.04 0.1388 0.4023

Ours 20.97 0.1837 0.3001 20.14 0.1359 0.3888 20.21 0.0877 0.4233 18.68 0.1224 0.4056 19.50 0.1657 0.3096

Ours-New 21.85 0.1891 0.2768 20.75 0.1362 0.3601 21.24 0.0946 0.3986 19.24 0.1221 0.3865 19.94 0.1431 0.2976

Table 2. Quantitative results with other methods on general image super-resolution test sets. Our methods show better LPIPS values among

them, and we further improve the performance in the Ours-New model.

Bicubic Pretrained Adv+VGG Ours-New GT

Figure 7. Qualitative results with other methods on the general image super-resolution test sets (images are baby, baboon, 3096, img 053,

and AisazuNihaIrarenai from top to bottom). The Adv+VGG model improves the sharpness from the pretrained model. However, our

method further enhances the results with consistent details. Please zoom for better comparison.



Method D λadv λfm λlpips PSNR↑ SSIM↑ LPIPS↓

Ours w/o Ladv - 0 0 1 24.27 0.1155 0.2608

Ours w/o Lfm and Llpips U 1E-3 0 0 22.82 0.0950 0.4202

Ours w/o Llpips U 1E-3 1 0 24.39 0.1160 0.3437

Ours U 1E-3 1 1E-6 23.42 0.1183 0.3357

Ours-New U 1E-3 1 1E-3 24.54 0.1225 0.2860

Ours-New w/o Ddec E 1E-3 1 1E-3 23.79 0.1126 0.2933

Table 3. Various loss configurations for ablation study on our validation set. U and E denote U-net and encoder structure for the discrim-

inator. Using only Llpips without GAN framework (first row) gives the best LPIPS value, but this is not reflected to visually pleasing

images (see Fig. 8). Even if LPIPS value increases, the better visual quality is obtained by using all suggested losses. From Ours model,

we further improve the performance with the optimized weight balance (Ours-New).

Ours w/o Ladv Ours w/o Llpips Ours Ours-New Ours-New w/o Ddec

Figure 8. Qualitative results of the ablation study (images are 0300, 0600, 0900, and 1350 from top to bottom). Using only Llpips without

GAN framework (first column) shows repetitive pattern artifacts to create details. Ours results look oversharpened while Ours-New results

show moderate details. In addition, Ours-New suppresses undesirable noise compared to Ours-New w/o Ddec. Please zoom for better

comparison.



obtain better results (Ours-New). Ours-New results have

moderate details which look more pleasing than Ours re-

sults. Also, we verify that the U-net discriminator boosts the

performance by suppressing noise (Ours-New versus Ours-

New w/o Ddec). Note that our NTIRE submission is Ours

and Ours-New is the further improved version.

5. Conclusion

We investigate the loss functions for perceptual ×16 SR.

Through the experiments, we verify that LPIPS is the bet-

ter choice than VGG as a perceptual loss for the extreme

SR. Our method achieved second place in the perceptual

measure in NTIRE 2020 perceptual extreme SR challenge.

Moreover, we further improve our results by appropriately

balancing loss weights. In the future, more performance

gain is expected by combining the proposed loss functions

with a more effective generator architecture.
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