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Abstract

A novel “physics-free” approach of designing indoor ra-

dio dot layout for a floor plan is introduced by formulating it

as an image-to-image translation problem and solved with

customized dimension-aware conditional generative adver-

sarial networks (DA-cGANs). The proposed model gener-

ates a desirable radio heatmap and its respective radio dot

layout from a given floor plan with wall types, physical di-

mension, and macro-cell interference, by learning from the

accumulated indoor radio designs by human experts. Con-

sidering the nature of radio propagation, two new loss func-

tions and a two-stage training strategy are proposed for the

generator to learn the right direction of signal propagation

and precise dot locations, in addition to a sectional analy-

sis for dealing with large floor plans. Experimental results

show that the new model is effectively generating accept-

able dot layout designs and that dimension-awareness is a

key enabler for this type of prediction.

1. Introduction

Wireless connectivity becomes more important than ever

as the era of the Internet of Things (IoT) has arrived. To

provide better user experience, telecommunications compa-

nies are actively proposing solutions to increase cell cover-

age, enhance throughput, mitigate interference, and reduce

latency. The current most popular mobile communication

standard, i.e., the fourth generation (4G) Long Term Evolu-

tion (LTE) has been proven to be a good solution to provide

high throughput/coverage for users. Recently, not only out-

door scenarios adopt the LTE solution, but also in-building

scenarios start to use it, due to large amount of indoor usage

taking 87% of usage time in the U.S. [12] and generating

70% of global mobile data traffic [16]. LTE has the capa-

bility to handle large amount of user equipment (UE) and

provide good coverage, hence it is well-fitted to the large
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in-building scenario. In addition, it can be seamlessly up-

graded to the fifth generation (5G) services which can pro-

vide much higher throughput and ultra-low latency in the

near future. Nowadays, the LTE radio dot system (RDS)

has been proposed and implemented inside many buildings

across the world [16], and we can foresee that they are

upgraded synchronously with the incoming 5G services to

avoid mismatched user experience between the indoor and

outdoor systems.

However, there are two pain points to deploy the RDS

inside a new building, i.e., both time and cost consuming.

To figure out the optimal number and layout of radio dots

for a floor, a time-consuming process called site survey is

required, consisting of the following steps. First, we need

to measure the wall type, e.g., concrete, glass, metal, etc.

Then we need to measure macro-cell interference, i.e., the

signal transmitted from nearby outdoor macro base stations,

in order to calculate their interference on indoor locations.

Once we have all surveys being done, an experienced ra-

dio designer determines the best radio dot locations by ob-

serving the signal propagation heatmap generated by an ra-

dio frequency (RF) planner software, in order to maximize

the coverage efficiency for each floor [16]. Figure 1 shows

the steps of a typical design process from a given raw floor

plan to its RDS deployment. Figure 1(a) shows an exam-

ple of a raw floor plan. In Figure 1(b), wall type informa-

tion is added as the colored wall. The circle dots in Fig-

ure 1(c) are the radio dots being placed by a designer man-

ually. Figure 1(d) represents the heatmap of the reference

signal received power (RSRP) level, which is a type of re-

ceived power measurement from the radio dots according to

the given dot layout in Figure 1(c). Note that darker pixel

indicates stronger RSRP. The whole design process is not

only costly but tedious, and it can take up to tens of days

to be completed for one large building. Therefore, this de-

ployment methodology can not be scaled to large number

of buildings.

Several works were done to support indoor radio dot

planning. Among three components of the RDS (radio dots,

radio heads, and baseband units), the authors in [2] pro-
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(a) A raw floor plan. (b) A colored floor plan. (c) Layout of radio dots. (d) A simulated heatmap.

Figure 1. Typical design steps to generate a heatmap from a raw floor plan.

posed a clustering algorithm to assign baseband units and

radio heads to the given radio dots. Another work [23] pro-

posed to solve radio head placement problem by minimiz-

ing the total amount of wiring resources. However, none

of the above works challenged to estimate radio dot loca-

tions, assuming that the hard part is given by human de-

signers. For complementing their missing piece as well as

tackling the two pain points for an indoor RDS, we propose

to formulate the design process as an image-to-image trans-

lation problem and apply generative adversarial networks

(GANs) [6]. Specifically, we propose a dimension-aware

conditional GAN (DA-cGAN) to solve our heatmap predic-

tion problem from a given floor plan. The contribution of

our work is fourfold:

1. We propose a new cGAN architecture to learn the

heatmap based on the physical dimension of a floor

plan;

2. We propose two new loss functions with multi-stage

training strategy to learn the signal propagation pattern

and precise dot locations;

3. A sectional analysis scheme is proposed to deal with

large floor plans;

4. We take macro-cell interference into consideration and

it is served as another input branch to be merged with

our DA-cGAN.

The rest of the paper is organized as follows. The DA-

cGAN architecture is introduced in Section 2. The loss

functions being used to train the DA-cGAN are presented

in Section 3. The proposed sectional analysis approach is

presented in Section 4. Early prediction results with inter-

ference heatmap are discussed in Section 5. Experimental

studies with quantitative and qualitative results are shown

in Section 6, followed by Section 7 for conclusions.

2. Network Architecture

GANs are well-known for its capability of generating ar-

tificial images. GANs are composed of two deep neural

networks [6], i.e., a generator and a discriminator. Two of

them compete and learn from each other, and in the end the

generator can generate a fake image which can not be dis-

tinguished from the true image by the discriminator, hope-

fully also by the human eyes. Some interesting applications

using GANs include: colorizing cartoon characters from

their sketch images [15, 22], creating super-resolution im-

ages from the lower resolution [13], transforming from one

domain to another domain [29], repairing images by filling

their missing parts [20], and generating three-dimensional

models given two-dimensional images of objects from mul-

tiple perspectives [4].

Among various applications, colorization is chosen as

the starting point since it is most relevant to our problem.

The colorization of a given sketch of floor plan not only

needs to preserve its border shape, but also needs to learn

from its internal structure to generate the correct signal

heatmap since the structure of a floor plan highly corre-

lates with its heatmap. For example, a concrete wall has

much higher signal attenuation than a dry wall, and there-

fore, the radio signal strength decades quickly around a

concrete wall. To solve our image translation problem, we

adopt the conditional GAN (cGAN) [18], which learns the

mapping from an input image and a random noise to the

corresponding output image. However, we drop the ran-

dom noise in our architecture following the convention in

cGANs [7, 24, 29, 10], since we only focus on generating

one heatmap with optimal radio dot placement.

In order to preserve most of the floor plan structure, we

adopt the U-Net [21, 15] architecture as our generator. U-

Net is a special encoder-decoder network such that it con-

catenates each layer in the encoder to the symmetric layer in

the decoder. This bypass scheme will minimize the sketch

structure loss through the entire feature extraction and re-

construction process. For the discriminator, we select an

encoder only network as our architecture. Its goal is to clas-

sify between a real heatmap and a fake heatmap from the

generator. The PatchGAN [7, 15] architecture is used to

output a matrix of probabilities for the final layer in the dis-

criminator.



A unique modification in the DA-cGAN is that it con-

siders physical dimension as additional input. Physical di-

mension is usually not considered in this kind of problem,

i.e., only pixel space is. However, pixel space is not suffi-

cient for modeling radio signal propagation. In a traditional

physics-based simulator, a heatmap is derived based on its

path loss1 which is dominated by two factors: 1) the dis-

tance between the radio dot and the current location, and

2) the environmental parameter known as path loss expo-

nent [5]. The path loss increases logarithmically as the

physical distance increases from a radio dot, and the path

loss exponent is a fixed value measured based on different

scenarios. To consider the physical distance, we need the

resizing ratio from the original floor plan to the resized im-

age which is served as the input to the cGAN, and a scaler

(feet/pixel) s measured on the original floor plan. Denote

W , H , w, and h the width and height in pixels of the raw

floor plan and the resized floor plan, respectively. To inform

the cGAN regarding the physical dimensions and the path

loss information, we propose a dimension-aware feature z

defined as

z =

[

W

w
,
H

h
, s, log s

]

. (1)

Another important feature of the DA-cGAN is the macro-

cell interference. We propose to incorporate the measured

RSRP heatmap I from outdoor macro cell into our model,

so that it is guided to generate more radio dots to cover the

highly interfered regions. By passing z to a fully connected

layer and three deconvolutional layers [25], and passing I

through similar encoder structure from U-Net, we can con-

catenate them with the deeper layers in our U-Net encoder.

As shown in Figure 2, the proposed DA-cGAN adds z and

I to U-Net, and rest of the architecture remains the same.

Figure 3 shows two prediction results from the proposed

DA-cGAN using two scales s within z, as an example of

showing how physical dimension affects heatmaps when s

is intentionally set to ten times larger than its real value. We

can see larger s tends to generate small blobs of signal prop-

agation and thus creates more radio dots (e.g. the emerged

one inside upper room in Figure 3(b)), which is aligned with

physics of radio propagation.

Two advanced layers are also added to the DA-cGAN.

The first one is the spectral normalization layer [19], for

stabilizing the training of the discriminator by limiting the

weights to a certain range. The second one is the attention

layer [27] to capture long range dependency in image gen-

eration tasks, through self-attention map construction. This

can mitigate the drawback of traditional convolutional layer

which is limited by using only spatially local points in lower

1Path loss is defined as the transmitted power from a radio dot minus

the received power on a UE.
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Figure 2. Proposed DA-cGAN with z feature and interference

heatmap I . FC is a fully connected layer and deconv is a deconvo-

lutional layer. Only the encoder part is modified in the U-Net.

(a) s = 0.017 (1X). (b) s = 0.17 (10X).

Figure 3. DA-cGAN prediction comparisons using different s val-

ues overlaid with a floor plan.

resolution feature maps. The attention layer is applied to the

layer before the last convolutional layer in the discriminator.

3. Loss Functions

The DA-cGAN learns a mapping from a floor plan image

x to its output heatmap image y. It is a one-to-one mapping

problem, and therefore no random noise vector should be

involved. The objective of our DA-cGAN is to optimize the

value function V 2 according to the below optimization.

min
G

max
D

V (G,D) = Ex,y∼pdata(x,y){logD(x, y)}

+ Ex∼pdata(x){log(1−D(x,G(x))}, (2)

where G is the fake image generated from the generator, D

is the discriminator output probability to classify between

real and fake input pair, pdata(x, y) is the joint distribution

for images x and y, pdata(x) is the distribution of input im-

age x, and E{·} is the expectation operation.

To solve the min-max optimization problem, we can

break it into two sub-problems and solve them iteratively.

2We assume the proposed feature vector z and interference heatmap I

are embedded in the input image x to make the notation simple.



The loss function to optimize D is

LD =− Ex,y∼pdata(x,y){logD(x, y)}

− Ex∼pdata(x){log(1−D(x,G(x)))}, (3)

and the loss function to optimize G is

LG = −Ex∼pdata(x){log(D(x,G(x)))}. (4)

3.1. Baseline Loss Functions

Previous cGANs [15, 20] have shown that by mixing tra-

ditional loss functions with the cGAN objective, cGAN can

be customized to learn the desired property. We apply three

additional loss functions to our objective function for the

generator, and merge them as the baseline loss functions.

The first one is L1 loss. It can maximize pixel level similar-

ity between the generated image G(x) and the ground truth

image y [15]. It is represented as

L1 = Ex,y∼pdata(x,y){||y −G(x)||1}, (5)

where || · ||1 is the ℓ1 norm. The second one is the total vari-

ation loss LTV [8] which encourages spatial smoothness for

G(x). In additional to pixel values, pixel distribution is also

important in our problem. To enhance the visual quality

of the generated image, we adopt the multi-scale structural

similarity index (MS-SSIM) as the third baseline loss func-

tion [28]. MS-SSIM has been well-studied to compare two

images by accounting the fact that human visual system

is sensitive to changes in local structure, and it addresses

the issue with variations of viewing conditions by multi-

scaling. The loss function is represented as

LMS−SSIM = 1− MS-SSIM(x,G(x)), (6)

where MS-SSIM index is defined in [26].

3.2. Gradient Similarity Loss

By inspecting our ground truth heatmap image, we no-

tice a unique characteristic of it, i.e., the gradient pattern.

The uniqueness of this feature is that it propagates the signal

strength from the center of the radio dot, to its surrounding

pixels smoothly. Since DA-cGAN should learn optimal de-

sign and their respective signal propagation pattern, it is im-

portant to reward a candidate by similarity of general prop-

agation pattern rather than pixel-wise match while ignoring

shape. To compare the gradient pattern between two im-

ages, we first propose a new metric, i.e., the gradient sim-

ilarity (GSIM) index, and then extend it to its multi-scale

version. GSIM can be derived in three steps. Consider a

pixel location (i, j) for image y and G(x). First we apply

a two-dimensional Sobel filter [9] to obtain the gradient on

(i, j), and they are represented as ∇yi,j and ∇G(x)i,j , re-

spectively. Then we calculate their cosine similarity (CS),

denoted as CS(∇yi,j ,∇G(x)i,j). Finally, we average out

CS on all pixels to obtain GSIM, which is represented as

GSIM = Ex,y∼pdata(x,y){CS(∇y,∇G(x))}, (7)

where ∇y and ∇G(x) are two-dimensional matrices with

∇yi,j and ∇G(x)i,j as their elements, respectively.

Through experiments, we found GSIM is sensitive to im-

age scale. On some large-scale images, although visually

we can see a good gradient pattern from a predicted im-

age G(x), GSIM provides low score. To address this scal-

ing issue, we propose a multi-scale version of GSIM, i.e.,

MS-GSIM index. The key idea is that we apply GSIM on

different image scales, and then merge them with a mean-

ingful average function. First, we define an average pooling

function avg pool(y, k, ξ, ρ) for scaling purpose, given its

input image y, kernel size k, stride ξ, and padding method

ρ. The output of different scales of images can be rep-

resented recursively as ai+1 = avg pool(ai, k, ξ, ρ) and

bi+1 = avg pool(bi, k, ξ, ρ) with a1 = y and b1 = G(x),
∀1 ≤ i ≤ N , where N is number of scale. Then we

define an average function f to combine the GSIM score

from all scales. The proposed MS-GSIM index is calcu-

lated with f(GSIM(a1, b1), ...,GSIM(aN , bN )). Note we

adopt k = 2, ξ = 2, ρ as zero padding, and N = 5 through

our experiments.

The most intuitive function for f is the arithmetic mean.

But after some experiments, we found using harmonic mean

provides better result as it shifts the mean toward the lower

GSIM loss. In this case we will have smaller loss value if

some of the scales result in good GSIM loss. The proposed

MS-GSIM loss function is represented as

LMS−GSIM = f((1− GSIM(a1, b1)), ..., (1− GSIM(aN , bN ))),
(8)

where f(x1, ..., xN ) = N∑
N
i=1

1

xi

.

3.3. Focal L1 Loss

Since our final goal is to place radio dots onto the gener-

ated heatmap, the pixels with stronger signal are more im-

portant, although all the above loss functions treat all pix-

els equally. Inspired by the focal loss originally being used

to lower the miss-classification probability for object detec-

tion [14], we propose a new focal shifted L1 loss by adjust-

ing the weight of a pixel proportional to its signal strength.

In its implementation, weight change should be con-

sidered in different signal strength distributions among

heatmaps by shifting the signal range. The proposed focal

shifted weight wi,j for each pixel (i, j) is represented as

wi,j =

{

− log ǫ, if q ≥ yi,j ,

−
(

1−yi,j

1−q

)γ

× log
(

yi,j−q

1−q
+ ǫ

)

, if q < yi,j ,

(9)



where ǫ is a very small number used to stabilize numeri-

cal computation for log, q is a shifting value that is deter-

mined by 1.5% quantile of heatmap, and γ is a hyperparam-

eter used to control the slope for weight decay. We assume

yi,j ∈ [−1, 1] where −1 is the strongest signal and 1 is the

weakest signal on the heatmap. The focal shifted L1 loss is

represented as

Lfocal = Ex,y∼pdata(x,y){W ◦ ||y −G(x)||1}, (10)

where W is a two-dimensional matrix with the elements

wi,j defined in equation (9) and ◦ is the element-wise mul-

tiplication operator.

3.4. Multi­Stage Training Strategy

Since MS-GSIM is good at preserving the global prop-

agation pattern while MS-SSIM is good at preserving lo-

cal pixel layout, we need both to benefit our prediction. A

straightforward method is to add them together. However,

through experiments we found that MS-SSIM and MS-

GSIM loss conflict with each other, during the early stage of

training. Therefore, we propose a multi-stage training strat-

egy to exploit the advantages for both losses. The idea for

this strategy is that: we execute the same training procedure

as any other GANs, except the loss function for the gener-

ator is replaced. The loss function contains two stages. We

use L1 and LMS−GSIM for the first stage because finding

propagation pattern and then pixel-wise matching is easier

than its vice versa. Once the propagation pattern is trained

to be good enough, i.e., validation performance ζ reaches

a certain level θ, we switch to the second stage and use

Lfocal and LMS−SSIM to focus more on generating pixel-

wise correct heatmap and thereby estimating more precise

dot locations. LG and LTV losses are general baseline loss

functions which are applied on both stages. The multi-stage

loss function LTotal for the generator is represented as

LTotal =
{

LG + λtLTV + λlL1 + λgLMS−GSIM , if ζ ≤ θ,

LG + λtLTV + λfLfocal + λsLMS−SSIM , if ζ > θ,

(11)

where λt, λl, λg , λf , and λs are weights to control the ef-

fect of each corresponding loss function. Figure 4 shows the

two contrastive two-stage training strategies, demonstrating

the importance of the sequence. The solid line is from our

proposed order while the dashed line is from its inverse or-

der. It shows that the inverse order starting from MS-SSIM

causes a significant performance drop when switching to

the second stage, since MS-SSIM is a more detailed loss

function in terms of image structure, and it can be stuck at

a local optimum where MS-GSIM is hard to find a better fit

nearby.

Figure 4. Two training strategies evaluated with MS-SSIM score

using θ = 0.8.

4. Sectional Analysis

Since each floor plan has different physical dimension

(height, width in feet and area in square feet) as well as pixel

dimension, we need a method to resize all of them to a sin-

gle pixel dimension for training the DA-cGAN with limited

VRAM of graphics processing units (GPUs) that we use.

One possible approach is to resize all images to as high pixel

dimension as possible, but this requires very large memory

size for training. Authors in [24, 3] tackle image translation

tasks on high-definition images by enlarging their genera-

tor and image size, which is not practical in our case as our

floor plans can be as large as over 10000× 10000 pixels. If

we resize such floor plans to an acceptable dimension such

as 512 × 512, the resizing process will lose thin lines and

therefore we suffer from the broken wall structure resulting

in wrong prediction. Therefore, we propose to divide the

floor plan that has large physical dimension into small sec-

tions, predict heatmap for each section, and merge them to

a single large heatmap.

We define a wide floor plan and a regular floor plan. A

wide floor plan is the one with its height greater than 300
feet or width greater than 400 feet, and the other floor plans

are defined as the regular floor plan. We only include reg-

ular floor plans in our training set, and we place wide floor

plans in the validation set which are handled by the sec-

tional analysis scheme. The sectional analysis scheme is

described as follows. First we define a golden width wg and

height hg by calculating the average width and height from

all floor plans in the training set, in physical dimension.

Second, we pad the floor plan to width Wpad and height

Hpad such that
Wpad

wg
and

Hpad

hg
become integers. Third, we

divide the whole padded floor plan into
Wpad

wg
×

Hpad

hg
sliced

images. Then we resize all the sliced images to a fixed

input dimension w × h for the DA-cGAN and predict the

heatmap for each sliced image. Finally we reconstruct the
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Figure 5. An example of floor plan with sectional analysis. Main

sliced floor plans are composed of red lines, sliced floor plans

with green lines are for horizontal border recovery, and sliced floor

plans with purple lines are for vertical border recovery. The green

and purple shaded areas are the actual overlapping region.

whole heatmap by stitching the sliced heatmaps together.

However, there is one drawback for this approach. On

the borders for each sliced floor plan, it is possible that there

exists a wall structure being cut off. Our DA-cGAN may not

be able to capture this edge scenario and hence it may miss

radio dots on the borders. To solve this issue, we propose

to apply additional two sets of sliced floor plans for predic-

tion. The first set is to place the sliced floor plans on all

the horizontal borders, but with a
hg

2 shift from the original

sliced floor plans. Similarly, the second set is to place the

sliced floor plans on all the vertical borders, but with a
wg

2
shift from the original sliced floor plans. We ignore the out

most 4 borders. After predicting on both sets, we only stitch

a ratio η of hg from horizontal borders with the prediction

from the first set, and η of wg from vertical borders with

the prediction from the second set. Since the prediction re-

sults from two sets observe similar floor plan structure as

the original sliced floor plan, we expect them to have very

similar prediction results, except the region closed to the

border. Figure 5 illustrates the concept of main sliced floor

plans and the horizontal/vertical sliced floor plans.

5. Macro-Cell Interference

We present one preliminary result using I feature in our

DA-cGAN, and it is shown in Figure 6. This is a floor plan

that is heavily interfered by its surrounding macro-cell on

the border of inner white square area in the same RF chan-

nel as the radio dots. The reason for the inner area to be

affected may be due to the height for macro base station is

taller than this floor, and its angle of antenna is tilted toward

the inner area. In a heavily interfered area, the RF planner

has the option to choose to either avoid placing radio dots to

increase the spectrum efficiency, or place more radio dots if

it must have radio coverage. We can see a clear difference in

the prediction pattern from the figure, since our DA-cGAN

can learn from the behavior of RF designer if I feature is

adopted. However, only 15% of our floor plans are affected

(a) Prediction with in-

terference heatmap.

(b) Prediction without

interference heatmap.

(c) Ground truth

heatmap.

Figure 6. DA-cGAN prediction comparisons with and without in-

terference on a single floor plan.

by macro-cell interference. This kind of imbalanced data

is hard for our DA-cGAN to capture well regarding the in-

terference pattern. Thus this part of research is still under

development.

6. Experiments

6.1. Dataset

In order to train DA-cGAN, we need raw floor plans and

radio signal heatmap corresponding to the floor plans, and

the heatmap is designed by experienced radio engineers.

These images are obtained through our internal customers

from hundreds of buildings in the U.S., locating largely in

California and Texas. In total we get 1256 raw floor plans

and heatmaps, and we divide them into 1057 pairs for train-

ing set, 154 pairs for model validation set, and 45 pairs for

overall validation set. All images in our dataset are regu-

lar floor plans, except 16 out of 45 images in the overall

validation set are wide floor plans.

Before training DA-cGAN, several image preprocessing

schemes are applied to our image pairs. First we trans-

form the heatmap from an RGB image to a grayscale im-

age. Since different RSRP values map to different colors,

we build a lookup table to achieve this conversion. Then we

crop the raw floor plans by removing unnecessary sections

to match up to the region of interest shown in its heatmap.

Finally we normalize pixel range to [−1, 1] and resize all

images to 512× 512 to fit our DA-cGAN.

Despite cropping the floor plans, DA-cGAN is still hard

to distinguish between desired and undesired area. The out-

side of the floor plan (undesired area) and the inside of

the floor plan (desired area) are with the same white color.

DA-cGAN tends to generate white color in the desired area

rather than produce signal heatmap, since it can not inter-

pret the meaning of the white color. To solve this issue, we

propose to fill the undesired area with a dummy color.



6.2. Method

For training and validation set, the harmonic mean of

MS-SSIM and MS-GSIM is used as a similarity score ζ of

heatmaps to choose the best model hyperparameters. Test-

ing the final model requires another metric of measuring dot

placement similarity with human design, because of pos-

sible discrepancy between the similarity of heatmaps and

dot placements. For measuring the dot placement similar-

ity, heatmaps should be converted to blobs with their cen-

ters, to which radio dots should be placed. For the blob

analysis, we run a blob counting algorithm, i.e., applying

image thresholding and hierarchical density-based cluster-

ing (HDBSCAN) [17] on G(x) and y to get the predicted

and true dot locations, respectively. From the given pair of

blobs, two proposed metrics, i.e., dot ratio and dot deviation

(dev.), are calculated to evaluate our framework. Dot ratio

is simply the ratio between the predicted number of dots

from G(x) and the true number of dots from ground truth

y. Ideal dot ratio is 1.0 and dot deviation is 0. Our internal

customers set up the performance criteria for the practical

deployment of this framework, i.e., median dot ratio should

be 1.0, and median dot deviation should be smaller than 10
feet to be a feasible design, less than 5 feet for a desirable

design.

For training our DA-cGAN, Adam optimizer [11] is used

with β1 = 0.5, β2 = 0.999, and learning rate 0.0002, while

spectral normalization and batch normalization with batch

size 20 are applied to all convolutional layers. Also, for re-

ducing generalization gap, stochastic image augmentation

is applied to the training set by horizontally flipping with

50% chance and rotating by one of 0, 90, 180, or 270 de-

gree with 12.5% probability. We select the best hyperpa-

rameters through our validation sets. In our hyperparameter

optimization, the best configuration for loss functions se-

lected from model validation set is λt = 0.001, λ1 = 100,

λg = 40, λf = 100, λs = 84, ǫ = 10−14, γ = 2, and

θ = 0.8. The best hyperparameters for sectional analy-

sis are wg = 271 (ft), hg = 189 (ft), and η = 0.1 from

overall validation set. All our implementations are based on

TensorFlow version 1.13.1 [1] with multiple NVIDIA RTX

2080 Ti GPUs.

6.3. Results

We find the similarity scores shown in our model valida-

tion set are mostly similar across all models but their prop-

agation patterns are visually quite different. Here we only

report location estimation performance on various models

in regular floor plans in the following based on the interests

of our customers. The location estimation performance is

derived by taking the median of all dot ratios and dot de-

viations from the overall validation set. Table 1 shows the

numerical results by comparing different models with and

without using z, i.e., physical dimensions. We only com-

pare dot deviations in this table since all dot ratios are 1.0.

Note that we include LD, LG, and LTV in every model.

We can see that using z can reduce the dot deviation sig-

nificantly across different models. L1 + LMS−SSIM re-

sults in the lowest deviation among single-stage approaches,

and this is due to its structural optimization ability, which

is superior than the pixel-wise (L1) or the gradient-wise

(LMS−GSIM ) models. Without z, L1 + LMS−GSIM sig-

nificantly contributes to reduce the dot offset compared with

the typical L1. We also observe another interesting point

showing that L1+LMS−GSIM and L1+LMS−MSIM per-

form similarly with z, but pretty differently without z. This

is due to LMS−GSIM and z are somehow sharing the global

propagation pattern. However, with the two-stage approach,

we can further reduce the dot deviation from best single-

stage model thanks to the power of selecting precise dot lo-

cations from Lfocal. The distribution of true dot location is

a function of gradient pattern, but Lfocal has no such direc-

tion by its definition. Optimizing Lfocal itself simply brings

the prediction toward the non-conditional dot location dis-

tribution, and that is why we need two-stage approach to

make Lfocal search in the conditional space. Lastly, we

study the two-stage model by removing the discriminator.

Clearly without D, we can see the dot deviation increases

by 9.76% (with z) or 22.12% (without z). Interestingly,

the median absolute deviation of dot deviation increases by

around 50% if it is not trained with D, regardless of z. The

result implies that cGAN is a better choice for training a ro-

bust model, which is less affected by inter-sample variance,

than the G only model at least in the context of pixel-to-

pixel translation.

Figure 7 shows three qualitative results with the overall

validation set. The first two rows are regular floor plans.

The last row is an example for a wide floor plan. The first

column is the input floor plan image, the second column is

the ground truth heatmap from human designers, and the

last column is the predicted heatmap from DA-cGAN. We

observe from the floor plan structure, if we have a simple

and clear wall type and more open spaces, DA-cGAN tends

to predict better. However, if we have more complicated,

blurred, or broken floor plan with unseen or unusual tags,

the predicted heatmap will diverge from the ground truth.

For a very large floor plan, although we segment them into

a reasonable floor plan size and make prediction, we can

see it tends to predict more dots in the end. This is due to

a wide floor plan does not necessarily have large number of

dots. We believe the discrepancy of layouts between a hu-

man designer and our model does not necessarily mean that

the model predicted performance is inferior to the ground

truth, because our model has the potential of exploring the

search space where human designers have not found.



Figure 7. Examples of predictions. The first column is for floor plans, the second one is for their ground truth dot layout and heatmaps,

and the third one is for the predicted dot layout and heatmaps. Radio dot locations are marked as green circles in the ground truth heatmap

and red circles in the predicted heatmap. The first and second rows are the examples of good and neutral prediction on a regular floor

plan, respectively. The third row is an example of wide floor plan prediction with sectional analysis. The area size for each row is

{8440, 63056, 85998} square feet. The dot deviation and dot ratio for each row are {(4.68, 1.00), (13.01, 0.64), (9.60, 1.07)}.

Table 1. z performance comparisons for DA-cGANs on regular

floor plan in overall validation set without I feature. Median value

is taken from all samples. ± stands for one median absolute devi-

ation.
Model Dev. w/ z Dev. w/o z

L1 10.37± 5.02 13.27± 6.28
L1 + LMS−GSIM 10.27± 4.73 10.80± 5.53
L1 + LMS−SSIM 10.07± 5.41 11.75± 6.20

Two-stage Lfocal w/o D 10.45± 7.24 11.98± 7.40
Two-stage Lfocal w/ D 9.52± 4.74 9.81± 4.92

7. Conclusions

A novel approach of generating optimal indoor radio de-

sign from a given floor plan is proposed by formulating it to

an image-to-image translation problem and applying a cus-

tomized cGAN to be aware of dimension for the purpose of

simulating physical radio propagation. The proposed DA-

cGAN can generate the desirable heatmap for a floor plan

and place radio dots accordingly by learning patterns from

accumulated human design while considering its macro-cell

interference. Several novel loss functions and a two-stage

training strategy are proposed to guide the DA-cGAN to

learn the radio propagation pattern as well as the precise

radio dot locations, in addition to a sectional analysis, i.e.,

a divide-and-conquer method for handling large floor plans

with limited VRAM of GPUs. The trained model achieved

the goal of less than 10 feet in median dot deviation and 1.0
in median dot ratio. The proposed solution is expected to re-

duce lead time and total cost of indoor radio design process

significantly.
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[20] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A.

Efros. Context encoders: Feature learning by inpainting.

In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2536–2544, June 2016. 2, 4

[21] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

CoRR, abs/1505.04597, 2015. 2

[22] Patsorn Sangkloy, Jingwan Lu, Chen Fang, FIsher Yu, and

James Hays. Scribbler: Controlling deep image synthesis

with sketch and color. Computer Vision and Pattern Recog-

nition, CVPR, 2017. 2

[23] F. Tonini, M. Fiorani, M. Furdek, C. Raffaelli, L. Wosinska,

and P. Monti. Radio and transport planning of centralized

radio architectures in 5g indoor scenarios. IEEE Journal on

Selected Areas in Communications, 35(8):1837–1848, Aug

2017. 2

[24] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image syn-

thesis and semantic manipulation with conditional gans. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018. 2, 5

[25] Xiaolong Wang and Abhinav Gupta. Generative image mod-

eling using style and structure adversarial networks. In

ECCV, 2016. 3

[26] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale struc-

tural similarity for image quality assessment. In The Thrity-

Seventh Asilomar Conference on Signals, Systems Comput-

ers, 2003, volume 2, pages 1398–1402 Vol.2, Nov 2003. 4

[27] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-

tus Odena. Self-attention generative adversarial networks.

In Proceedings of the 36th International Conference on Ma-

chine Learning, volume 97. PMLR, 09–15 Jun 2019. 3

[28] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for

image restoration with neural networks. IEEE Transactions

on Computational Imaging, 3(1):47–57, March 2017. 4



[29] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Computer Vision (ICCV),

2017 IEEE International Conference on, 2017. 2


