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Abstract

The imaging characteristics of digital sensors often lead

to the moiré patterns, which are widely distributed over the

frequency domain and have irregular colors and shapes.

The images with moiré patterns could lead to a serious de-

cline in the visual quality. The difficulty of demoiréing lies

in that the moiré patterns mix both low and high frequency

information to be processed. In this paper, we propose

MMDM, an effective image demoiréing network, which uses

multiple images as inputs and multi-scale feature encoding

module as low-frequency information enhancement. Our

MMDM has three key modules: the newly designed multi-

frame spatial transformer networks (M-STN), the multi-

scale feature encoding module (MSFE), and the enhanced

asymmetric convolution block (EACB). Especially, the M-

STN aims to align the multiple input images simultaneously.

The MSFE is for multiple frequency information encod-

ing, which is built on the efficient EACB module. Experi-

ments prove the effectiveness of MMDM. Also, our model

achieves the 2nd place on both demoiring track and denois-

ing track in the NTIRE2020 Challenge. Code is avaliable

at: https://github.com/q935970314/MMDM

1. Introduction

Moiré is an irregular colored stripe that often appears on

devices such as digital cameras or scanners. Mathemati-

cally speaking, two equal-amplitude sine waves with close

frequencies are superimposed, and the amplitude of the syn-

thesized signal will change according to the difference be-

tween the two frequencies. When the spatial frequency be-

tween pixels of the photosensitive element and the stripes

in the image is close, moiré will occur. Moiré is irregular,

has no obvious shape rule, and the frequency domain seg-

ment is wider. Compared to other image restoration tasks

such as super-resolution and denoising, demoiréing is more

difficult, and needs to process both low and high frequency
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patterns.

With the development of deep learning, convolutional

neural network (CNN) has shown superior performance in

computer vision tasks such as image classification [6], ob-

ject detection [16] and natural language processing [3]. In

image restoration tasks such as color enhancement, denois-

ing and super-resolution, CNN-based methods can better

fit the complex mapping between input image and ground

truth, and restore the low and high frequency information

of the image.

In this paper, we propose an effective network for im-

age demoiréing, named as MMDM, which uses multi-frame

as input and multi-scale feature encoding module as low-

frequency information enhancement. The multi-frame im-

ages are captured in burst mode. We develop an improved

STN module (named M-STN) to process the set of im-

ages. The M-STN can align the multi-frame inputs to a se-

lected standard image simultaneously, by performing per-

spective transformations inspectively.

For feature encoding, we design an enhanced asym-

metric convolution block, named EACB. Our EACB dif-

fers from the original asymmetric convolution block in

adding two additional diagonal convolutions and removing

the batch normalization layers, which makes it work better

for image restoration tasks. Based on EACB, we build the

final feature extraction and reconstruction module (FERM),

and a simple version (FERM∗) for multiple scales feature

encoding module (MSFE). The outputs of the multiple scale

features are catenated and then processed by FERM. The

pipeline of our model is shown in Figure 1.

Furthuremore, our submodules such as FERM, M-STN,

and EACB would have better performances on other im-

age restoration tasks. Compared with other methods, the

proposed MMDM has better performance on objective in-

dicator and visual effects. In the NTIRE2020 Demoiréing

challenge, the proposed MMDM achieves the 3rd place in

Track 1: Single image and the 2nd place in Track 2: Burst.

And in the Denoising challenge, the proposed FERM with

simple version of EACB achieves the 2nd place for Track

2: sRGB. In summary, the main contributions of this paper



are as follows:

• We propose a new demoiréing network named

MMDM which uses multiple images as inputs and

multiple scale enhancement.

• We propose a M-STN which can perform perspective

transformation alignment on multiple frames of input

simultaneously.

• We propose a MSFE which can enhance the low-

frequency information at different scales.

• We propose a EACB to improve the performance of

image restoration networks.

• In the NTIRE2020 challenge, the proposed methods

achieve 2nd place on the burst track of demoiréing

[22], 2nd place on the sRGB track of denoising [1],

and 3rd place on the single track of demoiréing.

2. Related work

Image restoration is one of the most important tasks in

computer vision, and it is divided into many sub-tasks, such

as denoising [9] and super-resolution [10, 26] which mainly

focus on high-frequency details, and color enhancement

which mainly focuses on low-frequency patterns. Accord-

ing to the characteristics of moiré generation, the task of

demoiréing requires to pay attention to both low and high

frequency patterns [2], so demoiréing is more difficult when

compared with other tasks.

Demoiréing network. According to the multi-frequency

characteristic of moiré, Sun et al. [19] propose a multi-

resolution fully convolutional network (DMCNN) which

processes different resolution images on different branches

and adds the obtained results. Based on U-Net, Gao et

al. [5] propose a multi-scale feature enhancing network

(MSFE) which can process information at different scales,

and add feature enhancement modules at each scale to fuse

low-scale information into high-scale. Cheng et al. [2]

propose a multi-scale dynamic feature encoding network

(MDDM) which also uses a multi-branch structure to pro-

cess information at different scales, and propose a Dy-

namic Feature Encoding module to deal with the dynami-

cally changing moiré patterns.

High-frequency detail processing network. Zhang

et al. [26] propose a residual channel attention network

(RCAN) for the super-resolution task. In order to train very

deep networks, they propose a residual group (RG) and a

long/short skip connection. In order to make the network

pay more attention to the correlation between channels, they

propose a channel attention (CA) module. RCAN has a

good effect in super-resolution task, it can process the high-

frequency detail better and provide more details for the final

reconstruction.

Spatial Transformer Networks. Max et al. [8] pro-

pose a spatial transformer network (STN). The transforma-

tion parameters generated by the local network are used by

the grid generator to generate the sampling grid, and finally

the sampler transforms the input according to the grid. STN

enables the network to perform spatial transformations on

inputs such as perspective transformations, rotation trans-

formations, etc. It is important that STN is a plug-and-play

module which can achieve the required results without any

additional supervision information. STN has been widely

used in face recognition and other fields.

Asymmetric Convolution. Ding et al. [4] propose an

asymmetric convolution block (ACB) which enhances the

CNN’s kernel skeleton by adding additional 1×3 and 3×1
convolutions during training, and fuse the three convolu-

tions during inference phase without any additional infer-

ence time. It has a good performance improvement in the

field of classification and segmentation.

3. Proposed method

We propose multi-frame and multi-scale for image

demoiréing (MMDM), an effective image demoiréing net-

work, which uses multi-frame as inputs and multi-scale

feature encoding module as low-frequency information en-

hancement. The detail structures are shown in Figure 1.

3.1. Network architecture

MMDM has three key modules: the newly designed

multi-frame spatial transform network (M-STN), the multi-

scale feature encoding module (MSFE), and the enhanced

asymmetric convolution block (EACB). Especially, the M-

STN is designed to align the multiple input frames simulta-

neously. The MSFE is built for multiple frequency informa-

tion encoding. The main feature extraction and reconstruc-

tion module (FERM) is built on the new EACB, which suits

for image restoration tasks than the original ACB [4].

The pipeline of MMDM is as follows. Firstly, taking

multiple frames (commonly using burst mode of a camera)

as the inputs, concatenating them over the channel dimen-

sion, and feeding into the M-STN. The M-STN would out-

put the aligned images, with same channels and spatial size.

Secondly, the MSFE takes the aligned images and encodes

the multi-scale feature (1/2, 1/4, 1/8 of the original spatial

size). Then, the multi-scale encoding features are concate-

nated and processed by the final FERM. Finally, an element-

wise summation of the outputs of FERM and M-STN lead

to the output result. Additionally, our pipeline can also pro-

cess single image input, with removing the M-STN. The

details are as follows.



Figure 1. Network architecture of multi-frame and multi-scale for image demoiréing (MMDM)

3.1.1 Multi-frame Spatial Transformer Network

For the burst mode, the inputs are multiple frames at

different angles of the same scene, including one standard

frame and multiple non-aligned frames. Firstly, we align

all the frames with the standard frame, and then perform

demoiré processing. Perspective transformation can simu-

late the same scene at different angles, so we use the per-

spective transformation version of spatial transformer net-

work (STN) [8] for alignment.

Figure 2. Network architecture of multi-Frame spatial transformer

network (M-STN)

STN generally transforms a single frame of input adap-

tively, so we propose the multi-frame spatial transformer

network (M-STN), as shown in Figure 2. In order to con-

nect multiple input frames, we concatenate n input frames

together over the channel dimension (n is the number of

input frames, including 1 standard frame and n − 1 non-

aligned frames). The localisation network processes the in-

put to get 8 × (n − 1) parameters (we only transform the

non-aligned frames), and constructs n−1 perspective trans-

formation matrices. The grid generator and sampler respec-

tively transform the input frames according to the matrices

to obtain n modified images. Compared to the single frame

alignment, multiple frame simultaneous alignment can in-

crease the fusion of information between different frames.

The proposed M-STN can be expressed as:

G1, G2, · · · , Gn−1 = GG(LN(cat(I1, I2, · · · , In)))

Outputi = S(Ii, Gi) i = 1, 2, · · · , n− 1

where I , cat, LN , GG, G, S denotes input frame, channel

concatenate, localisation network, grid generator, grid and

sampler respectively.

The aligned frames are concatenated together over the

channel dimension, then as input to the main network. With

more aligned high-frequency details, the performance of the

network has been greatly improved. We visualize the ef-

fect of M-STN, as shown in Figure 3. Obviously, the trans-

formed frames have been almost aligned with the standard

frame over the spatial dimension.

Figure 3. Visualization of input (non-aligned) and output (aligned)

of multi-frame spatial transformer network (M-STN).

The proposed M-STN can be applied to any image

restoration networks to align burst input.

3.1.2 Feature Extraction and Reconstruction Module

Because moiré’s low-frequency patterns are relatively

simple, we propose the feature extraction and reconstruc-

tion module (FERM) to mainly process the high-frequency

details. The inspiration of FREM comes from RCAN [26]

which is deep and suitable for processing high-frequency

details. As shown in Figure 4, we improve as follows:

Remove all Channel Attention (CA) modules. The CA

adaptively adjusts features through the interdependence be-

tween channels, which can enhance the performance of the

network. However, we found that too many CAs will in-

crease the training and inference time, but bring little per-

formance improvement, as shown in Table 1. So we remove

all CAs, after removing, the network is simpler and faster.

The new residual block and residual group can be expressed

as:

B(x) = Conv1(ReLU(Conv2(x))) + x



Figure 4. Network architecture of the feature extraction and recon-

struction module (FERM)

Model PSNR Runtime (s)

RCAN 37.90 0.1124

RCAN w/o CA 37.87 0.0508

Table 1. Investigation of channel attention (CA) module, note that

the PSNR results are from the paper of RCAN [26] and the input

size is 128× 128.

RG(x) = Conv(B1(B2(· · ·Bn(x)))) + x

where B, RG, Conv, ReLU denotes residual block, resid-

ual group, convolution layer and activation function respec-

tively.

Remove the upsampling module. Unlike the super-

resolution task, the input and output of demoiréing task are

the same size, so we remove the upsampling module to keep

all of the features at the same size.

Add global residual. Global residual is increasingly

used in image restoration networks [9, 21, 15], which can

enhance the stability and make the network have higher per-

formance in the early stages of training. So we add global

residual to our network.

The proposed feature extraction and reconstruction mod-

ule can be used as a backbone of any image restoration net-

work, and has a good performance.

3.1.3 Multi-Scale Feature Encoding module

Due to the characteristics of moiré, the network must pay

attention to the low frequency patterns [2]. As shown in

Figure 5, the multi-scale feature encoding module (MSFE)

has 3 simple versions of feature extraction and reconstruc-

tion module (FERM∗) with up and down sampling lay-

ers. The MSFE down-samples the input at different scales

firstly, then processes the corresponding low-frequency pat-

terns, and finally performs up-sampling to resize the fea-

tures to their original size for fusion. Pixelshuffle [18] is

used for up-sampling and de-pixelshuffle [20] is used for

down-sampling. Compared with deconvolution [24] and in-

terpolation methods, pixelshuffle can preserve the informa-

tion of original image better. We visualize the output fea-

tures of MSFE, as shown in Figure 6. It is obvious that our

proposed MSFE can extract the low-frequency patterns of

moiré well.

Figure 5. Network architecture of the multi-scale feature encoding

module (MSFE), note that FERM∗ is a simple version of proposed

feature extraction and reconstruction module with fewer parame-

ters.

Figure 6. Visualization of the multi-scale feature encoding module

(MSFE) output features at different scales.

3.2. Enhanced Asymmetric Convolution Block for
image restoration

Asymmetric convolution block (ACB) [4] adds an addi-

tional 1× 3 and an additional 3× 1 convolution on the ba-

sis of square convolution to enhance the convolution kernel

skeleton, batch normalization (BN) [7] is performed after

each convolution, and the outputs are added as a new output.

We express ACB as follow, where + denotes element-wise



(a) ACB

(b) EACB

Figure 7. Comparison of (a) original asymmetric convolution

block (ACB) and (b) proposed enhanced asymmetric convolution

block (EACB). Note that EACB use the convolution without bias.

sum:
ACB(x) = BN3×3(Conv3×3(x))+

BN1×3(Conv1×3(x))+
BN3×1(Conv3×1(x))

Based on ACB, we add two additional diagonal convolu-

tions (left diagonal and right diagonal) to further strengthen

the kernel skeleton. The 1 × 3 and 3 × 1 convolutions in

ACB can be considered as additional prior information, they

focus on horizontal and vertical features better. We added

two additional diagonal convolutions to focus on extracting

oblique features.

BN is often used to improve the generalization ability of

the network and speed up the training, allowing the network

to be trained with a large learning rate. However, BN will

reduce the specificity of image restoration networks [13], so

we remove the BN layer in ACB. Without the correction of

BN, the feature deviation is more serious and the network is

easy to explode gradients during training, so we futher re-

move the bias parameters of all convolutional layers and use

cosine annealing learning rate scheduler [14]. As shown in

Figure 7, the new ACB for image restoration named as en-

hanced asymmetric convolution block (EACB), which can

be expressed as:

EACB(x) = ACB∗(x) + Conv∗ldiag(x) + Conv∗rdiag(x)

The proposed EACB can be applied to any image

restoration network to enhance the performance without any

extra inference time.

4. Experiments

4.1. Dataset

We use the dataset provided by the NTIRE 2020

demoiréing challenge for experiments. It includes 10,000

pairs of training images, 500 pairs of validation images and

500 pairs of test images. The generation of data is simi-

lar to the LCDMoire dataset[23]. Since the ground truth of

the testset is not released, we compare the methods on the

validation set.

4.2. Training details and model settings

We use the Adam [11] optimizer with default parame-

ters and the Charbonnier loss [12] to train our model. The

initial learning rate is 1e− 4, and we use the cosine anneal-

ing learning rate scheduler [14] with about 300K iterations,

the minimum learning rate is 5e − 6. The batch size is 16

and patch size is 128. We use PyTorch 1.3, NVIDIA RTX

2080Ti GPU with CUDA10.0 to accelerate training.

The proposed feature extraction and reconstruction mod-

ule (FERM) contains 10 residual groups and each group

contains 20 residual blocks (same as RCAN[26]). The pro-

posed multi-scale feature encoding module (MSFE) con-

tains 3 simplified version of FERM (name as FERM∗) with

defferent scales (1/2, 1/4, 1/8), each FERM∗ contains 4

residual groups and each group contains 8 residual blocks.

We only use the simplified version of enhanced asymmetric

convolution block (EACB without diagonal convolutions)

to replace every convolutions in the model. There are 5

frames for multi-frame inputs (including 1 standard frame

and 4 non-aligned frames).

4.3. Comparison with the state of the arts

To prove the effectiveness of our proposed model, we

compared the model qualitatively and quantitatively with

other deep learning-based methods. To be fair, all meth-

ods use the same training data and training parameters. The

comparative models include DnCNN [25], VDSR [10], U-

Net [17], DMCNN [19]. We use the average PSNR and

SSIM of the validation set to compare objective perfor-

mance. As shown in Table 2, our model is much higher

than other models in both PSNR and SSIM. We also com-

pared visual effects, as shown in Figure 8. Our model can

reconstruct the details more accurately.

5. Ablation study

In this section, we perform ablation experiments on M-

STN, MSFE and EACB to prove the effectiveness of the

proposed module.

5.1. Multi­frame Spatial Transformer Network

The baseline is a small version of the feature extraction

and reconstruction module with 5 residual groups. The in-

put of the baseline is a single standard frame. The multiple

frames are concatenated over the channel dimension. The

curve of the validation PSNR is shown in Figure 9. It can

be seen that concatenating the multiple frames as input di-

rectly does not bring much performance improvement. But



Method Moiré VDSR U-Net DMCNN DnCNN
MMDM MMDM

(single frame) (multi-frame)

PSNR 25.1845 30.1090 35.2384 36.6919 37.4429 41.9667 45.4625

SSIM 0.7697 0.9529 0.9674 0.9774 0.9813 0.9928 0.9968

Table 2. Comparison of proposed MMDM and other demoiréing methods: DnCNN, VDSR, U-Net, and DMCNN.

Moiré DnCNN VDSR U-Net

(20.94/0.5695) (31.89/0.9727) (27.10/0.9260) (31.39/0.9663)

DMCNN MMDM (single frame) MMDM (multi-frame) Ground Truth

(32.97/0.9788) (45.44/0.9985) (48.70/0.9993) (PSNR/SSIM)

Moiré DnCNN VDSR U-Net

(22.36/0.8721) (25.46/0.9725) (34.24/0.9857) (39.47/0.9750)

DMCNN MMDM (single frame) MMDM (multi-frame) Ground Truth

(37.79/0.9951) (53.32/0.9994) (53.99/0.9995) (PSNR/SSIM)

Figure 8. Comparison of proposed MMDM and other demoiréing methods: DnCNN, VDSR, U-Net, and DMCNN.



taking the aligned frames by the multi-frame spatial trans-

former network as input, the performance has a significant

improvement.

Figure 9. Effectiveness study of multi-frame spatial transformer

networks (M-STN)

5.2. Multi­Scale Feature Encoding module

The FERM∗ in the multi-scale feature encoding module

(MSFE) contains 2 residual groups. The curve of the val-

idation PSNR is shown in Figure 10. When there is only

a processing of scale 2, the performance improvement is

not obvious. With the increasing of multi-scale, the perfor-

mance is gradually improving. This proves the importance

of multi-scale information and the effectiveness of proposed

MSFE.

Figure 10. Effectiveness study of multi-scale feature encoding

module (MSFE), note that S denotes scale

5.3. Enhanced Asymmetric Convolution Block

We use the enhanced asymmetric convolution block

(EACB) to replace all convolutions of the baseline. The

curve of the validation PSNR is shown in Figure 11. It can

be seen that the baseline with the original ACB drops a lot

of performances, but the baseline with EACB has a great

performance improvement.

Figure 11. Effectiveness study of proposed enhanced asymmetric

convolution block (EACB)

6. NTIRE 2020 challenges

New Trends in Image Restoration and Enhancement

(NTIRE) in conjunction with CVPR 2020 has challenges

on demoiréing [22] and denoising [1]. For the demoiréing

challenge, the proposed MMDM with simple version of

EACB achieves the 3rd place in Track 1: Single image and

the 2nd place for Track 2: Burst.

It should note that due to time, our track 2 model is ob-

tained by finetune training the track 1 model, which has

only a small improvement. We retrained the track 2 model

and got better performance (Figure 2). Because the single

image model has been able to process the standard frame

well, when finetune training the burst model, the M-STN

has no effect and the model ignores the information of extra

frames. The retraining has made M-STN effective, and the

model performance has been greatly improved. We also test

the retrained model on the test set, the results are shown in

Table 3.

For the denoising challenge, we only use the proposed

feature extraction and reconstruction module (FERM) with

simple version of enhanced asymmetric convolution block,

and achieve the 2nd place for Track 2: sRGB. The results

are shown in Table 4. This also proves the effectiveness of

proposed FERM and EACB.



Method PSNR SSIM Method PSNR SSIM

1st 42.14 0.99 MMDM∗ 45.32 1.00

2nd 41.95 0.99 1st 41.95 0.99

MMDM 41.84 0.99 MMDM 41.88 0.99

4th 41.11 0.99 3rd 40.64 0.99

5th 41.04 0.99 4th 40.33 0.99

Table 3. Results for NTIRE 2020 Demoiréing Challenge. Left:

Track 1: Single image, right: Track 2: Burst. Note that MMDM∗

is the retrained model.

Method PSNR SSIM

1st 33.22 0.9596

FERM 33.12 0.9578

3rd 33.01 0.9590

4th 32.80 0.9565

5th 32.69 0.9572

Table 4. Results of NTIRE 2020 real image denoising challenge,

Track 2: sRGB. Note that FERM is the proposed feature extrac-

tion and reconstruction module (FERM) with the simple version

of enhanced asymmetric convolution block (EACB).

7. Conclusion

In this paper, we propose a image demoiréing network

MMDM, which could take multiple frames as inputs and

has multi-scale feature encoding ability. The proposed three

key modules (M-STN, MSFE, and EACB) of MMDM is

proved to be highly effective for image restoration tasks,

such as demoiréing, denoise and so on. Our MMDM and

simple versions achieve good results in both image demoir-

ing and denoise. Later, we will further study the effect of

EACB in lightweight image restoration tasks.
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