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Abstract

The imaging characteristics of digital sensors often lead
to the moiré patterns, which are widely distributed over the
frequency domain and have irregular colors and shapes.
The images with moiré patterns could lead to a serious de-
cline in the visual quality. The difficulty of demoiréing lies
in that the moiré patterns mix both low and high frequency
information to be processed. In this paper, we propose
MMDM, an effective image demoiréing network, which uses
multiple images as inputs and multi-scale feature encoding
module as low-frequency information enhancement. Our
MMDM has three key modules: the newly designed multi-
frame spatial transformer networks (M-STN), the multi-
scale feature encoding module (MSFE), and the enhanced
asymmetric convolution block (EACB). Especially, the M-
STN aims to align the multiple input images simultaneously.
The MSFE is for multiple frequency information encod-
ing, which is built on the efficient EACB module. Experi-
ments prove the effectiveness of MMDM. Also, our model
achieves the 2nd place on both demoiring track and denois-
ing track in the NTIRE2020 Challenge. Code is avaliable
at: https://github.com/q935970314/MMDM

1. Introduction

Moiré is an irregular colored stripe that often appears on
devices such as digital cameras or scanners. Mathemati-
cally speaking, two equal-amplitude sine waves with close
frequencies are superimposed, and the amplitude of the syn-
thesized signal will change according to the difference be-
tween the two frequencies. When the spatial frequency be-
tween pixels of the photosensitive element and the stripes
in the image is close, moiré will occur. Moiré is irregular,
has no obvious shape rule, and the frequency domain seg-
ment is wider. Compared to other image restoration tasks
such as super-resolution and denoising, demoiréing is more
difficult, and needs to process both low and high frequency
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patterns.

With the development of deep learning, convolutional
neural network (CNN) has shown superior performance in
computer vision tasks such as image classification [6], ob-
ject detection [16] and natural language processing [3]. In
image restoration tasks such as color enhancement, denois-
ing and super-resolution, CNN-based methods can better
fit the complex mapping between input image and ground
truth, and restore the low and high frequency information
of the image.

In this paper, we propose an effective network for im-
age demoiréing, named as MMDM, which uses multi-frame
as input and multi-scale feature encoding module as low-
frequency information enhancement. The multi-frame im-
ages are captured in burst mode. We develop an improved
STN module (named M-STN) to process the set of im-
ages. The M-STN can align the multi-frame inputs to a se-
lected standard image simultaneously, by performing per-
spective transformations inspectively.

For feature encoding, we design an enhanced asym-
metric convolution block, named EACB. Our EACB dif-
fers from the original asymmetric convolution block in
adding two additional diagonal convolutions and removing
the batch normalization layers, which makes it work better
for image restoration tasks. Based on EACB, we build the
final feature extraction and reconstruction module (FERM),
and a simple version (FERM*) for multiple scales feature
encoding module (MSFE). The outputs of the multiple scale
features are catenated and then processed by FERM. The
pipeline of our model is shown in Figure 1.

Furthuremore, our submodules such as FERM, M-STN,
and EACB would have better performances on other im-
age restoration tasks. Compared with other methods, the
proposed MMDM has better performance on objective in-
dicator and visual effects. In the NTIRE2020 Demoiréing
challenge, the proposed MMDM achieves the 3rd place in
Track 1: Single image and the 2nd place in Track 2: Burst.
And in the Denoising challenge, the proposed FERM with
simple version of EACB achieves the 2nd place for Track
2: sRGB. In summary, the main contributions of this paper



are as follows:

e We propose a new demoiréing network named
MMDM which uses multiple images as inputs and
multiple scale enhancement.

e We propose a M-STN which can perform perspective
transformation alignment on multiple frames of input
simultaneously.

e We propose a MSFE which can enhance the low-
frequency information at different scales.

e We propose a EACB to improve the performance of
image restoration networks.

e In the NTIRE2020 challenge, the proposed methods
achieve 2nd place on the burst track of demoiréing
[22], 2nd place on the sRGB track of denoising [I],
and 3rd place on the single track of demoiréing.

2. Related work

Image restoration is one of the most important tasks in
computer vision, and it is divided into many sub-tasks, such
as denoising [9] and super-resolution [ 10, 26] which mainly
focus on high-frequency details, and color enhancement
which mainly focuses on low-frequency patterns. Accord-
ing to the characteristics of moiré generation, the task of
demoiréing requires to pay attention to both low and high
frequency patterns [2], so demoiréing is more difficult when
compared with other tasks.

Demoiréing network. According to the multi-frequency
characteristic of moiré, Sun et al. [19] propose a multi-
resolution fully convolutional network (DMCNN) which
processes different resolution images on different branches
and adds the obtained results. Based on U-Net, Gao et
al. [5] propose a multi-scale feature enhancing network
(MSFE) which can process information at different scales,
and add feature enhancement modules at each scale to fuse
low-scale information into high-scale. Cheng et al. [2]
propose a multi-scale dynamic feature encoding network
(MDDM) which also uses a multi-branch structure to pro-
cess information at different scales, and propose a Dy-
namic Feature Encoding module to deal with the dynami-
cally changing moiré patterns.

High-frequency detail processing network. Zhang
et al. [26] propose a residual channel attention network
(RCAN) for the super-resolution task. In order to train very
deep networks, they propose a residual group (RG) and a
long/short skip connection. In order to make the network
pay more attention to the correlation between channels, they
propose a channel attention (CA) module. RCAN has a
good effect in super-resolution task, it can process the high-
frequency detail better and provide more details for the final
reconstruction.

Spatial Transformer Networks. Max et al. [8] pro-
pose a spatial transformer network (STN). The transforma-
tion parameters generated by the local network are used by
the grid generator to generate the sampling grid, and finally
the sampler transforms the input according to the grid. STN
enables the network to perform spatial transformations on
inputs such as perspective transformations, rotation trans-
formations, etc. It is important that STN is a plug-and-play
module which can achieve the required results without any
additional supervision information. STN has been widely
used in face recognition and other fields.

Asymmetric Convolution. Ding et al. [4] propose an
asymmetric convolution block (ACB) which enhances the
CNN’s kernel skeleton by adding additional 1 x 3 and 3 x 1
convolutions during training, and fuse the three convolu-
tions during inference phase without any additional infer-
ence time. It has a good performance improvement in the
field of classification and segmentation.

3. Proposed method

We propose multi-frame and multi-scale for image
demoiréing (MMDM), an effective image demoiréing net-
work, which uses multi-frame as inputs and multi-scale
feature encoding module as low-frequency information en-
hancement. The detail structures are shown in Figure 1.

3.1. Network architecture

MMDM has three key modules: the newly designed
multi-frame spatial transform network (M-STN), the multi-
scale feature encoding module (MSFE), and the enhanced
asymmetric convolution block (EACB). Especially, the M-
STN is designed to align the multiple input frames simulta-
neously. The MSFE is built for multiple frequency informa-
tion encoding. The main feature extraction and reconstruc-
tion module (FERM) is built on the new EACB, which suits
for image restoration tasks than the original ACB [4].

The pipeline of MMDM is as follows. Firstly, taking
multiple frames (commonly using burst mode of a camera)
as the inputs, concatenating them over the channel dimen-
sion, and feeding into the M-STN. The M-STN would out-
put the aligned images, with same channels and spatial size.
Secondly, the MSFE takes the aligned images and encodes
the multi-scale feature (1/2, 1/4, 1/8 of the original spatial
size). Then, the multi-scale encoding features are concate-
nated and processed by the final FERM. Finally, an element-
wise summation of the outputs of FERM and M-STN lead
to the output result. Additionally, our pipeline can also pro-
cess single image input, with removing the M-STN. The
details are as follows.
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Figure 1. Network architecture of multi-frame and multi-scale for image demoiréing (MMDM)

3.1.1 Multi-frame Spatial Transformer Network

For the burst mode, the inputs are multiple frames at
different angles of the same scene, including one standard
frame and multiple non-aligned frames. Firstly, we align
all the frames with the standard frame, and then perform
demoiré processing. Perspective transformation can simu-
late the same scene at different angles, so we use the per-
spective transformation version of spatial transformer net-
work (STN) [&] for alignment.

grids

Figure 2. Network architecture of multi-Frame spatial transformer
network (M-STN)

STN generally transforms a single frame of input adap-
tively, so we propose the multi-frame spatial transformer
network (M-STN), as shown in Figure 2. In order to con-
nect multiple input frames, we concatenate n input frames
together over the channel dimension (n is the number of
input frames, including 1 standard frame and n — 1 non-
aligned frames). The localisation network processes the in-
put to get 8 X (n — 1) parameters (we only transform the
non-aligned frames), and constructs n — 1 perspective trans-
formation matrices. The grid generator and sampler respec-
tively transform the input frames according to the matrices
to obtain n modified images. Compared to the single frame
alignment, multiple frame simultaneous alignment can in-
crease the fusion of information between different frames.
The proposed M-STN can be expressed as:

G1,Gsa,- -+ ,Gp_1 = GG(LN(cat(I1, Iz, ,Ip)))

Output; = S(I;, G;)

where I, cat, LN, GG, G, S denotes input frame, channel
concatenate, localisation network, grid generator, grid and
sampler respectively.

i=1,2-,n—1

The aligned frames are concatenated together over the
channel dimension, then as input to the main network. With
more aligned high-frequency details, the performance of the
network has been greatly improved. We visualize the ef-
fect of M-STN, as shown in Figure 3. Obviously, the trans-
formed frames have been almost aligned with the standard
frame over the spatial dimension.
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Figure 3. Visualization of input (non-aligned) and output (aligned)
of multi-frame spatial transformer network (M-STN).

The proposed M-STN can be applied to any image
restoration networks to align burst input.

3.1.2 Feature Extraction and Reconstruction Module

Because moiré’s low-frequency patterns are relatively
simple, we propose the feature extraction and reconstruc-
tion module (FERM) to mainly process the high-frequency
details. The inspiration of FREM comes from RCAN [26]
which is deep and suitable for processing high-frequency
details. As shown in Figure 4, we improve as follows:

Remove all Channel Attention (CA) modules. The CA
adaptively adjusts features through the interdependence be-
tween channels, which can enhance the performance of the
network. However, we found that too many CAs will in-
crease the training and inference time, but bring little per-
formance improvement, as shown in Table 1. So we remove
all CAs, after removing, the network is simpler and faster.
The new residual block and residual group can be expressed
as:

B(x) = Convy(ReLU(Conva(x))) + x
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Figure 4. Network architecture of the feature extraction and recon-
struction module (FERM)

Model PSNR | Runtime (s)
RCAN 37.90 0.1124
RCAN w/o CA | 37.87 0.0508

Table 1. Investigation of channel attention (CA) module, note that
the PSNR results are from the paper of RCAN [26] and the input
size is 128 x 128.

RG(z) = Conv(By(Bsa(- - By (2)))) + =

where B, RG, Conv, ReLU denotes residual block, resid-
ual group, convolution layer and activation function respec-
tively.

Remove the upsampling module. Unlike the super-
resolution task, the input and output of demoiréing task are
the same size, so we remove the upsampling module to keep
all of the features at the same size.

Add global residual. Global residual is increasingly
used in image restoration networks [9, 21, 15], which can
enhance the stability and make the network have higher per-
formance in the early stages of training. So we add global
residual to our network.

The proposed feature extraction and reconstruction mod-
ule can be used as a backbone of any image restoration net-
work, and has a good performance.

3.1.3 Multi-Scale Feature Encoding module

Due to the characteristics of moiré, the network must pay
attention to the low frequency patterns [2]. As shown in
Figure 5, the multi-scale feature encoding module (MSFE)
has 3 simple versions of feature extraction and reconstruc-
tion module (FERM*) with up and down sampling lay-
ers. The MSFE down-samples the input at different scales
firstly, then processes the corresponding low-frequency pat-
terns, and finally performs up-sampling to resize the fea-
tures to their original size for fusion. Pixelshuffle [18] is
used for up-sampling and de-pixelshuffle [20] is used for
down-sampling. Compared with deconvolution [24] and in-
terpolation methods, pixelshuffle can preserve the informa-
tion of original image better. We visualize the output fea-

tures of MSFE, as shown in Figure 6. It is obvious that our
proposed MSFE can extract the low-frequency patterns of
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Figure 5. Network architecture of the multi-scale feature encoding
module (MSFE), note that FERM™ is a simple version of proposed

feature extraction and reconstruction module with fewer parame-
ters.
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Figure 6. Visualization of the multi-scale feature encoding module
(MSFE) output features at different scales.

3.2. Enhanced Asymmetric Convolution Block for
image restoration

Asymmetric convolution block (ACB) [4] adds an addi-
tional 1 x 3 and an additional 3 x 1 convolution on the ba-
sis of square convolution to enhance the convolution kernel
skeleton, batch normalization (BN) [7] is performed after
each convolution, and the outputs are added as a new output.
We express ACB as follow, where + denotes element-wise
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Figure 7. Comparison of (a) original asymmetric convolution
block (ACB) and (b) proposed enhanced asymmetric convolution
block (EACB). Note that EACB use the convolution without bias.

sum:
ACB(x) = BN3x3(Convsxa(w))+
BN x3(Convyxz(x))+
BN3y1(Convsyx1(x))

Based on ACB, we add two additional diagonal convolu-
tions (left diagonal and right diagonal) to further strengthen
the kernel skeleton. The 1 x 3 and 3 x 1 convolutions in
ACB can be considered as additional prior information, they
focus on horizontal and vertical features better. We added
two additional diagonal convolutions to focus on extracting
oblique features.

BN is often used to improve the generalization ability of
the network and speed up the training, allowing the network
to be trained with a large learning rate. However, BN will
reduce the specificity of image restoration networks [13], so
we remove the BN layer in ACB. Without the correction of
BN, the feature deviation is more serious and the network is
easy to explode gradients during training, so we futher re-
move the bias parameters of all convolutional layers and use
cosine annealing learning rate scheduler [14]. As shown in
Figure 7, the new ACB for image restoration named as en-
hanced asymmetric convolution block (EACB), which can
be expressed as:

EACB(x) = ACB*(x) + Convjy;q, () + Convy g, ()

The proposed EACB can be applied to any image
restoration network to enhance the performance without any
extra inference time.

4. Experiments

4.1. Dataset

We use the dataset provided by the NTIRE 2020
demoiréing challenge for experiments. It includes 10,000
pairs of training images, 500 pairs of validation images and

500 pairs of test images. The generation of data is simi-
lar to the LCDMoire dataset[23]. Since the ground truth of
the testset is not released, we compare the methods on the
validation set.

4.2. Training details and model settings

We use the Adam [ 1] optimizer with default parame-
ters and the Charbonnier loss [12] to train our model. The
initial learning rate is 1le — 4, and we use the cosine anneal-
ing learning rate scheduler [14] with about 300K iterations,
the minimum learning rate is 5e — 6. The batch size is 16
and patch size is 128. We use PyTorch 1.3, NVIDIA RTX
2080Ti GPU with CUDA10.0 to accelerate training.

The proposed feature extraction and reconstruction mod-
ule (FERM) contains 10 residual groups and each group
contains 20 residual blocks (same as RCAN[26]). The pro-
posed multi-scale feature encoding module (MSFE) con-
tains 3 simplified version of FERM (name as FERM*) with
defferent scales (1/2, 1/4, 1/8), each FERM* contains 4
residual groups and each group contains 8 residual blocks.
We only use the simplified version of enhanced asymmetric
convolution block (EACB without diagonal convolutions)
to replace every convolutions in the model. There are 5
frames for multi-frame inputs (including 1 standard frame
and 4 non-aligned frames).

4.3. Comparison with the state of the arts

To prove the effectiveness of our proposed model, we
compared the model qualitatively and quantitatively with
other deep learning-based methods. To be fair, all meth-
ods use the same training data and training parameters. The
comparative models include DnCNN [25], VDSR [10], U-
Net [17], DMCNN [19]. We use the average PSNR and
SSIM of the validation set to compare objective perfor-
mance. As shown in Table 2, our model is much higher
than other models in both PSNR and SSIM. We also com-
pared visual effects, as shown in Figure 8. Our model can
reconstruct the details more accurately.

5. Ablation study

In this section, we perform ablation experiments on M-
STN, MSFE and EACB to prove the effectiveness of the
proposed module.

5.1. Multi-frame Spatial Transformer Network

The baseline is a small version of the feature extraction
and reconstruction module with 5 residual groups. The in-
put of the baseline is a single standard frame. The multiple
frames are concatenated over the channel dimension. The
curve of the validation PSNR is shown in Figure 9. It can
be seen that concatenating the multiple frames as input di-
rectly does not bring much performance improvement. But



MMDM MMDM
(single frame) | (multi-frame)

PSNR | 25.1845 | 30.1090 | 35.2384 | 36.6919 | 37.4429 41.9667 45.4625
SSIM 0.7697 | 0.9529 | 0.9674 0.9774 0.9813 0.9928 0.9968

Method | Moiré VDSR U-Net | DMCNN | DnCNN

Table 2. Comparison of proposed MMDM and other demoiréing methods: DnCNN, VDSR, U-Net, and DMCNN.
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DMCNN MMDM (single frame) MMDM (multi-frame) Ground Truth
(32.97/0.9788) (45.44/0.9985) (48.70/0.9993) (PSNR/SSIM)

T

Moiré DnCNN VDSR U-Net
(22.36/0.8721) (25.46/0.9725) (34.24/0.9857) (39.47/0.9750)

DMCNN MMDM (single frame) MMDM (multi-frame) Ground Truth
(37.79/0.9951) (53.32/0.9994) (53.99/0.9995) (PSNR/SSIM)

Figure 8. Comparison of proposed MMDM and other demoiréing methods: DnCNN, VDSR, U-Net, and DMCNN.



taking the aligned frames by the multi-frame spatial trans-
former network as input, the performance has a significant
improvement.
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Figure 9. Effectiveness study of multi-frame spatial transformer
networks (M-STN)

5.2. Multi-Scale Feature Encoding module

The FERM* in the multi-scale feature encoding module
(MSFE) contains 2 residual groups. The curve of the val-
idation PSNR is shown in Figure 10. When there is only
a processing of scale 2, the performance improvement is
not obvious. With the increasing of multi-scale, the perfor-
mance is gradually improving. This proves the importance
of multi-scale information and the effectiveness of proposed
MSFE.
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Figure 10. Effectiveness study of multi-scale feature encoding
module (MSFE), note that S denotes scale

5.3. Enhanced Asymmetric Convolution Block

We use the enhanced asymmetric convolution block
(EACB) to replace all convolutions of the baseline. The
curve of the validation PSNR is shown in Figure 11. It can
be seen that the baseline with the original ACB drops a lot
of performances, but the baseline with EACB has a great
performance improvement.
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Figure 11. Effectiveness study of proposed enhanced asymmetric
convolution block (EACB)

6. NTIRE 2020 challenges

New Trends in Image Restoration and Enhancement
(NTIRE) in conjunction with CVPR 2020 has challenges
on demoiréing [22] and denoising [1]. For the demoiréing
challenge, the proposed MMDM with simple version of
EACB achieves the 3rd place in Track 1: Single image and
the 2nd place for Track 2: Burst.

It should note that due to time, our track 2 model is ob-
tained by finetune training the track 1 model, which has
only a small improvement. We retrained the track 2 model
and got better performance (Figure 2). Because the single
image model has been able to process the standard frame
well, when finetune training the burst model, the M-STN
has no effect and the model ignores the information of extra
frames. The retraining has made M-STN effective, and the
model performance has been greatly improved. We also test
the retrained model on the test set, the results are shown in
Table 3.

For the denoising challenge, we only use the proposed
feature extraction and reconstruction module (FERM) with
simple version of enhanced asymmetric convolution block,
and achieve the 2nd place for Track 2: sRGB. The results
are shown in Table 4. This also proves the effectiveness of
proposed FERM and EACB.



Method | PSNR | SSIM | Method | PSNR | SSIM
Ist 4214 | 099 | MMDM* | 45.32 | 1.00
2nd 41.95 | 0.99 Ist 41.95 | 0.99

MMDM | 41.84 | 099 | MMDM | 41.88 | 0.99
4th 41.11 | 0.99 3rd 40.64 | 0.99
Sth 41.04 | 0.99 4th 40.33 | 0.99

Table 3. Results for NTIRE 2020 Demoiréing Challenge. Left:
Track 1: Single image, right: Track 2: Burst. Note that MMDM™
is the retrained model.

Method | PSNR | SSIM
Ist 33.22 | 0.9596
FERM | 33.12 | 0.9578
3rd 33.01 | 0.9590
4th 32.80 | 0.9565
Sth 32.69 | 0.9572

Table 4. Results of NTIRE 2020 real image denoising challenge,
Track 2: sRGB. Note that FERM is the proposed feature extrac-
tion and reconstruction module (FERM) with the simple version
of enhanced asymmetric convolution block (EACB).

7. Conclusion

In this paper, we propose a image demoiréing network
MMDM, which could take multiple frames as inputs and
has multi-scale feature encoding ability. The proposed three
key modules (M-STN, MSFE, and EACB) of MMDM is
proved to be highly effective for image restoration tasks,
such as demoiréing, denoise and so on. Our MMDM and
simple versions achieve good results in both image demoir-
ing and denoise. Later, we will further study the effect of
EACSB in lightweight image restoration tasks.
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