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Abstract

This paper reviews the NTIRE 2020 challenge on real

world super-resolution. It focuses on the participating

methods and final results. The challenge addresses the real

world setting, where paired true high and low-resolution

images are unavailable. For training, only one set of source

input images is therefore provided along with a set of un-

paired high-quality target images. In Track 1: Image Pro-

cessing artifacts, the aim is to super-resolve images with

synthetically generated image processing artifacts. This al-

lows for quantitative benchmarking of the approaches w.r.t.

a ground-truth image. In Track 2: Smartphone Images, real

low-quality smart phone images have to be super-resolved.

In both tracks, the ultimate goal is to achieve the best per-

ceptual quality, evaluated using a human study. This is the

second challenge on the subject, following AIM 2019, tar-

geting to advance the state-of-the-art in super-resolution.

To measure the performance we use the benchmark proto-

col from AIM 2019. In total 22 teams competed in the final

testing phase, demonstrating new and innovative solutions

to the problem.

1. Introduction

Single image Super-Resolution (SR) is the task of in-

creasing the resolution of a given image by filling in ad-

ditional high-frequency content. It has been a popular re-
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Figure 1. Visual example of the input LR images and ground truth

HR images used in the challenge. For Track 1 the input is gener-

ated with a common image signal processing operation to simulate

the real-world SR case where we can measure against a undis-

closed ground truth. For Track 2 we the input are untouched

iPhone3 images. Both tracks have the goal to super-resolve to a

clean target domain.

search topic for decades [33, 17, 56, 65, 63, 69, 70, 71, 61,

13, 28, 64, 14, 15, 38, 40, 43, 16, 2, 3, 26, 29, 21] due to

its many applications. The current trend addresses the ill-

posed SR problem using deep Convolutional Neural Net-

works (CNNs). While initial methods focused on achieving

high fidelity in terms of PSNR [14, 15, 38, 40, 43]. Recent

work has put further emphasis on generating perceptually

more appealing predictions using for instance adversarial

losses [72, 41, 67].

Deep learning based SR methods are known to consume

large quantities of training data. Most current approaches

rely on paired low and high-resolution images to train the

network in a fully supervised manner. However, such im-



age pairs are not available in real-world applications. To

circumvent this fact, the conventional approach has been

to downscale images, often with a bicubic kernel, to arti-

ficially generate corresponding LR images. This strategy

significantly changes the low-level characteristics of the im-

age, by e.g. severely reducing the sensor noise. Super-

resolution networks trained on downscaled images there-

fore often struggle to generalize to natural images. The re-

search direction of blind super-resolution [49, 20, 6] does

not fully address this setting since it often relies on paired

data and constrained image formation models. In this chal-

lenge, the aim is instead to learn super-resolution from

unpaired data and without any restricting assumptions on

the input image formation. This scenario has recently at-

tracted significant interest due to its high relevance in appli-

cations [74, 37, 8, 45].

The NTIRE 2020 Challenge on Real-World Image

Super-Resolution aims to stimulate research in the direc-

tion of real-world super-resolution. No paired reference HR

images are available for training. Instead, the participants

are only provided the source input images, along with an

unpaired set of high-quality images that act as the target

quality domain. The challenge consists of two tracks. The

source images for Track 1 are generated by performing a

degradation operation that is unknown to the participants.

This degradation arise from image signal processing meth-

ods similar to those found on low-end devices (see Figure 1

an example). A synthetic degradation allows us to compute

reference-based metrics for evaluation. Track 2 employs

images taken from a low-quality smartphone camera, with

no available ground-truth. For both tracks, the goal is to

achieve perceptually pleasing results. The final ranking is

therefore performed using a human study.

This challenge is one of the NTIRE 2020 associated

challenges on: deblurring [54], nonhomogeneous dehaz-

ing [4], perceptual extreme super-resolution [75], video

quality mapping [19], real image denoising [1], real-world

super-resolution [47], spectral reconstruction from RGB

image [5] and demoireing [73].

2. NTIRE 2020 Challenge

The goals of the NTIRE 2020 Challenge on Real-World

Image Super-Resolution is to (i) promote research into

weak and unsupervised learning approaches for SR, that

jointly enhance the image quality (ii) promote a benchmark

protocol and dataset; and (iii) probe the current state-of-

the-art in the field. The challenge contains two tracks. Both

tracks have the goal of upscaling with factor 4⇥. The com-

petition was organized using the Codalab platform.

2.1. Track 1: Image Processing Artifacts

This track employs the benchmarking strategy described

in [45], which employs an artificial degradation operator to

enable reference-based evaluation.

Degradation operator We employ an undisclosed degra-

dation operator which generates structured artifacts com-

monly produced by the kind of image processing pipelines

found on very low-end devices. This type of degradation

operator is very different from what has been used in previ-

ous challenges [46]. This operation is applied to all source

domain images of train, validation and test. According to

the rules of the challenge, the participants were not per-

mitted to try to reverse-engineer or with hand-crafted al-

gorithms construct similar-looking degradation artifacts. It

was however allowed to try to learn the degradation oper-

ator using generic techniques (such as deep networks) that

can be applied to any other sort of degradations or source

of natural images. The reason is that the method as a whole

needs to generalize to different types of degradations and

input domains.

Data The dataset is constructed following the general strat-

egy used for Track 2 in the previous edition of the chal-

lenge [46]. We construct a dataset of source (i.e. input) do-

main training images Xtrain = {xi} by applying the degra-

dation operation to the 2650 images of the Flickr2K [67]

dataset, without performing any downsampling. The target

domain for training Ytrain = {yj} are the original 800 clean

high-quality training images from DIV2K. For validation

and testing, we employ the corresponding splits from the

DIV2K [62] dataset. The source domain images Xval and

Xtest are obtained by first downscaling the images followed

by the degradation. The Ground Truth images for valida-

tion Y tr1
val and test Y tr1

test are the original DIV2K images. A

visual example for source and target images are provided in

Figure 1.

2.2. Track 2: Smartphone Images

Here the task is to super-resolve real-world images ob-

tained from a low-quality smartphone camera. The desired

output quality is defined by set of clean high-quality im-

ages. We employ the iPhone3 images of the DPED [30]

dataset as source domain Xtrain. For training and validation,

we employ the corresponding predefined splits of DPED.

As a ground truth to super-resolved images above sensor

size does not exist, we use crops of the validation set of

DPED for a human perception study. The target domain

Ytrain is the same as in Track 1. A visual example for source

and target images are provided in Figure 1.

2.3. Challenge phases

The challenge had three phases: (1) Development phase:

the participants got training images and the LR images of

the validation set. (2) Validation phase: the participants had

the opportunity to measure performance using the PSNR

and SSIM metrics by submitting their results on the server

for Track 1. A validation leaderboard was also available.



(3) Final test phase: the participants got access to the LR

test images and had to submit their super-resolved images

along with description, code and model weights for their

methods.

3. Challenge Results

Before the end of the final test phase, participating teams

were required to submit results, code/executables, and fact-

sheets for their approaches. From 292 registered partici-

pants in Track 1, 19 valid methods were submitted, stem-

ming from 16 different teams. Track 2 had 251 registered

participants, of which 15 valid methods were submitted

from 14 different teams. Table 1 and 2 report the final re-

sults of Track 1 and 2 respectively, on the test data of the

challenge. The methods of the teams that entered the final

phase are described in Section 4 and the teams’ members

and affiliations are shown in Section Appendix A.

3.1. Architectures and Main Ideas

Inspired by the results of the last challenge in AIM

2019 [46] and on the success of recent approaches [45, 18],

most top methods pursued a two step approach. The first

step aims to learn a network that can transfer clean images

to the source domain. This network thus learns a degra-

dation operator, adding the kind of noise and corruptions

present in the source images. It is then used to generate

paired training data for the second step, which involves

learning the super resolution network itself. It is generally

trained using pairs generated by first downscaling and then

applying the learned degradation on images from the tar-

get domain set. Many works employed the DSGAN [18]

framework from the winner of the AIM 2019 challenge [46]

to learn the degradation operator in the first step.

Some of the top methods in this challenge proposed par-

ticularly notable alterations and extensions to the general

idea described above for learning the degradation network.

The AITA-Noah team (Sec. 4.2) employs an iterative ap-

proach for Track 1, alternating between learning the degra-

dation and SR network. It also uses an explicit denoising

algorithm and train a sharpening network to decrease the

blurring effects from the former. Impressionism (Sec. 4.1)

is the only team that aims to explicitly estimate the blur ker-

nel in the image, for improved source data generation. For

Track 2, it employs the KernelGAN [7] for this purpose.

It also aims to explicitly estimate the noise variance using

source image patches. This approach led to superior sharp-

ness and quality in the generated SR images for Track 2.

There were also some alternative strategies proposed. In

particular, the Samsung-SLSI-MSL team (Sec. 4.3) aim to

train a robust SR network capable of handling different

source domains by randomly sampling a variety of degra-

dations during the training of the SR network.

For the Real-world Super-Resolution setting, the re-

sults in the challenge suggest that training strategy and

careful degradation modelling is far more important than

choice of SR architecture. For the latter, most top meth-

ods simply adopted popular architectures, such as the

RRDB/ESRGAN [67] and the RCAN [77]. Most methods

also included adversarial and perceptual VGG losses, often

based on the ESRGAN [67] framework. Brief descriptions

of the methods submitted from each team is given in Sec. 4.

3.2. Baselines

We compare methods participating in the challenge with

several baseline approaches.

Bicubic Standard bicubic upsampling using MATLAB’s

imresize function.

RRDB PT The pre-trained RRDB [67], using the network

weights provided by the authors. The network was trained

with clean images using bicubic down-sampling for super-

vision. The only objective is the PSNR oriented L1 loss.

ESRGAN Supervised ESRGAN network [67] that is fine-

tuned in a fully supervised manner, by applying the syn-

thetic degradation operation used in Track 1. The degrada-

tion was unknown for the participants. This method there-

fore serves as an upper bound in performance, allowing us

to analyze the gap between supervised and unsupervised

methods. We employ the source Xtrain and target Ytrain

domain train images respectively. Low-resolution train-

ing samples are constructed by first down-sampling the im-

age using the bicubic method and then apply the synthetic

degradation. The network is thus trained with real input and

output data, which is otherwise inaccessible. As for previ-

ous baselines, the network is initialized with the pre-trained

weights provided by the authors. Note that no supervised

baseline is available for Track 2 since no ground-truth HR

images exists.

3.3. Evaluation Metrics

The aim of the challenge is to pursue good image quality

as perceived by humans. As communicated to the partic-

ipants at the start of the challenge, the final ranking was

therefore to be decided based on a human perceptual study.

Track 1 For Track 1, the fidelity-based Peak Signal-to-

Noise Ratio (PSNR) and the Structural Similarity index

(SSIM) [68] was provided on the Codalab platform for

quantitative feedback. These metrics are also reported here

for the test set. Moreover, we report the LPIPS [76] dis-

tance, which is a learned reference-based image quality

metric computed as the L2 distance in a deep feature space.

The network itself has been fine-tuned based on image qual-

ity annotations, to correlate better with human perceptual

opinions. However, this metric needs to be used with great

care since many methods employ feature-based losses using

ImageNet pre-trained VGG networks, which in its design



Team PSNR" SSIM" LPIPS# MOS#

Impressionism 24.67(16) 0.683(13) 0.232(1) 2.195(1)

Samsung-SLSI-MSL 25.59(12) 0.727(9) 0.252(2) 2.425(2)

BOE-IOT-AIBD 26.71(4) 0.761(4) 0.280(4) 2.495(3)

MSMers 23.20(18) 0.651(17) 0.272(3) 2.530(4)

KU-ISPL 26.23(6) 0.747(7) 0.327(8) 2.695(5)

InnoPeak-SR 26.54(5) 0.746(8) 0.302(5) 2.740(6)

ITS425 27.08(2) 0.779(1) 0.325(6) 2.770(7)

MLP-SR 24.87(15) 0.681(14) 0.325(7) 2.905(8)

Webbzhou 26.10(9) 0.764(3) 0.341(9) -

SR-DL 25.67(11) 0.718(10) 0.364(10) -

TeamAY 27.09(1) 0.773(2) 0.369(11) -

BIGFEATURE-CAMERA 26.18(7) 0.750(6) 0.372(12) -

BMIPL-UNIST-YH-1 26.73(3) 0.752(5) 0.379(13) -

SVNIT1-A 21.22(19) 0.576(19) 0.397(14) -

KU-ISPL2 25.27(14) 0.680(15) 0.460(15) -

SuperT 25.79(10) 0.699(12) 0.469(16) -

GDUT-wp 26.11(8) 0.706(11) 0.496(17) -

SVNIT1-B 24.21(17) 0.617(18) 0.562(18) -

SVNIT2 25.39(13) 0.674(16) 0.615(19) -

AITA-Noah-A 24.65(�) 0.699(�) 0.222(�) 2.245(�)

AITA-Noah-B 25.72(�) 0.737(�) 0.223(�) 2.285(�)

Bicubic 25.48(�) 0.680(�) 0.612(�) 3.050(�)

ESRGAN Supervised 24.74(�) 0.695(�) 0.207(�) 2.300(�)

Table 1. Challenge results for Track 1. The top section in the table contains participating methods that are ranked in the challenge. The

middle section contains participating approaches that deviated from the challenge rules, whose results are reported for reference but not

ranked. The bottom section contains baseline approaches. Participating methods are ranked according to their Mean Opinion Score (MOS).

is very similar to LPIPS. Moreover, some methods directly

use the LPIPS distance as a loss of for hyper-parameter tun-

ing. We treat LPIPS as an indication of perceptual quality,

but not as a metric to decide final rankings.

To obtain a final ranking of the methods, we performed

a user study on Amazon Mechanical Turk. For Track 1,

where reference images are available, we calculate the

Mean Opinion Score (MOS) in the following manner. The

test candidates were shown a side-by-side comparison of a

sample prediction of a certain method and the correspond-

ing reference ground-truth. They were then asked to eval-

uate the quality of the SR image w.r.t. the reference image

using the 6-level scale defined as: 0 - ’Perfect’, 1 - ’Al-

most Perfect’, 2 - ’Slightly Worse’, 3 - ’Worse’, 4 - ’Much

Worse’, 5 - ’Terrible’. The images shown to the participants

of the study were composed of zoomed crops, as shown in

Figure 2. The human study was performed for the top 10

methods according to LPIPS distance, along with 4 base-

line approaches.

Track 2 For Track 2, a ground truth reference does not exist

due to the nature of the problem. Therefore we used several

no-reference based image quality assessment (IQA) met-

rics. In particular, we report the NIQE [52], BRISQUE [51]

and PIQE [53], using their corresponding MATLAB imple-

mentations. Moreover, we report the learned NRQM [48]

IQA score. We also report two metrics that summarize the

result of the computed IQA metrics. The Perceptual Index

PI, previously employed in [32], is calculated as an adjusted

mean of NIQE and NRQM. We also compute the mean

IQA-Rank by taking the average image-wise rank achieved

w.r.t. each of the four IQA metrics. In this case, taking the

average rank is preferred over the average value, since the

rank is not sensitive to the specific scaling or range of the

particular metric.

Since no reference image exists in Track 2, the MOS

score as defined for Track 1 cannot be computed. Instead,

we compute the Mean Opinion Rank (MOR) by asking the

study participants to rank the predictions of several meth-

ods in terms of image quality. For each question, the study

participants were shown the SR results of all methods in

the study for a particular image. These images were then

ranked in terms of overall image quality. The MOR is then

computed by averaging the assigned rank of each method,

over all images and study participants. Since ranking too

many entries at once is cumbersome and can lead to inaccu-

rate results, we performed the human study on the top 5 ap-



Team NIQE# BRISQUE# PIQE# NRQM" PI# IQA-Rank# MOR#

Impressionism 5.00(1) 24.4(1) 17.6(2) 6.50(1) 4.25(1) 3.958 1.54(1)
AITA-Noah-A 5.63(4) 33.8(5) 29.7(8) 4.23(8) 5.70(6) 7.720 3.04(2)
ITS425 8.95(18) 52.5(18) 88.6(18) 3.08(18) 7.94(18) 14.984 3.30(3)
AITA-Noah-B 8.18(17) 50.1(12) 88.0(17) 3.23(15) 7.47(17) 13.386 3.57(4)
Webbzhou 7.88(15) 51.1(15) 87.8(16) 3.27(14) 7.30(15) 12.612 4.44(5)
Relbmag-Eht 5.58(3) 33.1(3) 12.5(1) 6.22(2) 4.68(2) 4.060 -

MSMers 5.43(2) 38.2(7) 20.5(3) 5.22(5) 5.10(3) 5.420 -

MLP-SR 6.45(8) 30.6(2) 29.0(6) 6.12(3) 5.17(4) 5.926 -

SR-DL 6.11(5) 33.5(4) 29.4(7) 5.24(4) 5.43(5) 6.272 -

InnoPeak-SR 7.42(13) 39.3(8) 21.5(4) 5.12(6) 6.15(9) 7.716 -

QCAM 6.21(6) 44.2(9) 49.6(9) 4.10(10) 6.05(8) 8.304 -

SuperT 6.94(10) 50.2(13) 75.1(11) 4.23(9) 6.35(10) 9.612 -

KU-ISPL 6.79(9) 45.1(10) 61.6(10) 3.60(13) 6.59(12) 10.152 -

BMIPL-UNIST-YH-1 7.03(12) 50.2(14) 81.5(13) 3.70(12) 6.66(13) 12.218 -

BIGFEATURE-CAMERA 7.45(14) 49.2(11) 87.1(14) 3.23(16) 7.11(14) 13.784 -

Samsung-SLSI-MSL 6.25(7) 37.3(6) 26.0(5) 4.31(7) 5.97(7) 6.662 -

Bicubic 7.97(16) 52.0(17) 87.2(15) 3.16(17) 7.40(16) 14.532 6.04(6)
RRDB 7.01(11) 51.3(16) 76.0(12) 4.06(11) 6.48(11) 10.042 6.06(7)

Table 2. Challenge results for Track 2. The top section in the table contains participating methods that are ranked in the challenge. The

middle section contains participating approaches that deviated from the challenge rules, whose results are reported for reference but not

ranked. The bottom section contains baseline approaches. Participating methods are ranked according to their Mean Opinion Rank (MOR).

proaches along with two baselines. As we did not find any

of the IQA metrics previously discussed to correlate well

with perceived image quality, the initial selection of top 5

methods was performed using a purely visual comparison

performed by the challenge organizers. The top 5 methods

were selected by assessing sharpness, noise, artifacts, and

overall quality. The MOR scores were then computed using

Amazon Mechanical Turk.

3.4. Track 1: Image Processing Artifacts

Here we present the results for Track 1. All experiments

presented were conducted on the test set. The results are

shown in Table 1. The Impressionism team achieves the

best result, with a 9.5% better MOS than the second entry,

namely Samsung-SLSI-MSL. Both these teams take a more

direct approach for simulating degradations for supervised

SR learning. While Samsung-SLSI-MSL sample random

noise distributions and down-scaling kernels, Impression-

ism aim to estimate the kernel and noise statistics. The fol-

lowing three approaches: BOE-IOT-AIBD, MSMers, and

KU-ISPL, employ CycleGAN [12] or DSGAN [18] based

methods to learn the degradation operator. Also the AITA-

Noah team follows this general strategy, achieving impres-

sive MOS results. However, their methods are not ranked in

Track 1 since source domain images from the test set was

used for training, which is against the rules of the challenge.

Notable are also the results of ITS425, who achieve the sec-

ond best PSNR and best SSIM, while preserving good per-

ceptual quality. Also the third-ranked method BOE-IOT-

AIBD achieves very impressive PSNR and SSIM.

When comparing with the previous edition of the chal-

lenge [46], the performance of the proposed method has im-

proved substantially. In [46], most method achieved similar

or worse results than simple Bicubic interpolation. Here, all

top-10 approaches achieved better MOS than the Bicubic

baseline. Moreover, while a large gap to supervised meth-

ods was reported in [46], in this year challenge, the win-

ning Impressionism method even beats the ESRGAN base-

line, which is trained with full supervision. While this can

also be partly explained by other modifications and hyper-

parameter settings, it clearly demonstrates that the perfor-

mance gap to supervised SR methods is significantly nar-

rower. Visual results for all methods in Figure 2.

3.5. Track 2: Smartphone Images

Quantitative results for Track 2 are reported in Table 2.

In this track, the Impressionism method outperforms other

approaches by a large margin in the human study (MOR).

This is also confirmed in the visual examples shown in

Figure 3. The generated images are superior in sharpness

compared to those of other approaches. Moreover, the SR

images contain almost no noise and few artifacts. While

AITA-Noah and ITS425 also generate clean images, they

lack the sharpness and detail of Impressionism. We believe

this to be largely due to the kernel estimation performed in

the latter approach, employing KernelGAN for this purpose.



Impressionism Samsung-SLSI-MSL BOE-IOT-AIBD MSMers KU ISPL

InnoPeak-SR ITS425 MLP-SR Webbzhou SR-DL

TeamAY BIGFEATURE-CAMERA BMIPL-UNIST-YH-1 SVNIT1-A KU-ISPL2

SuperT GDUT-wp SVNIT1-B SVNIT2 AITA-Noah-A

AITA-Noah-B Bicubic RRDB Supervised ESRGAN Supervised Ground Truth

Figure 2. Qualitative comparison between the participating approaches for Track 1. (4× super-resolution)

This allows the SR network to take the pointspread function

of the specific camera sensor into account.

We observe that Impressionism also achieves the best av-

erage IQA-Rank. However, note that while the Relbmag-

Eht team achieves a similar IQA-Rank, their result severely

suffers from a structured noise pattern. This suggests that

standard IQA metrics are not well suited as evaluation cri-

teria in this setting and data. Interestingly, the Samsung-

SLSI-MSL team employed the paired DSLR images pro-

vided by [30]. This approach is therefore not ranked in this

track. However, this approach does still not achieve close to

the same level of sharpness as Impressionism.



Impressionism AITA-Noah-A ITS425 AITA-Noah-B Webbzhou Relbmag-Eht

MSMers MLP-SR SR-DL InnoPeak-SR QCAM SuperT

KU-ISPL BMIPL-UNIST-YH-1 BIGFEATURE-CAMERA Samsung-SLSI-MSL Bicubic RRDB Pre-trained

Impressionism AITA-Noah-A ITS425 AITA-Noah-B Webbzhou Relbmag-Eht

MSMers MLP-SR SR-DL InnoPeak-SR QCAM SuperT

KU-ISPL BMIPL-UNIST-YH-1 BIGFEATURE-CAMERA Samsung-SLSI-MSL Bicubic RRDB Pre-trained

Figure 3. Qualitative comparison between the participating approaches for Track 2. (4× super-resolution)

Despite being the first challenge of its kind, the top par-

ticipating teams achieved very impressive results in this dif-

ficult real-world setting, where no reference data is avail-

able. In particular, the Impressionism team achieves not

only a higher resolution image, but also substantially better

image quality than the source image taken by the camera.



4. Challenge Methods and Teams

This sections give brief descriptions of the participating

methods. A summary of all participants is given in table 4.1.

4.1. Impressionism

The team Impressionism proposes a novel framework,

introduced in [35], to improve the robustness of the super-

resolution model on real images, which usually fails when

trained on bicubic downsampled data. To generate more

realistic LR images, they design a real-world degradation

process that maintains important original attributes. Specif-

ically, they focus on two aspects: 1) The blurry LR image

is obtained by downsampling High-Resolution (HR) im-

ages with estimated kernels from real blurry images. 2)

The real noise distribution is restored by injecting collected

noise patches from real noisy images. From the real-world

(source domain) dataset X and the clean HR (target do-

main) dataset Y , the team thus aims to construct domain-

consistent data {ILR, IHR} 2 {X ,Y}.

Clean-up Since bicubic downsampling can remove high-

frequency noise, they directly do a bicubic downsampling

on the image from X to obtain more HR images. Let Isrc 2
X , and kbic be the ideal bicubic kernel. Then the image

is downsampled with a clean-up scale factor s as IHR =
(Isrc ⇤ kbic)#s. Then the images after downsampling are

regarded as clean HR images, that is IHR 2 Y .

Downsampling The team performs downsampling on the

clean HR images using the estimated kernels by Kernel-

GAN [7]. The downsampling process is a cross-correlation

operation followed by sampling with stride s,

ID = (IHR ⇤ ki)#s , i 2 {1, 2, . . . ,m}, (1)

where ID denotes the downsampled image, and ki refers to

the specific blur kernel.

Noise Injection Mere estimation of the blurry kernel can-

not accurately model the degradation process of X . By

observing the real data, they find that the noise is usually

combined with content of the image. In order to decouple

noise and content, they design a filtering rule to collect noise

patches {ni, i 2 {1, 2 · · · l}} with their variance in a certain

range σ
2(ni) < v, where σ

2(·) denotes the variance, and v

is the maximum value of variance. Then these patches will

be added to ID as,

ILR = ID + ni , i 2 {1, 2 · · · l} . (2)

After downsampling HR images with the estimated kernels

and injecting collected noise, they obtain ILR 2 X .

Network Details Based on ESRGAN [67], they train

a super-resolution model on constructed paired data

{ILR, IHR} 2 {X ,Y}. Three losses are applied to training

including pixel loss L1, perceptual loss Lper, and adversar-

ial loss Ladv . Different from default setting, they use patch

Figure 4. Overview of the method by the Impressionism team.

discriminator [34] instead. Overall, the final training loss is

as follows:

Ltotal = λ1 ⇤ L1 + λper ⇤ Lper + λadv ⇤ Ladv, (3)

where λ1, λper, and λadv are set as 0.01, 1, and 0.005 empir-

ically.

4.2. AITA-Noah

This method, which is detailed in [10], adopts the idea of

learning the degradation operator in order to synthetically

generate paired training data for SR network. For Track 1,

an approach termed Iterative Domain Adaptation is devel-

oped. The source training data Xtr and downsampled target

training data Ytr# are first processed with a denoising al-

gorithm (Non-local Means), denoted D. The sets D(Ytr#)
and Ytr# are then used to train a sharpening network S, in a

fully supervised manner. When applied to the source data,

S(D(xtr)) generates images that are clean and sharp. This

set can then be used to train a degradation operator G, us-

ing pairs from S(D(Xtr)) and Xtr. This is then used to

train a super-resolution network SR using pairs generated

by G(Ytr#) and Ytr. The approach then proceeds by it-

eratively improving the degradation model G using pairs

f(Xtr) generated by the current SR model f and Xtr, and

improving the super-resolution model f using pairs G(Ytr)
generated by the current degradation operator G and Ytr.

In practice, the team used the 100 source validation images

and 100 source test images as Xtr. The team is not ranked

in track 1, since according to the challenge rules, the test

data should not be used during training, even in unpaired

form.

For Track 2, the team adopts the CycleSR frame-

work [24, 45] to generate degrade images. As illustrated in

Fig. 5, this framework is composed of two stages: 1) unsu-

pervised image translation between real LR images Xtr and

synthetic LR images, i.e., 4⇥ bicubic downsampled HR im-

ages Ytr, denoted by Ytr#; 2) supervised super-resolution

from degraded LR images Ŷtr# to get Ŷtr. In detail, the ap-



Track 1 Track 2

Team Name Username in Codalab Additional Data Traintime [h] Runtime [sec] Traintime [h] Runtime [sec]

AITA-Noah-A AITA
Track 1 and 2: AIM-2019 pretrained model.

Track 2: only use external 400 div8k images.
8 0.5 8 0.5

AITA-Noah-B Noah TerminalVision AIM-2019 pretrained ESRGAN-FS model. 8 5 8 0.3

BIGFEATURE CAMERA conson0214 DSGAN for LR-HR pairs, DF2K to pre-train SR model. 22 0.25 22 0.25

BMIPL UNIST YH 1 syh RCAN Super Resolution model 32 40 12 40

BOE-IOT-AIBD eastworld 739 pexels.com images, downsized to 2K 264 38.20 no no

GDUT-wp HouseLee - 10 0.85 no no

ITS425 Ziyao Zong - 24 1.34 24 1.24

Impressionism xiaozhongji RRDB PSNR x4.pth released by the ESRGAN authors 12 1.3 32 0.9

InnoPeak SR qiuzhangTiTi 10,000 collected images 12 0.15 12 0.15

KU-ISPL2 Kanghyu Lee VGG19 was used for VGG loss 2 0.02 no no

KU ISPL gtkim VGG-19 model for perceptual loss 168 6.48 168 4.11

MLP SR raoumer - 28.57 1.289 0 967

MSMers huayan CycleGan, RCAN 72 0.483 63 0.343

QCAM tkhu AIM2019 no no 15 0.21

Relbmag Eht Timothy Cilered - no no 8.9 1.09

SR DL ZhiSong Liu - 15 4 15 1

SVNIT1-A kalpesh svnit - 50 1.09 no no

SVNIT1-B Kishor - 50 0.85 no no

SVNIT2 vishalchudasama - 50 0.92 no no

Samsung SLSI MSL Samsung SLSI MSL Flickr2K for Track 1, DPED for Track 2. 72 1 24 1

SuperT tongtong DIV2K 48 0.64 48 0.64

TeamAY nmhkahn - 100 20 no no

Webbzhou Webbzhou - 60 0.5 60 0.5

Table 3. Information about the participating teams in the challenge.

Figure 5. Overview of the CycleSR method used by AITA-Noah

to learn the degradation operation for Track 2.

proach first takes the unsupervised image translation model

CycleGAN [81] for mapping between domain Xtr and Ytr#.

An SR module SRResNet is employed after CycleGAN to

super-resolve Ŷtr# to get Ŷtr and compute the loss LSR with

ground truth Ytr. Hence, with an image translation model

and an SR module together and a joint training strategy, we

are able to train a model that super-resolves real LR im-

ages to HR images with an indirect supervised path. Com-

pared with degradation directly using original CycleGAN,

benefiting from the pixel-wise feedback of the SR module,

CycleSR can alleviate color and brightness changes during

degradation.

In both tracks, the same super-resolution architecture,

based on the ESRGAN is used. The team furthermore

use an LR-conditional frequency-separation discriminator

to train the model and employ AutoML to tune the loss

weights, employing LPIPS [76] and NIQE [52] as objec-

tive. Two versions of this approach was submitted, with the

significant differences as follows:

AITA-Noah-A For Track 1, this version uses the method

described above. For Track 2, it includes an extra 400 im-

ages selected from DIV8K [22] in the target domain set Ytr

to improve data diversity.

AITA-Noah-B For Track 1, this approach additionally uses

an ensemble fusion strategy (i.e. running inference on the

vertical flipped/horizontal flipped/transposed images of the

original input, and then average the results), in addition to

above. For Track 2, no extra data was used and no adversar-

ial loss was used during training the ESRGAN model (i.e.

only RRDBNet was used).

4.3. Samsung-SLSI-MSL

For Track 1, this team aims to train a generic SR model

that is robust to various image degradations, which can

therefore be applied in real-world scenarios without knowl-

edge of the specific degradation operator. This is performed

by sampling diverse degradation types during training. The

strategy proposed in the blind denoising method [59] is ex-

tended by adding downscaling and blur. The training set is

generated by sampling different downscaling (e.g. bilinear,

nearest neighbor or bicubic), blur kernels (Gaussian ker-

nel with different sigma), and noise distributions (additive

Gaussian, Poisson, Poisson-Gaussian with randomly sam-

pled parameters). The SR model consists of the RCAN [77]

architecture, which is trained with a GAN loss while em-

phasizing the perceptual losses. To further improve the per-

ceptual quality, they deploy an ensemble of two different

GANs, and use cues from the image luminance and adjust to



Figure 6. Overview of the SR method used by Samsung-SLSI-

MSL.

Figure 7. Overview of the method by the MSMers team.

generate better HR images at low-illumination. The work-

flow is given in Fig. 6.

For Track 2, real world SR on images captured by mobile

devices, the same GANs are trained by weak supervision on

a mobile SR training set that they constructed to have LR-

HR image pairs, from the DPED dataset which provides

registered mobile-DSLR images at the same scale [30].

They use the mobile images as LR, and apply the track 1

generic SR model on the paired DSLR images to create su-

per resolved HR images with good perceptual quality. This

method is considered as a kind of Supervised approach, and

does not compete with the other participants in Track 2. De-

tails about the proposed method can be found in [25].

4.4. MSMers

This method takes inspiration from [45], developing a

two-stage approach. First, a degradation operator is learned

in an unsupervised manner. This is then used to generate

paired data for the second stage, in which the SR network is

learned. Specifically, CycleGAN [81] is adopted in the first

stage to learn a mapping from bicubic downsampled HR to

real LR. To keep the color consistent, the weight of the iden-

tity loss is increased in the setting. As for the second stage,

RCAN [77] is used to super-resolve the LR image, which

is first trained on L1 loss. On top of that, perceptual loss

and adversarial loss are added for better perceptual qual-

ity. Specifically, we use features of VGG19 relu5-1 layer

to compute a perceptual loss and the WGAN-GP [23] as

adversarial loss. The method is visualized in Figure 7.

4.5. BOE-IOT-AIBD

This team aims to learn the degradation operator in or-

der to generate paired SR training samples. To this end, it

employs solution provided by DSGAN [18] to artificially

generate LR images, as shown in Figure 8a. These are then

used to train an SR model. For this, it uses the modified

MGBPv2 [50] network, proposed in the winning solution

of the AIM ExtremeSR challenge [21]. It is adapted to 4⇥
upscaling by using a triple–V cycle (instead of the W–cycle)

and adding multi–scale denoising modules as shown in Fig-

ure 8b. During inference, an overlapping patch approach is

used to further allow upscaling of large images. The train-

ing strategy employs a multiscale loss, combining distortion

and perception losses on the output images. Model selection

was performed by selecting low NIQE results on validation

set and human tests based on ITU–T P.910. An additional

set of 739 collected images for training. The team only par-

ticipated in Track 1.

4.6. InnoPeak-SR

This approach does not directly address the unavailabil-

ity of paired training data. Instead, it aims to develop a

robust architecture capable of generalizing to the degrada-
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Figure 8. Overview of the DSGAN [18] based method used by the

BOE-IOT-AIBD team to learn the degradation operation.



Figure 9. Architectures employed by the InnoPeak-SR team.

Figure 10. SR architecture employed by the MLP-SR team.

tions present in the real-world setting, while trained using

standard strategies. The SR network consists of a resid-

ual channel attention generator, visualized in Figure 9. It

mainly consists of four parts: shallow feature extraction,

residual channel attention feature extraction, upscale mod-

ule, and reconstruction. The discriminator network is im-

plemented using four repeated 4⇥4 convolution layers, fol-

lowed by BatchNorm and ReLU. The networks are trained

in a standard GAN fashion. The generator additionally uses

L1, VGG, SSIM and gradient losses. The authors addition-

ally used 10000 images from the ImageNet dataset for train-

ing.

Details about the proposed method can be found in [9]

4.7. ITS425

This team focus on improving the SR network architec-

ture. The image degradation operator is first learned using

an improved version of the DSGAN [18], by using a smaller

generator model than that of the original work. Unlike other

methods, this team also aims to improve the quality of the

target domain images. This is performed by training de-

noising and detail enhancement models to improve the tar-

get domain HR training images. The SR models is based on

the RDN architecture [79]. It is modified by using the add

operation instead of concatenate, which not only reduces

the amount of calculations of the model but also reduces

the high-level information that is passed back to the final

layers.

4.8. MLP-SR

This team follow a two stage approach. First, a DS-

GAN [18] (winner of the AIM2019 RWSR challenge) net-

work and training strategy is employed to learn the image

degradation mapping. This is then used to generate paired

SR training data for the second stage. The team proposes a

Figure 11. Overview of the learning approach proposed by the

KU-ISPL team.

SR architecture, shown in Figure 10, inspired by a physical

image formation model. It uses a encoder-decoder struc-

ture. The inner ResNet consists of 5 residual blocks with

two pre-activation Conv layers. The pre-activation is the

parametrized rectified linear unit (PReLU). The trainable

projection layer [42] inside Decoder computes the proximal

map with the estimated noise standard deviation and han-

dles the data fidelity and prior terms. The noise realization

is estimated in the intermediate ResNet that is sandwiched

between Encoder and Decoder. The estimated residual im-

age after Decoder is subtracted from the LR input image.

Reflection padding is also used before all Conv layers to

ensure slowly-varying changes at the boundaries of the in-

put images. The generator structure can also be described

as the generalization of one stage TNRD [11] and UDNet

[42] that have good reconstruction performance for image

denoising problem. For the discriminator, it employs the

architecture used in SRGAN [41], with the relativistic loss

used in ESRGAN [67]. In addition, L1, Total-Variation and

VGG losses are used.

4.9. KU-ISPL

This team propose an un-paired GAN-based frame-

work [36]. It consists of three generators, one SR model

and three discriminators. The overall architecture is visual-

ized in Figure 11. The generators G1, G2, and G3 constitute

a modified CinCGAN [74]. Residual networks are used for

these architectures. G3 further downsamples the image by

a factor of 4. The SR model is based on ESRGAN [67].

Bilinear upsampling is introduced into the architecture to

preserve details and avoid checkerboard patterns induced

by the transposed convolution module. The three discrim-

inators DN , DC , and DY are trained with different losses:

adversarial noise loss, adversarial color loss, and adversarial

texture loss respectively. The DN uses a raw image, which

contains noise signal. The DC and DY employ a Gaus-

sian blurred image and a grayscale image, respectively, as



in WESPE [31]. To improve performance of the discrimina-

tors, source domain images are used when the discrimina-

tors are trained. Instead of classifying real or fake, the dis-

criminator distinguishes between source and target domain

images. The generator is trained to make target domain-like

fake images and the discriminator is trained to classify fake

images as a source domain image. The cycle consistency

and identity loss each consist of three losses: a pixel-wise

L1 loss, a VGG perceptual loss, and an SSIM loss.

4.10. Webbzhou

This team aims to first learn the degradation process in

order to generate data for a second-stage SR network train-

ing. The degradation learning is based on the frequency

separation in DSGAN [18]. Furthermore, in order to alle-

viate the color shift in degradation process, the team pro-

posed a generator based on Color Attention Residual Block

(CARB) [80]. In addition, the team modified the discrimna-

tor of ESRGAN [67] which treats high frequency and low

frequency separately. Finally, an EdgeLoss with Canny op-

erator is constructed to further enhance details of edge.

4.11. SR-DL

The team propose a joint image denoising and super-

resolution model by using generative Variational AutoEn-

coder (dSRVAE) [44]. It includes two parts: a Denoising

AutoEncoder (DAE) and a Super-Resolution Sub-Network

(SRSN). With the absence of target images, a simple dis-

criminator is trained together with the autoencoder to en-

courage the SR images to pick up the desired visual pattern

from the reference images. During the training, Denois-

ing AutoEncoder (DAE) is trained first by using source im-

age training set. Then the Super-Resolution Sub-Network

(SRSN) is attached as a small head to the DAE which forms

the proposed dSRVAE to output super-resolved images. To-

gether with dSRVAE, a simple convolutional neural net-

work is used as a discriminator to distinguish whether gen-

erated SR images are close to the original input images.

The method is visualized in Figure 12. The proposed

dSRVAE network first uses the encoder to learn the latent

vector of the clean image. A Gaussian model randomly

samples from the latent vector to the decoder. The input

noisy LR image is also included as a conditional constraint

to supervise the reconstruction of the decoder. Combining

both noisy image features and latent features, the decoder

learn the noise pattern. Finally, the estimated clean image is

obtained by subtracting the estimated noise from the input

noisy image. At the second stage, Super-Resolution Sub-

Network (SRSN) is added to the end of the Denoising Au-

toEncoder to take both bicubic interpolated original clean

and estimated denoised images as input to generation su-

perresolution result. Since there is no ground truth of super-

resolved images, a discriminator is trained to distinguish the

Figure 12. Overview of the method proposed by the SR-DL team.

super-resolution results and cropped reference image. The

balance is achieved when the discriminator cannot distin-

guish between reference and denoised SR image.

4.12. TeamAY

This team proposes a simple but strong method for un-

supervised SR (SimUSR). Their approach is based on the

zero-shot super-resolution (ZSSR) [60] which trains the

image-specific network at runtime using only a single given

test image ILR. The ZSSR enables to optimize the model

even if high-resolution images are not accessible. However,

ZSSR suffers from high runtime latency and inferior per-

formance compared to the supervised SR methods. To mit-

igate such issues, this team first slightly relax the constraint

of ZSSR and assumes that it is relatively easy to collect

the LR images, {ILR1
, . . . , ILRN

}. Thanks to this assump-

tion, they can convert fully unsupervised SR into the super-

vised learning regime by generating multiple pseudo-pairs

{(I0LR1
, I0HR1

), . . . (I0LRN
, I0HRN

)} by

(I0LRk
, I0HRk

) = (IsonLRk
, I

father
LRk

), for k = 1 . . . N.

where I
son
LR = ILR #s,k and I

father
LR = ILR.

Though this is a very simple correction, their modifica-

tion brings several benefits: It allows their framework to

exploit every benefit of supervised learning. For instance,

unlike ZSSR, their SimUSR can utilize recently developed

network architectures and training techniques that provide

huge performance gains. In addition, since the online (run-

time) training is not necessary, SimUSR can significantly

reduce its runtime latency. For the NTIRE 2020 challenge,

they use pretrained RCAN [77] (on bicubic ⇥4 scale) as a

backbone model of SimUSR. Also, they attach ad-hoc de-

noiser (BM3D [27]) before train the SimUSR method. De-

tails about the proposed method can be found in [55].

4.13. Bigfeature-Camera

This method use DSGAN [18] to learn the degradation,

used for generating paired training data. In the second stage



a RNAN [78] based SR network is trained. It is modified

to handle multiple scales and by adding a contrast channel

attention layers [77] along with local attention blocks.

4.14. BMIPL-UNIST-YH

This method focus on how to train on unpaired data.

Similar to [45], a CycleGAN is used to learn the degrada-

tion. In the second stage, and RCAN [77] SR architecture

is trained on generated data.

4.15. SVNIT1

This team combines self- and unsupervised strategies to

train the SR network without supervision. For the self-

supervised part, the LR input is upsampled bicubically and

used for a pixel-wise loss. The unsupervised losses con-

sist of a Total-Variation loss and a deep image quality loss.

For the latter loss, a pre-trained quality assessment network

was used. Details about the proposed method can be found

in [57]. Two versions of this approach was submitted:

SVNIT1-A In addition to above, this version employs an

adversarial loss on the SR output. The discriminator archi-

tecture is inspired by [58].

SVNIT1-B Instead of a descriminator, this variant Vari-

ational Encoder which follows the architectural guidelines

in [58].

4.16. SVNIT2

This method uses cyclic consistency between an SR

network and a downscaling network. Two generator are

trained: the SR generator going from LR to HR and the

downscaling generator going from HR to LR. In addition to

cycle consistency, the VGG loss, GAN loss, and a learned

image quality loss is employed.

4.17. KU-ISPL2

This team base their approach on SRGAN [41]. This is

extended with a multi-scale convolutional block, that com-

bines the results of convolutions with different kernel sizes.

4.18. SuperT

This method uses a balanced Laplacian pyramid net-

work [39] for progressive image super-resolution. For train-

ing, both degraded and clean images are used with standard

downsampling them for training data generation.

4.19. GDUT-wp

This method uses an ensemble of SRResNets trained on

bicubic downsampled data. The idea is that by selecting the

best from an ensemble, the effect of random artifacts can be

reduced.

4.20. MLP-SR

This method is based on the DSGAN [18] approach.

The loss of the super-resolution method consists of a VGG,

GAN, TV and L1 loss. To improve the fidelity, they further

used a ensemble method at test time [64]. Details about the

proposed method can be found in [66].

4.21. Relbmag-Eht

Instead of generating ‘fake’ natural image as DS-

GAN [18], this team aims to improve this method to aggre-

gate this paring procedure into the super-resolution model.

To supervise this matching from HR or bicubic images to

natural images, a module with discriminators both in the

LR and HR phase is proposed. It allows the downsampling

model to learn from upsampling results. The ESRGAN [67]

is used as SR model.

4.22. QCAM

This work fine-tunes a pretrained SR model on real data

using only supervision in the low-resolution. That is, it aims

to minimize the loss minθ kD(fθ(x))� xk2 for source im-

ages x. Here, fθ is the SR model with parameters θ and D

is the bicubic downsampling operation.

5. Conclusions

This paper presents the setup and results of the NTIRE

2020 challenge on real world super-resolution. Contrary

to conventional super-resolution, this challenge addresses

the real world setting, where paired true high and low-

resolution images are unavailable. For training, only one

set of unpaired source and target input images were pro-

vided to the participants. The source images have unknown

degradations, while the target images are clean, high qual-

ity images. The challenge contains two tracks, where the

goal was to super-resolve images with Image Processing ar-

tifacts (Track 1) or low-quality smart-phone images (Track

2). The challenge had in total 22 teams competing in the

final step. Most of the participating were influenced AIM

2019 and demonstrated interesting and innovative solutions.

Our goal is that this challenge stimulates future research in

the area of unsupervised learning for image super-resolution

and other similar tasks, by serving as a standard benchmark

and by the establishment of new baseline methods.
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