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Abstract

Fast and flexible processing are two essential require-

ments for a number of practical applications of image de-

noising. Current state-of-the-art methods, however, still

require either high computational cost or limited scopes

of the target. We introduce an efficient ensemble network

trained via a competition of expert networks, as an ap-

plication for image blind denoising. We realize automatic

division of unlabeled noisy datasets into clusters respec-

tively optimized to enhance denoising performance. The

architecture is scalable, can be extended to deal with di-

verse noise sources/levels without increasing the computa-

tion time. Taking advantage of this method, we save up to

approximately 90% of computational cost without sacrifice

of the denoising performance compared to single network

models with identical architectures. We also compare the

proposed method with several existing algorithms and ob-

serve significant outperformance over the standard denois-

ing algorithm BM3D in terms of computational efficiency.

1. Introduction

While a lot of image denoising algorithms have been de-

veloped over the past decades, blind removal of real noises

still remains challenging. Blind denoising aims to recover

a clean image from a noisy one without referring to any a

priori information about the noise. This restriction can be

widely seen as a realistic requirement of practical use cases.

Fast processing is also important because the denoising of-

ten constitutes a crucial part of pre-processing pipelines in

many vision tasks [31, 9]. However, current state-of-the-

art methods still require either high computational cost or

limited scopes of the target, unfitting for many real-world

applications.

Image denoising methods are broadly classified into two

categories: image prior based and discriminative learning

based methods. The image prior based methods, which ex-

plicitly define models of noises, have achieved remarkable

results [4, 8, 2, 13]. Nevertheless, their recovering perfor-

mances are limited because noise models are usually intro-

duced manually. In contrast, discriminative learning based

methods learn the underlying mapping between clean im-

ages and noisy ones by exploiting large modeling capacity

of deep convolutional neural networks (CNNs) [33, 34, 15].

Although learning based methods demonstrate advanced

performances if the evaluation data resembles the training

data used, they are often outperformed by image prior based

methods when tested on actual noisy images [27, 1]. This

drawback of learning based methods is mainly due to a

lack of high-quality denoising dataset. Some notable recent

works have successfully produced such high-quality denois-

ing dataset, for example, by systematic procedures estimat-

ing ground-truth images of noisy ones [1] or to create real

noisy images utilizing generative adversarial networks [6].

Even if ideal pairs of clean images and noisy ones are

available, learning based methods are usually inferior to im-

age prior based methods in terms of adaptability for data

outside the training domain. A possible solution overcom-

ing this limitation is preparing a vast amount of clean-noisy

image pairs across a variety of training domains. However,

a large scale network is required to handle such dataset, re-

sulting in a high computational cost. Taking into account

the above, one natural approach would be this: training a

specialized expert for each representative domain in given

dataset and selecting a few suitable experts for the evalu-

ation. Such an approach is widely known as mixture-of-

experts (MoE) [18, 19]. An underlying difficulty of this

approach is that real noisy images are usually unlabeled.

Moreover, even though they are labeled, MoE trained with

given labels is not guaranteed to minimize the task-oriented

loss. Thus an unsupervised clustering method minimizing

the loss of the denoising with MoE is desired.

In this work, we propose a stable method to train spe-

cialized experts via competition. The training procedure is

designed for low-level vision tasks, and the network archi-

tecture is composed for fast processing applications. We

apply the method to image blind denoising and realize au-

tomatic division of unlabeled noisy datasets into appropri-

ate domains. To evaluate the effectiveness of the proposed

method, we compare it with single network models using



identical architecture. Our extensive experiments reveal

how the performances vary according to the number of ex-

perts and the size of the expert network. In addition, we

examine perceptual quality along with various noise levels.

We also compare the proposed method with several existing

algorithms and observe significant outperformance over the

standard denoising algorithm BM3D in terms of computa-

tional efficiency.

We highlight the notable contributions of this work:

• By utilizing our competition training method, unla-

beled noisy dataset is automatically divided into ap-

propriate clusters which are optimized respectively to

enhance denoising performance.

• The proposed method is up to 10× faster than sin-

gle network baseline without sacrifice of the denoising

performance (Fig. 6).

• The proposed method is 5× faster than BM3D, which

is a state-of-the-art patch-based algorithm, when com-

paring at similar denoising performance (Tab. 1).

• Our formulation is applicable to a variety of other low-

level vision tasks with different model networks and

loss functions.

2. Related Work

2.1. Image Prior Based Denoising

Image priors are utilized in most of traditional denois-

ing methods. Among them, patch-based denoising meth-

ods, such as non-local means (NL-means) [4], BM3D [8],

and WNNM [13] have achieved remarkable results. These

methods explicitly define noise models based on a pri-

ori knowledge, and thus they are applicable to denoising

problems with unknown noise levels. BM3D is often re-

ferred to as a benchmark because it is still one of the best

denoising algorithms in terms of quality and computation

time [1]. At first in BM3D algorithm, image fragments

similar to a target patch are grouped into three-dimensional

arrays. After that, the arrays are processed by collabora-

tive filtering and then transformed back into the original

two-dimensional form. While BM3D is one of the fastest

patch-based algorithms, patch-based algorithms are gener-

ally time-consuming. In addition, its recovering perfor-

mance is limited due to heuristically defined noise models.

2.2. Discriminative Learning Based Denoising

Learning based methods, which exploit large modeling

capacity of deep CNNs, have significantly improved de-

noising performances by learning the underlying mapping

of clean-noisy image pairs. In particular, DnCNN [33]

achieves state-of-the-art results by applying residual learn-

ing for a deep CNN with batch normalization. DnCNN is

often referred to as a benchmark of learning based meth-

ods due to its simple structure and impressive performance.

However, their performances are not robust in many cases

to the data outside training domains and are often outper-

formed by image prior based methods when applied to real

datasets of noisy images [1]. Several works have been con-

ducted to relax the above limitation by feeding informa-

tion about the noise level to the denoising network. FFD-

Net [34] non-blindly removes additive white Gaussian noise

(AWGN) with a tunable noise level map and is one of the

most efficient networks. CBDNet [15] can blindly remove

actual noises by estimating the noise levels through a noise

estimation subnetwork. Nevertheless, flexibility and com-

putational efficiency of these networks are still inadequate

because they feature a single denoising network.

2.3. Mixture of Experts

MoE is an approach that replaces a single network by a

weighted sum of expert networks for further improvement

of prediction performance [18, 19]. In MoE, a trainable

gating network plays a pivotal role; it activates experts and

computes which experts to be weighted and how much. In-

stead of activating all experts uniformly, selective activa-

tion of necessary experts at the gate enables to improve the

network efficiency even more [3, 30]. MoE is effective if

given dataset can be classified into several different source

domains. However, appropriate partitioning of unlabeled

datasets into subsets for each expert remains an open prob-

lem, and the subject relates to unsupervised domain adapta-

tion [14].

2.4. Competition of Experts

Some recent studies have employed competition of ex-

perts [22, 26]. Lee et al. [22] proposed Stochastic Multi-

ple Choice Learning (sMCL) which minimizes oracle loss

in ensembles of experts via competition of experts. They

applied sMCL for image classification, segmentation, and

caption generation tasks. While all experts are assigned for

the prediction in sMCL, we use a single expert for a predic-

tion to save the computational cost. Moreover, the expert

initialization and the data sampling method are also differ-

ent. In the context of causality, Parascandolo et al. [26]

proposed an algorithm to recover inverse mechanisms from

transformed data points through competition of experts.

Their algorithm implicitly assumes that the training data

is generated by known transformations, the series of pro-

cedures referred to in their paper, whose computations of

transformation are distinctly different from each other. Thus

it does not fit with a number of practical applications.



Figure 1: Schematic illustration of training procedure with com-

petition of experts. After preparing experts well trained for dataset

P and Q, noisy image p is fed to all experts independently, and

only parameters of an expert minimizing the loss are updated.

3. Method

3.1. Formulation

The proposed training procedure is schematically illus-

trated in Fig. 1. With given noisy images P = {pi}
n
i=1

and corresponding ground-truth images Q = {qi}
n
i=1

, our

objective is learning a generalized mapping from distribu-

tion DP to distribution DQ without any a priori information

about the noise, where P ⊂ DP and Q ⊂ DQ. Addition-

ally, it is required for practical applications that the mapping

is executed with as few parameters as possible. To achieve

this, we train MoE via competition of experts and employ

a single network for the evaluation. The training with the

competition consists of a three-step procedure:

1. Train all experts E1, · · · , EN ′ for a whole of the

dataset P and Q until convergence.

2. For each iteration, feed noisy images p to all experts

independently and update only parameters of an expert

minimizing

Lj = L(Ej(p), q), (1)

where L is a given loss function.

3. Train a gating network with the index of a winning ex-

pert j̃ = argmin
1≤j≤N ′ Lj as a target label. Note that

this step can be run in parallel with step 2 because the

gating network is independent of each expert.

With this manner, noisy images P are automatically di-

vided into N clusters as a result of the specialization of ex-

perts through the catastrophic forgetting [10]. We note that

N ′(≥ N) is a parameter to be arbitrarily set in advance.

This training procedure is potentially applicable to any net-

work trained with any task dependent loss.

3.2. Stabilizing Training

Initialize method. An appropriate preparation of experts

is important to stabilize the competition. If we start

competition without pre-training (i.e., start from step 2

Algorithm 1 Training with the competition of experts

Require: {p, q}: an image pair sampled from input dataset

P and target dataset Q, {Ei}
N ′

i=1
: experts with weight

parameters {θi}
N ′

i=1
(N ′: number of experts), Np: num-

ber of patches sampled from an image, L: loss function

1: repeat

2: Sample patches {[p1, · · · , pNp ], [q1, · · · , qNp ]} (:=

{p,q}) from {p, q}

3: Compute L1 = L(E1(p),q)
4: Update θ1 via backpropagating gradients of L1

5: until Converge

6: {θi}
N ′

i=2
⇐ θ1

7: repeat

8: Sample patches {p,q} from {p, q}

9: Compute {Li}
N ′

i=1
= {L(Ei(p),q)}

N ′

i=1

10: Let l = argmin
1≤i≤N ′ Li ⊲ use a smallest index

if duplicates

11: Update θl via backpropagating gradients of Ll

12: until Converge

instead of step 1), the model fails to classify the input

dataset. This is due to that only the expert winning at the

initial stage of the competition continues to be updated

throughout the subsequent training. To train a classifier

and experts without such unbalanced updates, we need

to prepare experts trained until the convergence for a

given dataset (step 1). We firstly train an expert E1 until

convergence, after that just copy its parameters to all other

experts E2, · · · , EN ′ to save training cost. Note that if two

or more experts output the same result, we only update the

expert with the smallest index among them.

Global identity assumption. Further stabilizing the com-

petition, we introduce an assumption that any region in a

noisy image p belongs to the same domain in the dataset.

We refer to this assumption as global identity assumption.

With this assumption, we randomly sample several patches

{[p1, · · · , pNp ], [q1, · · · , qNp ]} from an image pair {p, q}
and group them into a mini-batch for each iterations, where

Np is a number of patches sampled from an image. Under

the global identity assumption, Eq. 1 is rewritten as

Lj =

Np∑

k=1

L(Ej(p
k), qk). (2)

This assumption is necessary to perform a mini-batch pro-

cessing in a training with the competition because we as-

sume the input dataset is unlabeled. We describe an overall

procedure of the training with the competition of experts

under the global identity assumption in Algorithm 1.
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Figure 2: Overview of the evaluation network. Several parts of an input image, which grouped into a mini-batch, are fed into the gating

network to select a suitable expert. After that, the whole of the input image is processed by the selected expert to remove the noise.

4. Implementation

4.1. Network Design

The expert network used in our experiment is based on

DnCNN [33]. The each layer of DnCNN are combinations

of 3 × 3 convolution with zero-padding, ReLU [11], and

Batch Normalization (BN) [17]. Unlike the original net-

work, we do not utilize BN because we make a mini-batch

from a single image in the training dataset (i.e., global iden-

tity assumption), and the mini-batch size is rather small. In

addition, we adopt several different combinations of net-

work depth and number of filters for our experiments. Here,

we refer to our modified version of the original DnCNN as

DnCNN-woBN-dXcY, where X and Y denote the network

depth and the number of filters, respectively. Note that the

original DnCNN consists of 17 and 20 convolution layers

with 64 filters for specific noise and blind noise level tasks,

respectively.

A gating network which selects a promising expert for

an input image is required in the evaluation. A proposed

gating network consists of a plain four-layer CNN followed

by a global average pooling (GAP) [23] and a fully con-

nected layer. Each convolution layer has 16 filters with a

kernel size of 3 × 3, and the first three layers are followed

by Parametric ReLU [16]. Since we adopt the global iden-

tity assumption in the training, it is also possible to sample

parts of an input image in the evaluation, reducing the com-

putational cost of the gating network. The gating and expert

network architectures are illustrated in Fig. 2.

4.2. Datasets

We used 400 images from BSDS500 [25] and 4,744 im-

ages of WED [24] for the training. The noisy images were

generated by synthesizing AWGNs or JPEG compression

noises. During training, one of the two noise sources was

randomly selected with equal probability for an iteration.

The noise level σ of AWGN was uniformly selected from a

range of [0, 55], and the quality factor q of JPEG compres-

sion was uniformly selected from a range of [5, 100].

For the evaluation, 136 images consist of two sets of

BSD68 [28] was utilized. One of the test sets was gener-

ated by adding AWGNs to the BSD68 with the noise level

of σ = {n × 55/68}67n=0
, where n is the index of an im-

age in BSD68 (i.e., the images have different noise levels

at an interval of 55/68). Similarly for the another test set,

quality factors of the JPEG compression were arranged as

q = {5+n×95/68}67n=0
. Here the compression qualities are

rounded to integer values. We refer a test dataset consists of

the above two sets of images (i.e., a total of 136 images)

to BSD68-GJ. Note that some of the following evaluations

were performed on the plain BSD68 dataset with specific

noise levels.

4.3. Training and Inference

We cropped 16 patches (the size of each patch is 64×64)

from an image and grouped them into a mini-batch to train

the experts (global identity assumption). After initializing

each expert with an identical pre-trained weight, the ex-

perts were specialized via a competition, i.e., only the ex-

pert which led to the lowest error for each mini-batch was

updated. During the training, the gating network was simul-

taneously trained by using the index of the winner expert as

the target label. Owing to this, we can conduct validation

at any training stage. The MSE loss and cross entropy loss

were used for training experts and gating network, respec-

tively. We used Adam optimizer [20] with a fixed learn-

ing rate of 1 × 10−4 for both gating and expert networks.

It should be noted that our DnCNN-woBN-d17c64 trained

for a specific level AWGN (σ = 25) without competition

shows similar peak signal-to-noise ratio (PSNR) with the

original work: PSNR (ours) = 29.18 dB , PSNR (origi-

nal work [33]) = 29.23 dB. For a fair comparison, we also

trained our model only with BSD400 dataset as in the origi-

nal work [33]. The performance drop was negligible (−0.01
dB).

For the evaluation, five non-overlapping patches (the size

of each patch was 64× 64) cropped from a test image were

fed into the gating network. Then a suitable expert was se-

lected according to an average of the outputs of the gate.

After that, the selected expert processes the original image

to recover a corresponding ground-truth image. The overall

evaluation network is illustrated in Fig. 2.
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Figure 3: Top: Recorded performance of DnCNN-woBN-d5c16

for BSD68-GJ obtained with (green) and without (gray) competi-

tion. For the condition with the competition, the number of experts

is set to seven and the competition starts from 201st epoch after

original expert converges well. Bottom: Recorded transitions of

winning numbers of the seven experts within the latest epoch. The

experts differentiate into each branch after starting the competi-

tion, and the winning numbers finally settle down to a constant

ratio.

5. Experiments

5.1. Details of Competition of Experts

Figure 3 (Top) shows the historical average PSNR during

the training with and without competition. The DnCNN-

woBN-d5c16 was used as the expert networks, and the

PSNR was computed for the BSD68-GJ at each training

epoch. For the condition with the competition, the number

of experts N ′ was set to seven and the competition started

from 201st epoch after the original expert converged ade-

quately. The result demonstrates the effectiveness of the

proposed method by about 1 dB improvement in the aver-

age PSNR. Figure 3 (Bottom) shows historical transitions of

the winning numbers of each expert within the latest epoch.

The experts differentiated into respective branches within

10 epochs after starting the competition. After that, the win-

ning numbers gradually transited, and finally settle down to

a constant ratio. The PSNR increased in the regime where

the ratio of the winning numbers changed, indicating that

the training data was spontaneously separated into appro-

priate domains to enhance the denoising performance. We

note that such a transition behavior during training was re-

produced for several executions, showing the stability of the

proposed method.
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Figure 4: Performances of DnCNN-woBN-d5c16 for BSD68-GJ

as a function of the number of experts N ′. The results of the single

expert selected by the gate are shown with the green circle. The

average PSNR steadily increases as more experts are utilized. En-

semble results averaging all the experts’ outputs are shown with

the blue square. Performance drops by the ensemble indicate the

success of the expert specialization.
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Figure 5: Visualization of expert assignment for different noise

sources/levels in three conditions of N ′
= 3, 7, 11. The test im-

ages of each row are generated from BSD68 by adding a specific

level AWGN (σ = 5, 10, 15, 25, 35, 50) or compressing via a spe-

cific JPEG quality (q = 80, 60, 40, 20, 10, 5). The test images are

assigned to an index of expert which maximizes PSNR.

5.2. Number of Experts

Figure 4 shows the average PSNR of DnCNN-woBN-

d5c16 for the BSD68-GJ as a function of the number

of experts N ′. The average PSNR steadily increases as

more experts are utilized, and it started to seem satu-

rated as the number of experts exceeds seven. Figure 5

visualizes which expert maximized performance for dif-

ferent noise sources/levels in three conditions of N ′ =
3, 7, 11. The test images of each row were generated

from BSD68 by adding a specific level AWGN (σ =
5, 10, 15, 25, 35, 50) or compressing via a specific JPEG

quality (q = 80, 60, 40, 20, 10, 5). The test images were

assigned to an index of expert which maximized PSNR. In

our experiment, training data did not have distinct domains

because the noise level was gradated via the random uni-

form selections. In consequence, as shown in Fig. 5, the

more experts were implemented, the more finely the train-

ing domains were divided. Such a fine segmentation, how-

ever, might trigger overfitting and/or lead to failure in the

selection of experts, and thus it might limit denoising per-

formance (see Fig. 4).



Figure 6: PSNR vs. network complexity curve. Four different

expert networks DnCNN-woBN-d5c8, d5c16, d9c32, and d17c64

are utilized and evaluated for BSD68-GJ with (green) and without

(gray) competition. The number of experts is seven for the con-

dition with the competition. As depicted by the arrow, the total

complexity is reduced by up to approximately 90% without sacri-

fice of the denoising performance.

5.3. Computational Efficiency

Figure 6 shows PSNR vs. network complexity curve

(complexity means the total number of parameters). The

four different expert networks DnCNN-woBN-d5c8, d5c16,

d9c32, and d17c64 were utilized in this case and evaluated

for BSD68-GJ with and without competition. The number

of experts was seven for the condition with the competition.

The total complexity of this model is defined as a sum of

the complexity of the gating network and the expert. Here

the gate complexity is calculated as the product of the orig-

inal gate complexity and the area ratio of sampled patches

to the whole of the input image. As depicted by the ar-

row in Fig. 6, a total complexity was saved up to approxi-

mately 90% by the competition of experts while the accu-

racy was maintained. The competition of experts is more ef-

ficient and effective than models without competition in the

low-complexity regime. This result indicates our method is

suitable for fast processing applications. Nevertheless, the

proposed approach is also beneficial for the d17c64 corre-

sponding to the standard DnCNN (by +0.13 dB of PSNR).

5.4. Visual Comparison

Figure 7 shows visual comparisons between with and

without competition along with different levels of AWGNs

and JPEG compression noises. The employed architecture

was DnCNN-woBN-d5c16, and the number of experts was

seven for the competition. For almost all noise levels, the re-

sults obtained through competition demonstrate better per-

ceptual quality than that of the single model. In particular,

the model trained via competition preserves fine details in

the ground-truth images for the low-noise conditions while

the single model overly denoises images and tends to blur

characteristic details of the ground-truth images.

Mode Non-Blind Blind (for AWGN and JPEG)

Method NL-means1 BM3D2 d5c16 d9c32

σ = 15 29.78 31.10 30.60 31.15

σ = 25 27.43 28.63 28.25 28.64

σ = 50 24.62 25.69 25.25 25.79

Time (s) 0.595 4.853 0.137 0.952

Mode Non-Blind

Method WNNM

[13]

EPLL

[35]

MLP

[5]

TNRD

[7]

DnCNN

[33]

σ = 15 31.37 31.21 - 31.42 31.73

σ = 25 28.83 28.68 28.96 28.92 29.23

σ = 50 25.87 25.67 26.03 25.97 26.23

Time (s) 1572.22 353.37 100.02 8.007 28.14

Table 1: Top: Average PSNR and execution time for BSD68 (im-

age size is 481×321) synthesized with specific level AWGNs. The

number of experts is seven for our methods DnCNN-woBN-d5c16

and d9c32. All of the algorithms are executed by a single-threaded

CPU, and the test images are processed one by one. Bottom:

PSNR scores reported in some more non-blind baselines. Run

times are estimated from the run time of BM3D on our machine

(top table) and the reported run times in Abdelhamed et al. [1].

Mode Blind (for JPEG) Blind (for AWGN and JPEG)

Method Knusperli d5c8 d5c16

q = 10 27.14 / 0.7824 27.46 / 0.7874 27.82 / 0.7948

q = 20 29.08 / 0.8536 29.86 / 0.8675 30.18 / 0.8719

q = 40 31.22 / 0.9041 32.31 / 0.9176 32.38 / 0.9162

Time (s) 0.108 0.068 0.138

Table 2: Average PSNR, SSIM, and execution time for BSD68

(image size is 481× 321) compressed by specific JPEG qualities.

The number of experts is seven for our methods DnCNN-woBN-

d5c8 and d5c16. All of those algorithms are executed by a single-

threaded CPU, and the test images are processed one by one.

5.5. Comparison with Prior Arts

We compare our model (N ′ = 7) trained for both of the

AWGN and JPEG noise removal with several existing de-

noising methods. As a common benchmark, we used plain

BSD68 dataset with specific noise levels. For AWGN re-

moval, two non-blind patch-based methods were employed

as the benchmark: NL-means algorithm implemented in

Scikit-image [29] and C++ implementation of BM3D [21].

For JPEG compression noise removal, Knusperli [12] a de-

blocking JPEG decoder recently developed at Google Open

Source was employed as the benchmark. The execution

times of all algorithms were based on a single thread on

the laptop machine equipped with an Intel Core i5 CPU @

2.3GHz with 16GB of memory.

1We applied fast-mode NL-means of the Scikit-image with the known

noise level σ (i.e., non-blind mode). For each noise levels, the h parameter

computing the decay in patch weights was hand-tuned from 0.3 × σ to

0.9× σ at interval of 0.1× σ to demonstrate the approximately best-case

performance.
2We used the DCT transform for the step 1 algorithm and the Bior trans-

form for the step 2 algorithm without using any other options. We found

this setting demonstrated the best performance in terms of computational

efficiency.
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Figure 7: Visual comparisons between with and without competition. The employed architecture is DnCNN-woBN-d5c16, and the number

of experts is seven for the competition. (a) A ground-truth image from BSD68. (b) From top to bottom: inputs and denoising results with

and without competition for different AWGN levels 0 (without noise), 5, 10, 15, 25, 35, and 50, respectively. (b) From top to bottom:

inputs and denoising results with and without competition for different JPEG compression qualities null (without compression), 80, 60, 40,

20, 10, and 5, respectively.

Table 1 (Top) summarizes the average PSNR and ex-

ecution time for BSD68 synthesized with specific level

AWGNs. Our DnCNN-woBN-d9c32 shows the highest

PSNR scores for all of the noise levels, and its execution

time is approximately five times faster than that of BM3D.

Furthermore, our DnCNN-woBN-d5c16 is more than four

times faster than fast-mode NL-means while demonstrating

overperformance in PSNR by approximately 0.8dB. Table 1

(Bottom) shows scores reported in some more non-blind

methods. Though they show higher PSNR than our d9c32

network, they are one to three orders of magnitude larger

in computations. Moreover, they evaluated in the non-blind

condition which is much easier than our blind condition.

Table 2 summarizes the average PSNR, structural sim-

ilarity (SSIM) [32], and execution time for BSD68 com-

pressed by specific JPEG qualities. Both of the DnCNN-

woBN-d5c8 and d5c16 indicate higher performance than

the model of Knusperli, and the execution of DnCNN-

woBN-d5c8 is 37% faster than Knusperli. Visual compar-

isons between our method and prior arts for AWGNs and

JPEG compression noises are exhibited in Fig. 8 and Fig. 9.

6. Conclusion

In this paper, we proposed an efficient ensemble network

trained via a competition of expert networks, aiming appli-

cation for low-level vision tasks. We apply the proposed

method to image blind denoising and realize automatic di-

vision of unlabeled noisy datasets into clusters respectively

optimized to enhance denoising performance. This method

enables to save up to approximately 90% of computational

cost without sacrifice of the denoising performance com-

pared to single network models with identical architectures.

We also compare the proposed method with several existing

algorithms and observe significant outperformance over the

standard denoising algorithm BM3D in terms of computa-

tional efficiency.

The training procedure of our method relies on an as-

sumption that any region in an input image belongs to the

same domain in the dataset. Consequently, it is difficult

to deal with spatially variant low-frequency features of im-

ages. A further extension of our method would be the adap-

tion for other low-level vision tasks.



(a) Input (b) NL-means (c) BM3D (d) d5c16 (e) d9c32 (f) Ground truth

Figure 8: Visual comparisons between our method and prior arts NL-means and BM3D for three test images synthesized with specific level

AWGNs. From top to bottom: σ = 15, 25, 50. The number of experts is seven for our methods DnCNN-woBN-d5c16 and d9c32.

(a) Input (b) Knusperli (c) d5c8 (d) d5c16 (e) Ground truth

Figure 9: Visual comparisons between our method and a prior art Knusperli for three test images compressed by specific JPEG qualities.

From top to bottom: q = 40, 20, 10. The number of experts is seven for our methods DnCNN-woBN-d5c8 and d5c16.
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