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Abstract

Recent advancements in Neural Architecture Search

(NAS) resulted in finding new state-of-the-art Artificial Neu-

ral Network (ANN) solutions for tasks like image classifi-

cation, object detection, or semantic segmentation without

substantial human supervision. In this paper, we focus on

exploring NAS for a dense prediction task that is image de-

noising. Due to a costly training procedure, most NAS solu-

tions for image enhancement rely on reinforcement learning

or evolutionary algorithm exploration, which usually take

weeks (or even months) to train. Therefore, we introduce

a new efficient implementation of various superkernel tech-

niques that enable fast (6-8 RTX2080 GPU hours) single-

shot training of models for dense predictions. We demon-

strate the effectiveness of our method on the SIDD+ bench-

mark for image denoising [3].

1. Introduction

Neural architecture search (NAS) seeks to automate the

process of choosing an optimal neural network architecture.

Thanks to the trainable formulation of a model structure se-

lection, it enables optimization not only for the underlying

task but also for additional execution properties, e.g. mem-

ory constraints, or inference time. A number of search tech-

niques have been proposed, including ones based on rein-

forcement learning [41], evolutionary algorithms [29], or

gradient descent [6, 20, 22, 36].

The greatest challenge posed by most NAS algorithms is

a trade-off between search time and memory requirements

of the search procedure. In classical approaches, namely re-

inforcement learning or evolutionary algorithms, the statis-

tics collected during parallel training of multiple samples

from the architecture space drive the exploration process.

As the exploration algorithm usually needs to train these

samples from scratch, the search procedure requires hun-

dreds [21] or thousands [7, 28, 42] of GPU hours to be per-

formed. In order to alleviate this problem, multiple tech-

niques were proposed. One of the most popular ones either

narrows down the search to find a local cell structure which

is later replicated throughout the network [42] or sharing

weights across trained model samples [27]. It is crucial

to notice that the memory requirements of a given training

procedure are proportional to the most memory consuming

model from the explored search space. This property makes

these methods a good first shot at performing neural archi-

tecture search for image enhancement tasks, where the size

of individual models often fills the entire GPU memory.

An alternative approach, which is usually called single-

shot [4, 5, 15] search, seeks a different solution to the afore-

mentioned issues. It models the search space in the form

of a supernetwork, which is also a neural network itself.

Then the search process is performed using gradient de-

scent. These methods frequently reduce the overall search

time from a couple of weeks to even a few hours [32]. Un-

fortunately, a huge downside of this approach is the fact

that since supernetwork contains the whole search space,

its memory requirements are significantly larger than those

of typical network from the search space. This issue is even

more important for the case of dense prediction tasks, where

even a single model might be highly demanding in terms of

memory use.

An efficient midway point is the superkernel approach.

It reduces the structural supernetwork part to a single con-

volutional kernel, which cuts its memory requirements by

order of magnitude. The improvement is achieved at the

cost of narrowing down the search space selection to ker-

nel sizes and the number of filters of a standard convolution

operator.

A common solution to both prolonged training time and

memory usage is using a proxy dataset. This dataset is

usually smaller, both in terms of the number of examples

and image size (e.g. using CIFAR10 instead of ImageNet

for image classification). After initial training on a smaller

dataset, the search procedure transfers the final architecture

to the target task. Several approaches try to perform an ar-

chitecture search procedure in a proxyless manner, directly

on target data. It is achieved by either using a simplified

search space [36] or by compressing / pruning supernet dur-



ing training [6]. The proxy-less approach may be partic-

ularly appealing for image enhancement tasks (like image

denoising). For these tasks, using a proxy dataset is hard as

proper training procedure requires high-resolution images.

In this work, we propose a new relaxed superkernel so-

lution for image denoising, which is fast in training (6-8

GPU hours), memory-efficient (a supernetwork fits a single

GPU with a batch size of 4) and might be trained in a prox-

yless manner using input image resolution of 128x128. We

evaluate our models on a SIDD+ [3], (part of NTIRE 2020

Challenge on Real Image Denoising [1, 2, 3]) dataset for

image denoising achieving state-of-the-art results.

2. Related work

2.1. Reinforcement Learning and Evolutionary al­
gorithms for Neural architecture search

Initial approaches tackled Neural Architecture Search by

using reinforcement learning and evolutionary algorithms.

A seminal paper [41] used a reinforcement learning con-

troller in order to produce network structures which were

then trained from scratch and evaluated. Because of that,

the whole training procedure took thousands of GPU hours

to train a state-of-the-art model for the CIFAR10 dataset. In

order to speed up computations, in the following work [42],

the search space was narrowed down to only a small number

of subnetwork structures, later repeated to form the final ar-

chitecture. This approach was later improved by sharing

weights across different subnetworks in order to transfer

knowledge [27]. Similarly, [28] used a genetic algorithm

instead of reinforcement learning to drive the optimization

process, whereas [7] combined both of these approaches.

As memory requirements of these methods are propor-

tional to the memory requirements of the biggest model

in search space, this technique was used for memory de-

manding image enhancement tasks like super-resolution

[14, 31, 8], medical image denoising [23], image restora-

tion [37, 34, 16] and image inpainting [19].

2.2. Single-shot approaches

Another approach is to model the search space itself in

the form of a neural network. Usually, it is done by a con-

tinuous sampling relaxation procedure, which approximates

the discrete process of architecture selection in a differen-

tiable manner. e.g. in [22] authors used softmax weights

to approximate operation selection. More precisely, the ap-

proximation was achieved by combining outputs from each

operation using softmax weights with learnable logits. The

supernetwork was trained using a two-level gradient-based

optimization process to separate training of convolutional

weights and structural parameters. The final architecture

was obtained by choosing operations by the highest logit

value.

Authors of [20] pushed this approach even further and

used softmax weights as a relaxation of both global CNN ar-

chitecture (channels, strides, depth, connectivity) and local

cell structure. The algorithm finds a network for a seman-

tic image segmentation task that adjusts its architecture to a

provided dataset. A search space forms a grid built of a local

layer structure called a cell. Each cell is a general acyclic

graph with learnable connections between k individually

chosen and optimized operations. A grid consists of a repli-

cated cell and a connectivity structure, which enables mod-

eling multiple popular CNN designs like DeepLabv3, Au-

toEncoder, or Stacked Hourglass. The architecture search

phase lasts several days on a P100 GPU.

Given that softmax weights can be an inaccurate approx-

imation of discrete sampling when the entropy of modeled

distribution is high, [36] introduced Gumbel Softmax ap-

proximation to neural architecture search [17]. In this tech-

nique, stochastic weights, used for combining different op-

erations, seem to resemble one-hot coefficients better than

softmax. The proposed solution is a computationally light-

weight algorithm that finds a device-aware CNN architec-

ture for an image classification task. The algorithm works

on a predefined global CNN structure, /ie, channels, strides,

and depth. The search space is spanned by a set of tensor

operations, including different convolution setups, pooling,

and skip connections. Optimal operation is found via gradi-

ent descent for each layer individually, taking into account

classification metrics as well as FLOPs. The algorithm finds

different architectures for different hardware setups, i.e.,

Samsung S10, and iPhone X. Again, the architecture search

phase is time-consuming at hundreds of GPU hours.

The massive downside of the single-shot methods pre-

sented above is that they require computations of all possi-

ble operations in order to perform a single iteration of the

search. In [6], authors try to circumvent this issue by intro-

ducing search space subsampling, which decreases memory

cost. At each iteration, a training update is performed only

on a randomly selected subset of possible operations. Still,

these models usually require approximately twice as much

memory as the most demanding model from the search

space.

2.3. Superkernels

In order to alleviate memory issues, [32] introduces a

new technique called a superkernel. In this method, the au-

thors switch the search procedure from operation selection

to kernel selection. It uses a concrete distribution in order

to zero out parts of the maximal kernel, which is trained and

shared across all models from the search space. As the size

of the output of the convolution operation is usually of a few

orders of magnitude greater than the size of its parameters,

the additional cost of a search performed in the kernel space

is negligible. In 4, we introduce a few new variations of this



technique based on the Gumbel Softmax relaxation [17].

2.4. Deep Learning for Image denoising

Several deep learning approaches were applied to image

denoising task since the first successful MLP approach [30]

achieved performance comparable to then state-of-the-art

BM3D [10] approach. In [38], the authors used stacked con-

volutional blocks in order to approximate the residuum be-

tween noisy image and its cleaned version. Similarly, [25]

introduced a residual connection not only between the input

and the output of a network but also between model chained

convolutional blocks. In Memnet [33], the authors intro-

duced memory mechanisms based on recurrent and gating

units in order to combine multi-level representations of an

input image.

All of the methods presented above do not use any form

of pooling/downsampling, which introduces a high compu-

tational cost. In order to alleviate this issue [24] used U-

NET architecture. By applying the pooling / upsampling

operations, they decreased the resolution of the inner con-

volutional volumes. It significantly cut the memory and

computational burden of computations. In SGN [13], the

authors noticed that using traditional pooling / upsample

operations significantly decreased the quality of reconstruc-

tion as a lot of low-level image information is lost. Because

of that, they introduced a shuffling (subpixel) rescaling de-

signed to keep more details without significant growth in a

computational cost. Moreover - thanks to a top-down self-

guidance algorithm enables a light-weight combination of

the multiscale image features.

3. Models for image denoising

In this section, we will introduce the base architectures

that we used in our experiments. We transformed each

of them into Neural Architecture Search supernetworks by

introducing superkernels instead of standard convolutional

filters.

3.1. Superkernel­based Multi Attentional Residual
U­Net

The proposed architecture of the Superkernel-based

Multi Attentional Residual U-Net network is shown in

Figure 1. The network comprises multiple subnetworks

named SK-A-RES-UNET trained simultaneously. The out-

come of each subnetwork is passed to the channel attention

block [39]. As the final layer, we used convolution with a

kernel size of k = 3 to reduce the number of channels. The

final output is additionally summed up with the input image.

The architecture of Superkernel-based Attentional

Residual U-Net subnetwork is shown in Figure 2. This

network is a modification of U-Net architecture, addition-

ally equipped with attention mechanism and superkernel-

based densely connected residual blocks (SK-DCRB). Each

Figure 1. The architecture of Superkernel-based Multi Atten-

tional Residual U-Net network

encoder layer has the same structure. Specifically, it con-

sists of a convolutional layer with kernel size k = 3 fol-

lowed by the ReLU activation function and SK-DCR block.

As in vanilla U-Net architecture, the output of the encoder

layer is passed to the decoder layer at the same spatial level.

Each decoder layer takes the output from skip connection

and the result from the previous layer. Unlike the com-

mon U-Net architectures, after the concatenation operation

in each decoder layer, the channel attention block (CAB)

is applied. We used the convolutions with a stride of 2 for

down-sampling and shuffle/subpixel layers [13] for upsam-

pling.

Figure 3 presents the schema of Superkernel Densely

Connected Residual Block. This block has a similar struc-

ture as proposed in [26]. Each SK-DCR block comprises

three convolutional layers followed by ReLU activation

functions. We substituted the first two convolutional opera-

tions with superkernel. This approach allows the network to

learn the most appropriate kernel size and growth rate. The

output convolutional layer restores the number of filters.

3.2. Superkernel SkipInit Residual U­net

The architecture of the network is similar to the one de-

lineated in Figure 2. The part that differs is the actual convo-

lutional blocks. In Superkernel-based SkipInit Residual

U-net there are multiple (2 in the chosen network) Densely

Connected Residual Blocks (see for instance [40]) with a

SkipInit scalar multiplication to stabilize learning as pro-

posed in [11]. The outline of this block is presented in Fig-

ure 4. Briefly, the output of each residual branch is multi-

plied by a trainable scalar, which is initialized to zero, thus

Figure 2. The architecture of Superkernel-based Attentional

Residual U-Net subnetwork



Figure 3. The outline of Superkernel Densely Connected Resid-

ual Block

Figure 4. The architecture of Densely Connected Residual Block

with SkipInit Connection subnetwork

making the block working like identity transformation at the

beginning. If the optimization chooses to use the residual

branch, then this scalar (denoted by alfa in Figure 4) will

alter. The number of filters at a particular level is double

the number of filters at the level directly above it, starting

with 64 at level 0. The training of convolutional hyperpa-

rameters follows the Joint Superkernel regime described in

Section 4.1.

4. Superkernels

In each of the following architectures, we applied a neu-

ral architecture search in order to find the optimal number

of filters and kernel sizes for each convolution block. The

search procedure was based on multiple modifications of a

superkernel technique, namely:

• Factorized Gumbel Superkernel,

• Joint Gumbel Superkernel,

• Filterwise Gumbel Superkernel,

• Filterwise Attention-based Superkernel.

In every method, the neural architecture search explores dif-

ferent possibilities of kernel sizes and the number of fil-

ters. Each selection is obtained by appropriate slicing of a

maximal kernel, called superkernel, and the way how this

slicing is performed differs across different methods. In

Figure 5. The schema of Joint Superkernel and Factorized Su-

perkernel slice generation. A slice generated from choosing ker-

nel size 1 from possible k ∈ {1, 3} and filter size 32 from possible

f ∈ {32, 48}.

each, the algorithm aims to optimize the structural distri-

bution over a set of possible slices. We will later refer to the

procedure of optimization of these structural parameters as

search. Below one may find a detailed description of each

NAS method.

4.1. Joint Superkernel

Using this technique, search is performed over a set of

slices Sk,f where k ∈ {k1, . . . knk
} is a size of a kernel and

f ∈ {f1, . . . , fnf
} is a number of filters. Both values fi and

ki differ across different models and architectures. For each

of these superkernels a maximal superkernel with a kernel

size of maxi=1,...nk
ki and maxi=1,...nf

fi filter numbers

is trained and shared across every subkernel. A slice Sk,f

consists of a centered subkernel with a kernel size k and

first f filters of the maximal superkernel (see Figure 5).

The structural distribution is modeled as a soft-

max distribution over a set of all possible tuples
{

(k, f) : k ∈ {k1, . . . , knk
}, f ∈ {f1, . . . , fnf

}
}

, with a

single logit parameter θ(k,f) per tuple.

4.2. Factorized Superkernel

In this technique the set of subkernels is the same as

for Joint Superkernel in Section 4.1, but the structural dis-

tribution is factorized into two independent distributions

pk,f = pkpf , where pk and pf are softmax distributions

over a set of possible kernels and filter sizes. In this

scenario the optimized parameters form two sets of logit

parameters: {θki
: ki ∈ {1, . . . nk}} for kernel slices and

{θfi : fi ∈ {1, . . . nf}} for filter slices. In comparison to

Joint Superkernel, such factorization significantly reduces

number of parameters of structural distributions (from nfnk

to nf + nk) at the cost of smaller modeling flexibility.

4.3. Filterwise Superkernel

In this technique the search is performed over a set of

slices Sk,M where k ∈ {k1, . . . , kn} - is a size of a kernel

and M ∈ {0, 1}F is the set of all possible subsets of F
potential filters. For each subkernel a maximal superkernel

with kernel size of max ki and F filters is trained and shared



Figure 6. The schema of Filterwise Superkernel and Filterwise

Attention-based Superkernel slice generation. A slice gener-

ated by choosing kernel size 1 from possible k ∈ {1, 3} and with

selected filters f ∈ {2, 3, 7, 9} from 11 possible.

across every subkernel. A slice Sk,M consists of a centered

subkernel with kernel size k and and those filters for which

Mi = 1 (see Figure 6).

The structural distribution is factorized into two in-

dependent distributions pk,M = pkpM where pk is a

softmax distribution over the set of possible kernels and

pM is modelled by F i.i.d. Bernoulli distributions. pk
distribution is parametrized by a set of logit parame-

ters {θki
: i ∈ {1, . . . , kn}}, where each of F independent

Bernoulli filterwise distribution over Mi is controlled by a

single logit parameter θfi . .

4.4. Filterwise Attention­based Superkernel

In this technique, the set of subkernels is the same as in

Filterwise Superkernel (Sec. 4.3). Similarly, the distribu-

tion over kernel size k is also a softmax distribution over

possible kernels set. A substantial difference is in the way

the distributions over masks M ∈ {0, 1}
F

are governed.

Once again, each distribution over mask Mi is independent

Bernoulli. This time, however, each of these distributions

is parametrized by a single base logit parameter θbfi and an

attention key vector vAi ∈ R
l. The final logit of Bernoulli

distribution θfi is computed according to attention mecha-

nism [35]:

θfi = softmax
(

vA(vA)T
)

θbfi . (1)

4.5. Details of superkernel implementation

4.5.1 Sampling Relaxation

As slicing is a non-continuous operation, structural param-

eters of networks cannot be directly optimized using gra-

dient descent. In order to enable this type of training, we

applied a continuous approximation of sampling, namely

Gumbel Softmax and Relaxed Bernoulli distributions [17].

We present an outline of this relaxation for the case of Fac-

torized Superkernel.

We can rewrite a convolution on a volume x with a sam-

pled subkernel Sk,f in the following manner:

Conv (Sk,f , x) =
∑

Sk′,f′

Conv (Sk′,f ′ , x) I(k,f)=(k′,f ′),

(2)

where Sk′,f ′ goes through the set of all possible superker-

nels and I is an indicator function. The Gumbel relaxation

is equivalent to the following approximation:

∑

Sk′,f′

Conv (Sk′,f ′ , x) I(k,f)=(k′,f ′) ≈

≈
∑

Sk′,f′

Conv (Sk′,f ′ , x)GS(k′, f ′), (3)

where GS is a sample from a Gumbel Softmax distribution

with θ(k,f) logit parametrization of a softmax distribution

over a set of possible slices tuples (see Section 4.1).

4.5.2 Mask sampling reparametrization

In the approximation presented above, one still needs to

compute nknf operations in order to perform the final sum-

mation. We decided to decrease the computational and

memory burden by using a mask sampling trick. A superk-

ernel slice might be reparametrized as Sk,f = S∗Ik,f where

S is a superkernel shared across every subkernel, Ik,f is the

appropriate subkernel slice applied to all-ones kernel of the

same shape as S and ∗ is the Hadamard product of two ten-

sors. This reparametrization enables the following reformu-

lation of the sampling operation:

∑

Sk′,f′

Conv (Sk′,f ′ , x)GS(k′, f ′) =

= Conv



S ∗
∑

Sk′,f′

Ik′,f ′GS(k′, f ′), x



 . (4)

The RHS of the above equation needs only a single run

of convolution operation with the maximal superkernel S
masked with an average subkernel mask. This substantially

decreases computational burden, both in terms of FLOPs

and memory requirement, and enables full NAS treatment

for image denoising.

4.5.3 Mask Sampling reparametrization - issue with a

non-linear activation function

One may notice that the derivation above is not accurate for

a search procedure which involves not only a Conv operator

but also a non-linear activation function. This is because of



the relation:

∑

Sk′,f′

f (Conv (Sk′,f ′ , x)GS(k′, f ′))

= f



Conv



S ∗
∑

Sk′,f′

Ik′,f ′GS(k′, f ′), x







 (5)

holds only for additive functions f . Both ReLU and

PReLU, which were used in our experiments, do not have

this property. Because of that, we tested two possibilities:

• full - where in order to keep computational feasibility

we decided to ignore this fact and treat the RHS of the

equation above as an approximation of the LHS,

• separate - where all components of the LHS were

computed separately.

We have tested both approaches on a set of smaller archi-

tectures and did not notice any significant difference. If a

model has a separate component in its name, it indicates

it was trained using a separate approach. Otherwise it was

trained using full treatment.

4.5.4 Bias sampling

We have applied a similar sampling technique as in the case

of convolutional kernels to the biases. As the biases vector

size is equal to the number of filters, the appropriate mask

for bias slice is obtained by averaging kernel mask in all but

filter dimensions.

4.5.5 Final model distillation

Once structural parameters and weights of a model are

trained, we need to distill the model with the best kernel and

filter sizes. We applied the following distillation strategy:

• for structural parameters governed by a softmax distri-

bution, an option with a maximal probability was cho-

sen,

• for structural masks governed by a Bernoulli distribu-

tion, a filter was selected if its logit was greater than

0.5.

This distillation procedure was done independently for each

superkernel. We plan to use more sophisticated distillation

strategies as part of our future work.

5. Experimental results

We performed several experiments in raw RGB image

denoising task in order to test whether our approach to

the search for the best kernel size/number of output chan-

nels combination provides noticeable benefits to the base-

line (no-NAS) solution developed for the same task. In this

section, we briefly describe the training procedure and the

models used. We also provide the final results in terms of

achieved PSNR and SSIM scores.

5.1. Training details

We trained all our models on the SSID+ [3] training data

provided by NTIRE2020 Real Image Denoising rawRGB

competition organizers. In our training procedure, we split

the challenge images into two parts: 90% of images for a

training set, and the rest 10% for validation. The split is

stratified with respect to dataset mobile phone types. We

used the validation data provided by the organizers of the

competition as the final test set. We cut the training and

validation images into 128x128 patches. We use Adam op-

timizer [18] with a learning rate of 2∗10−5 for model train-

ing. The learning rate was kept constant during the learning

process. As our pipeline comprised of a large set of models

of different architectures and capacities, we decided to use

a popular early stopping technique to constrain the training

time. During the learning process, we monitored the PSNR

value on a validation dataset. We evaluated our model after

every 1K steps. In the case of no improvement in the PSNR

within 30 validation evaluations, we stopped the training

process. Depending on the hardware used (GeForce GTX

1080Ti or GeForce RTX 2080Ti), the training of our mod-

els lasted from a few hours up to 3 days.

5.2. Superkernel SkipInit Residual U­net

The overall architecture of the models in this section is

based on the U-net presented in [26]. Model 1 in this sub-

section is the one described in Section 3.2 with U-net depth

3, three searchable growth rates 0.2, 0.4 and 0.6 in the DCR

block. There are 2 DCR blocks of depth 2 at each U-net

level (both for the encoder and decoder parts). At level 0,

the maximum number of possible output channels is 32, and

it increases with arithmetic progression at each layer. Model

2 differs from Model 1 only in the U-net depth (2 instead of

3) and the maximum number of channels at level 0 (64 in-

stead of 32). The performance of theses models can be seen

in Tables 4.5.3 and 4.5.3.

5.2.1 Chosen architecture

The search space for both models included the choice of

kernel size (3 or 5) and growth rate (0.2, 0.4, 0.6) for the

DCR block, see Figure 4 and Section 3.2. There where 28
DCR blocks in Model 1 and 20 in Model 2.

Model 1 in the full version of the superkernel joint

framework, consecutively chose kernel size 5, with only a

couple of exceptions. As regards growth rates, all but three



Superkernel Type

Network architecture

Model 1 Model 2

PSNR SSIM PSNR SSIM

no superkernel 52.6738 0.99170 52.6883 0.99170
full 52.7330 0.99183 52.7344 0.99183

separate 52.74498 0.99184
filterwise 52.6444 0.99179 52.6817 0.99183

filterwise with attention 52.7059 0.99173 52.7053 0.99191

Table 1. Superkernel-based SkipInit Residual U-Net model with two different architectures (with self-ensemble).

Superkernel Type

Network architecture

Model 1 Model 2

PSNR SSIM PSNR SSIM

no superkernel 52.4937 0.99157 52.4490 0.99140
full 52.4638 0.99140 52.4752 0.99144

separate 52.4957 0.99148
filterwise 52.4561 0.99147 52.4151 0.99145

filterwise with attention 52.4239 99138 52.4278 0.99152

Table 2. Superkernel-based SkipInit Residual U-Net model with two different architectures (without self-ensemble).

DCR blocks chose the largest growth rate possible. In the

separate version, the story was similar, with kernel size 3
chosen only once.

In Model 2 with full version of superkernel joint, which

had a higher baseline number of filters, but was shallower,

as far as U-net architecture is concerned, chose kernel size 5
virtually everywhere. Growth rates were a bit different, with

approximately 40% DCR blocks choosing a growth rate of

0.4 and the rest choosing 0.6.

5.3. Superkernel­based Multi Attentional Residual
U­Net

Tables 5 and 5 contain PSNR and SSIM scores for ar-

chitecture described in Section 3.1. We trained several

models with a different number of subnetworks and su-

perkernel types. Table 5 lists results without self-ensemble

whereas models presented in Table 5 utilize self-ensemble

technique. We use architectures with 1, 3, and 6 subnet-

works. Each subnetwork has the same structure, as shown

in Figure 2. As illustrated in Table 5, the application of

the self-ensemble technique significantly improved the av-

erage PSNR and SSIM metrics. The best PSNR results

were obtained for models containing six subnetworks. The

mean PSNR value of models equipped with six subnetworks

(with self-ensemble) outperformed the 1-subnetwork and 3-

subnetwork models by 0.13 and 0.03, respectively.

5.3.1 Chosen architecture

The search space for the model consisted of kernel size and

growth rate of densely connected residual blocks. For every

first two convolutional layers in DCR block, the superkernel

had to select a filter size in k ∈ {3, 5, 7} and a growth rate in

1/r ∈ {1, 0.5, 0.25}. The final superkernel choices differed

depending on the part of the network. In the encoder part,

the superkernel selected the kernel sizes of 5 and 7 and the

growth rate of 1 and 0.5. In the decoder part, NAS selected

the kernel sizes of 7 and the maximum number of filters

(r = 1) with only some small exceptions.

6. Discussion

In all architectures introduced, at least one of Neural Ar-

chitecture Search methods significantly improved over no-

NAS baseline. The best single model - with 52.74 PSNR

used the separate joint superkernel - and was achieved by

SkipInit Residual U-net for Model 1. The difference be-

tween baseline architectures and searched ones is the most

significant (approx. 0.12 of PSNR) for small models (with

single subnetwork), which is promising from the perspec-

tive of model deployment on a mobile device.

The ablation study showed the importance of a self-

ensembling technique. On average, it provided an improve-

ment in both PSNR (0.21) and SSIM (0.0002) metrics. In-

terestingly, without self-ensembling, NAS models perform

significantly worse as compared to their no-NAS baselines.

7. Potential improvements and future work

Although our search procedure shows the most signif-

icant PSNR improvement for small models, this comes at

the cost of the selection of convolutional kernels with more

spacious kernel sizes and higher the number of filters. How-



Superkernel Type

Number of subnetworks n
n=1 n=3 n=6

PSNR SSIM PSNR SSIM PSNR SSIM

no superkernel 52.3517 0.99156 52.4523 0.99126 52.4833 0.99136
factorized 52.2690 0.99124 52.3799 0.99134 52.4032 0.99150

joint 52.3925 0.99138 52.4153 0.99140 52.4118 0.99147
filterwise 52.2887 0.99121 52.3503 0.99145 52.3516 0.99131

filterwise with attention 52.2932 0.99122 52.4365 0.99144 52.4195 0.99119

µ ± σ
52.3190 0.99132 52.4069 0.99138 52.4139 0.99137
±0.0459 ±13.39e-5 ±0.0373 ±7.05e-5 ±0.0421 ±11.22e-5

Table 3. Superkernel-based Multi Attentional Residual U-Net model for different number of subnetworks and superkernel types (without

self-ensemble).

Superkernel Type

Number of subnetworks n
n=1 n=3 n=6

PSNR SSIM PSNR SSIM PSNR SSIM

no superkernel 52.4470 0.99157 52.5969 0.99150 52.6642 0.99159
factorized 52.4998 0.99157 52.6184 0.99167 52.6981 0.99176

joint 52.5668 0.99163 52.6016 0.99164 52.6189 0.99159
filterwise 52.5144 0.99150 52.5982 0.99180 52.6654 0.99163

filterwise with attention 52.5438 0.99157 52.6880 0.99186 52.5943 0.99150

µ ± σ
52.5144 0.99157 52.6206 0.99169 52.6482 0.99161
±0.0409 ±4.12e-5 ±0.0346 ±12.64e-5 ±0.0369 ±8.45e-5

Table 4. Superkernel-based Multi Attentional Residual U-Net model for different number of subnetworks and superkernel types (with

self-ensemble).

ever, a differentiable representation of kernel size enables

the introduction of additional computational constraints to

an optimization process. We expect that training equipped

with additional computational regularization should result

in finding models deployable on portable devices.

Our search procedure resembles variational inference

methods for Bayesian Deep Learning; thus, our method

might suffer from an insufficient exploration of a search

space as reported in [12]. This issue might arise as our

methods explore only points which are close to gradient de-

scent trajectory, which narrows the explored region of the

search space and makes it potentially sensitive to weight ini-

tialization. We plan to explore this sensitivity as our future

work. Moreover, in our training procedure, both weights

and structural parameters are optimized jointly. We plan to

explore a two-level optimization (similar to [22]) in order

to inspect how the coupling of these parameters affects the

results.

As sampling within different superkernels is performed

independently, there may arise issues connected to fairness

[9]. Because of that, the network might quickly converge

to a random sub-optimal solution, according to Matthew’s

law. We plan to test more advanced probabilistic models

(e.g. based on Markov Random Fields, recurrent neural net-

works, or attention) in order to model more advanced search

spaces and perform broader exploration.

Additionally, we observed that the training procedure

could have a significant impact on the final results. Specifi-

cally, models equipped with superkernel might need longer

training time (higher patience) in comparison to non-

superkernel models. We suspect that this might be a rea-

son behind performance drop for NAS models without self-

ensembling. We plan to investigate this topic in future work.

8. Conclusion

In this work, we introduced a fast and light-weight al-

gorithm for neural architecture search for image denoising.

We proved that it could achieve state-of-the-art results ex-

ceeding no-NAS solution by a significant margin. We have

shown that proposed superkernel techniques can achieve re-

sults comparable to the state-of-the-art architectures for im-

age denoising within few GPU hours.
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