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Abstract

Perceptual Extreme Super-Resolution for single image is

extremely difficult, because the texture details of different

images vary greatly. To tackle this difficulty, we develop a

super resolution network with receptive field block based

on Enhanced SRGAN. We call our network RFB-ESRGAN.

The key contributions are listed as follows. First, for the

purpose of extracting multi-scale information and enhance

the feature discriminability, we applied receptive field block

(RFB) to super resolution. RFB has achieved competitive

results in object detection and classification. Second, in-

stead of using large convolution kernels in multi-scale re-

ceptive field block, several small kernels are used in RFB,

which makes us be able to extract detailed features and re-

duce the computation complexity. Third, we alternately use

different upsampling methods in the upsampling stage to re-

duce the high computation complexity and still remain sat-

isfactory performance. Fourth, we use the ensemble of 10

models of different iteration to improve the robustness of

model and reduce the noise introduced by each individual

model. Our experimental results show the superior perfor-

mance of RFB-ESRGAN. According to the preliminary re-

sults of NTIRE 2020 Perceptual Extreme Super-Resolution

Challenge, our solution ranks first among all the partici-

pants.

1. Introduction

Single image super-resolution (SISR) is a task to gen-

erate high-resolution (HR) image with a single low-

resolution image. The algorithms of SISR can be di-

vided into three categories: interpolation-based methods,

reconstruction-based methods, and learning-based methods

[32]. Interpolation-based SISR methods are very speedy

and straightforward, such as bicubic interpolation [16] and

Lanczos resampling [9]. But some works have shown

that interpolation methods would lose the details of images

[31, 7]. Reconstruction-based SR methods [5, 24, 30] adopt
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sophisticated prior knowledge to restrict the possible so-

lution space with the advantage of generating flexible and

sharp details [32]. However, as the scale factor increases,

the performance of reconstruction-based SR methods de-

creases, and reconstruction-based SISR methods typically

cost a lot of time. Learning-based SISR methods usually

use machine learning algorithms to get the model which

produces the mapping from low resolution to high reso-

lution images. The learning-based methods has attracted

much attention owning to their outstanding performance

and fast computation. Such as Markov random field method

[10], neighbor embedding method [2], sparse coding meth-

ods [31, 33, 27], and random forest method [22]. Recently,

many deep learning based methods have been proposed to

solve the SISR problem, and deep learning based SISR

methods have demonstrated great superiority to other SISR

methods.

Recently, deep learning algorithms have been widely

used in different fields. Super-resolution CNN (SRCNN)

[6] is the first work to solve SISR problem using neural

network method, it reportedly demonstrated vast superior-

ity over traditional methods. The main reason it achieves

good results is the CNN’s strong capability of learning rich

features from big data in an end-to-end manner. After SR-

CNN was proposed, VDSR [17] further use deep model to

solve SISR problem, it has 20 layers in the network. EDSR

[20] proposed to remove the batch normalization (BN) layer

in model, for BN layer will introduce a shift to the fea-

ture, and this shift may be harmful to the final performance.

RCAN [35] was proposed using the channel attention in

SISR problem. However, these methods’ objective func-

tion has largely focused on minimizing the mean squared

reconstruction error, which lead to the SR results lack of

high-frequency details. To address this problem, super-

resolution using generative adversarial network (SRGAN)

[19] has been proposed, which can recover the finer texture

details even with large upscaling factors. Enhanced super-

resolution generative adversarial networks (ESRGAN) [29]

was proposed to further improve the performance of deep

learning based SISR model. With the powerful feature ex-

traction capabilities of deep learning models and the gener-
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ative adversarial method, deep learning-based methods can

effectively recover the finer details and textures.

NTIRE 2020 Perceptual Extreme Super-Resolution

Challenge, that is, the task of super-resolving (increasing

the resolution) an input image with a magnification fac-

tor ×16 based on a set of prior examples of low and cor-

responding high resolution images.The aim is to obtain a

model capable to produce high resolution results with the

best perceptual quality and similarity to the ground truth.

There are two difficulties in this challenge. First, we need

to develop a model that can effectively recover the finer de-

tails and textures of low resolution image, and make the re-

sults be both photo-realistic and with high perceptual qual-

ity. Second, we need to minimize time complexity as much

as possible while keep the satisfactory results at the same

time.

In this work, we proposed to use multi-scale Receptive

Fields Block (RFB) in the generative network to restore

the finer details and textures of the super-resolution image.

RFB can extract different scale features from previous fea-

ture map, which means it can extract the coarse and fine

features from input LR images. To reduce time complexity

and still maintain satisfactory performance, RFB use several

small kernels instead of large kernels, and we alternately

use different upsampling methods in um-sampling stage of

the generative network. Finally in the testing phase, we use

model fusion to improve the robustness and stability of the

model to different test images.

2. Related Work

Single Image Super-Resolution. Since the pioneer

work of SRCNN [7], deep learning based methods have

brought significant improvement in image super-resolution

[17, 20, 35, 19, 29]. For image super-resolution, VDSR [17]

reveals that increasing network depth shows a significant

improvement in SISR. EDSR [20] abandoned batch normal-

ization (BN) layers to prevent BN artifacts of SR images.

Perceptual loss [11] was first proposed in the field of style

transfer. SRGAN [19] use the perceptual loss to reduce the

gap between SR images and human visual perception, and

achieved very good results. ESRGAN [29] introduced the

Residual-in-Residual Dense Block (RRDB) into generative

network, and proposed to let the discriminator predict rel-

ative realness instead of the absolute value in SISR. Our

RFB-ESRGAN use a deep neural network without BN lay-

ers as the backbone of the generative network, also benefit

from the RRDB and use relative realness in loss function

instead of the absolute value.

Multi-scale Receptive Fields. GoogleNet [25] increase

the width of the network in classification field, use multi-

scale kernels to extract different scale features. After the

pioneer work of GoogleNet, many other deep networks have

tried to use multi-scale kernels to increase the diversity of

features of the network in different network structures, and

achieved good results. Inspired by the multi-scale kernels

and the structure of Receptive Fields (RFs) in human visual

systems, RFB-SSD [21] proposed Receptive Fields Block

(RFB) for object detection. In our work, we introduce RFB

into our generative network for super-resolution.

Upsampling Methods. In the early deep learning based

SISR, most works put the upsampling stage in the front of

the models, like SRCNN [7], VDSR [17]. It will make

the model very large, and cost a lot of time in test phase.

FSRCNN [8] make the upsampling stage in the end of the

model, this make the input size more small and the model

more deeper possible. FSRCNN use deconvolution for up-

sampling, while ESRGAN [29] and some other works use

nearest interpolation for upsampling. ESPCN [23] proposed

the sub-pixel method for upsampling to reduce the time

complexity. For RFB-ESRGAN, we alternately use near-

est interpolation and sub-pixel convolution for upsampling.

Here is our thought, nearest interpolation method focus on

the computation in space dimension, while the sub-pixel

convolution method focus on the computation in depth di-

mension. The alternative use of them allows for full com-

munication of information between depth and space.

Minimize Time Complexity. For the purpose of min-

imize time complexity many networks design tricks have

been proposed. GoogleNet [25] uses bottleneck layers to

reduce the time complexity. MobileNet [15] uses depth-

wise separable convolution to speed up the model running

on edge devices. In our work, RFB uses small kernels to

instead of large kernels, and we also alternately use nearest

and sub-pixel methods in upsampling stage. Thus, we can

minimize the time complexity of the model as much as pos-

sible while keep satisfactory performance at the same time.

3. Super Resolution Network with Receptive

Field Block

Extreme single image super-resolution reconstruction

aims to recover lost high-frequency (rich detail) while main-

taining content consistency [13]. Most SR network archi-

tectures are designed based on improving the PSNR (Peak

Signal-to-Noise Ratio) value. However, the images recon-

structed by PSNR-oriented methods are particularly smooth

and lack high-frequency details. Perceptual-driven meth-

ods have been proposed to improve perceptual quality of

SR results. Generative adversarial network [12] is intro-

duced to SR to generate results more naturally. SRGAN

[19] and ESRGAN [29] significantly improves the overall

perceptual quality of SR outputs over PSNR-oriented meth-

ods. We proposed a novel Super Resolution Network based

on ESRGAN named RFB-ESRGAN.



Figure 1: The structure of RFB-ESRGAN.

3.1. Basic Network Architecture

The proposed network structure consists of 5 parts

shown in Fig. 1, namely the first convolution module, the

Trunk-a module, the Trunk-RFB module, upsampling mod-

ule and the final convolution module.

Figure 2: Residual in Residual Dense Block (RRDB).

The first convolution module is a convolution layer with

a kernel size of 3× 3, which can be formulated as equation

(1). where fconv denotes the first convolution function for

the input LR image ILR.

xconv = fconv(ILR) (1)

Trunk-a module consists of 16 RRDBs (Fig. 2). Define

the function of nth RRDB in Trunk-a as fn
RRDB . Trunk-a

output can be given by the follow formula (2).

xRRDB = fn
RRDB(f

n−1
RRDB(...f

0
RRDB(xconv)...) (2)

For perceptual extreme SR task we introduced RRFDBs

(Fig. 3) in our work, where we assemble RFB[21] (Fig.

Figure 3: Residual of Receptive Field Dense Block

(RRFDB).

4) in it. The RFB is consist of vary scale convolution fil-

ters, such we can restore rich image details for super reso-

lution. Define the function of mth RRFDB in Trunk-RFB

as fm
RRFDB . The output of several stacked RRFDBs can be

given by equation (3).

xRRFDB = fm
RRFDB(f

m−1
RRFDB(...f

0
RRFDB(xRRDB)...)

(3)

The output xRRFDB of Trunk-RFB module is fed to a

single RFB block and the upsampling module. In the up-

sampling phase, we alternately use Nearest Neighborhood

Interpolation and Sub-pixel Convolution[23] shown in Fig.

5. The output of upsampling module can formulated as

equation (4).where fRFB means the function of RFB, finter
means the function of Nearest Neighborhood Interpolation,

fsub means the function of Sub-pixel Convolution.

x = fsub(finter(fsub(finter(fRFB(xRRFDB))))) (4)

Final convolution module consists of two layers of convo-



lution with kernel size 3 × 3. Use fc1 and fc2 represent

the functions of final two convolution layers, the final super

resolution results can be given as equation (5).

ISR = fc2(fc1(x)) (5)

3.2. Multi­scale Receptive Fields Block and Upsam­
pling Module

For perceptual extreme super resolution task, RFB-

ESRGAN proposed to extract multi-scale receptive fields

feature for restoring details of the SR images. For this

purpose, we need to assemble vary sizes of convolution

filter into the generative network, such as 1 × 1, 3 × 3,

5 × 5. But large convolution kernel will greatly increase

the time complexity of the model, it is needed to use small

filters instead of large filters. In our work, we introduce the

Receptive Fields Block (RFB) [21] to assemble the RFB-

ESRGAN. RFB has been proposed to strengthen the deep

features learned from lightweight CNN models. Specifi-

cally, RFB makes use of multi-branch pooling with varying

kernels corresponding to reception fields of different sizes,

applies dilated convolution layers to control their eccen-

tricities, and reshapes them to generate final representation.

Here, the RFB is used in RRFDBs to remain the deep rich

features for restoring the details of super resolution image.

In RFB-ESRGAN, the trunk-RFB is stacked of 8 Resid-

ual of Receptive Field Dense Blocks (RRFDBs), and each

RRFDB contains 5 RFBs (Fig. 3). The composition struc-

ture of RFB is shown in Fig. 4. RFB highlights the relation-

ship between receptive filed size and eccentricity in a daisy-

shape configuration, where bigger weights are assigned to

the positions nearer to the center by smaller kernels, claim-

ing that they are more important than the farther ones. This

makes RFB more effect on simulating the human visual sys-

tem than the other multi-scale receptive fields methods like

the Inception family [25], ASPP[3], and Deformable CNN

[4]. In the RFB, instead of large kernels such as 3×3, 5×5,

it uses the combination of small kernels (1×1, 1×3, 3×1),

which can effectively reduce the amount of parameters and

time complexity. Besides, such substitutions enable RFB to

extract very detailed features especially line features, such

as hair, skin texture, edge, etc. This makes RFB exactly

what we need for extracting multi-scale features and min-

imizing time complexity at the same time. The most im-

portant reason to use RFB is the ability of extracting the

very detailed features, which is exactly what is needed in

the field of image reconstruction.

To make RFB suitable for our RFB-ESRGAN, we drop

all the batch normalization layers in RFB. In addition, we

use Leaky Relu instead of Relu as the activation function

of the whole RFB, while the activation functions in each

branch are still Relu.

In the upsampling phase, instead of only use Nearest

Neighborhood Interpolation (NNI) or Sub-pixel Convolu-

Figure 4: Receptive Field Block (RFB).

tion (SPC) [23], we alternately use NNI and SPC. NNI per-

forms spatial transformation on input features, and the RFB

after NNI makes the results of NNI’s spatial transformation

fully affect on depth. SPC makes depth to space transfor-

mation, and the RFB after SPC makes the results of SPC’s

depth to space transformation fully affect on space. Use

them alternately will improve the information communica-

tion between space and depth. Also, the use of SPC will

reduce the amount of parameters and time complexity.

Figure 5: Upsampling module.

3.3. Loss Function

We apply GAN loss that used in ESRGAN [29] on RFB-

ESRGAN, which results in the following loss for genera-

tive network and discriminator network. Generative loss



function of RFB-ESRGAN contains three terms: VGG loss

which has been successfully applied on other tasks such as

image synthesis and style transfer. The purpose of VGG

loss here is encouraging our network to restore the high-

frequency content for perceptually satisfaction. We use the

pretrained VGG model to extract the feature representation

of ISR and IHR, ISR denotes the images generated by

RFB-ESRGAN, IHR denotes the ground truth high reso-

lution images. Adversarial loss Ladv for encouraging our

network to favor solutions that reside on the manifold of

natural images. Pixel loss Lpix used to restrict the gener-

ation of too much high-frequency content. Use D denotes

the training dataset, D(.) describes the discriminator net-

work function, G(.) describes the generative network func-

tion, and ‖.‖ represents L1 loss. ISR can be formulated as

equation (6).

ISR = G(ILR)‖ (6)

Here ILR describes the input low resolution image. Pixel

loss is the manhattan distance between reconstructed image

ISR and the reference ground truth image IHR, shown as

equation (7).

Lpix =
∑

D

‖ISR, IHR‖ (7)

VGG loss is the manhattan distance between the VGG

feature representations of a reconstructed image ISR and

the reference ground truth image IHR, shown as equation

(8).

LV GG =
∑

D

‖V GGconv34(I
SR), V GGconv34(I

HR)‖

(8)

Where V GGconv34 represents the feature map of 34th

layer in pretrained VGG model. Use ∆(.) represents the

difference between the realistic degree of reconstructed im-

age ISR and reference ground truth image IHR, the differ-

ence between ISR and IHR shown as (9). The adversarial

loss can be formulated as equation (10).

∆Real = σ(D(IHR)− E(D(ISR)))

∆Fake = σ(D(ISR)− E(D(IHR)))
(9)

Where σ is the sigmoid function and E[.] represents the av-

erage operation of all data in a mini-batch.

Ladv = −E[log(1−∆Real)]− E[log(∆Fake)] (10)

With pixel loss, VGG loss, and adversarial loss, we can

formulate the generative loss of RFB-ESRGAN shown as

equation (11).

LG = λLpix + LV GG + ηLadv (11)

Discriminator loss function of RFB-ESRGAN contains

two terms: Real Loss LReal for encouraging the real image

is more realistic than fake image, shown as (12). Fake loss

LFake for encouraging the fake image is less realistic than

real image, shown as equation (13).

LReal = −E[log(∆Real)] (12)

LFake = −E[1− log(∆Fake)] (13)

With the real loss LReal and fake loss LFake, the loss

function of discriminator can be formulated as equation

(14).

LD = LReal + LFake (14)

3.4. Model Ensemble

Different from ESRGAN [29], which fuses the param-

eters of PSNR-oriented model GPSNR and GAN-based

model GGAN . In order to extremely improve the percep-

tual performance of the reconstructed image, we fuse the

model without any PSNR-oriented model. The final model

is ensemble of 10 GAN-based models with the best percep-

tual performance among all recorded models in GAN train-

ing stage. We fuse all the corresponding parameters of top

10 models to derive an ensemble model GEnsemble, whose

parameters are:

θEnsemble
G =

1

N

N∑

i

(θGAN
G ) (15)

where θEnsemble
G represents the parameters of

GEnsemble, θGAN
G represents the parameters of GGAN ,

and N is set as 10 for NTIRE 2020 Perceptual Extreme

Super-Resolution Challenge. The final ensemble model

GEnsemble can effectively reduce the noise of reconstructed

images and be more robust for different test images. We

also attempt to fuse the models with more GAN-based

models. For instance, use 20 or 40 best GAN-based models

for ensemble. We find that, the ensemble model with more

GAN-based models can reduce the noise of reconstructed

images a little more. However, it doesn’t further improve

the model’s perceptual performance of ensemble model.

Instead, with more models for ensemble has a negative

impact on perceptual performance. We balanced the

performance of different numbers of fusion models, and

finally chose to use 10 models for ensemble.



1608 from DIV8K

1619 from DIV8K

LR bicubic RCAN ESRGAN RFB-ESRGAN

Figure 6: Qualitative results of RFB-ESRGAN. RFB-ESRGAN produces more natural textures, e.g., animal fur, building

structure and plant texture.

4. Experiments

4.1. Training Details

For NTIRE 2020 Perceptual Extreme Super-Resolution

Challenge, all experiments are performed with a scaling fac-

tor of ×16 between LR and HR images. We obtained the

corresponding LR images via default setting (bicubic inter-

polation) of Matlab function ”imresize” with scale factor

16. The mini-batch size is set as 16. The spatial size of

cropped HR patch is 512 × 512, and spatial size of corre-

sponding input LR image is 32× 32.

The training process can be divided into two stages. First

stage, a PSNR-oriented model with L1 loss is trained. The

learning rate is initialized as 2×10−4 and decayed by a fac-

tor of 2 every 2.5 × 105 of mini-batch steps. Second stage

(GAN-based training stage), after fully trained of PSNR-

oriented model, generative network is initialized with the

parameters of pre-trained PSNR-oriented model and trained

using the generative loss function (11) and adversarial loss

function (10). In the generative loss function, λ is set as

10 and η is set as 5e−3. The learning rate is set as 1e−4

and halved at [50k, 100k, 200k, 300k] iterations. During

the GAN-based training stage, parameters of generative net-

work is recorded every 5000 iteration.

For optimization, we use Adam [18] with β1 = 0.9 and

β2 = 0.99. The generative network and discriminator net-

work are alternately updated. we implement our models

with Pytorch framework and train them using Tesla V100

GPUs. There are 20.5M parameters in RFB-ESRGAN

model, and it costs 0.82s using one Tesla V100 GPU for

processing per image with 128x128 pixels.

4.2. Data

NTIRE 2020 Perceptual Extreme Super-Resolution

Challenge has provided DIV8K dataset [14] for training,

which includes 1,500 HR images with high resolution vary

from 2K to 8K, we use 1,400 images for training and the

rest 100 images for validation. In order to enrich our train-

ing dataset, we added other datasets, including 800 images

from DIV2k dataset [1], 2,650 images from Flickr2K [26]

dataset and 785 images from OST dataset [28].

Our models are trained with RGB channels. For data

augmenting, the training images are random flipped with

horizontal and random rotated with 90 degree. The result

models are evaluated on DIV8K dataset provided by NTIRE

2020 Perceptual Extreme Super-Resolution Challenge.

4.3. Qualitative Results

We have compared our final models on DIV8K with

PSNR-oriented method RCNN, and also with perceptual-

driven approach ESRGAN. Because the original RCNN and

ESRGAN didn’t adjust to ×16 scale super resolution task,

we finetuned them on datasets same as the proposed RFB-

ESRGAN. We present some representative qualitative re-

sults in Fig. 6.

From Fig. 6, we can observe that, our proposed RFB-

ESRGAN outperforms previous approaches in both sim-

ilar to ground truth and details. For instance, RFB-

ESRGAN can produce sharper and clearer textures than

PSNR-oriented method RCAN. The PSNR-oriented meth-



ods always tend to produce smooth and blurry SR images,

which is not friendly to human visual perception. RFB-

ESRGAN is capable of generating sharper and more natu-

ral details than ESRGAN. The fur textures of cat (see image

1608) are more real, the textures of plants and buildings (see

image 1643) are more natural.

Method PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓
BICUBIC 24.67 0.59 0.656 11.29

RCAN 25.90 0.62 0.548 9.16

ESRGAN 23.98 0.53 0.351 3.89

RFB-ESRGAN 24.03 0.54 0.345 4.27

Table 1: The PSNR, SSIM, LPIPS and PI are calculated on

the center 1,000x1,000 subimages of 1,401-1,500 images

from the DIV8K.

We also compare the results on 1,401-1,500 images from

DIV8K, which haven’t been used for training. PSNR,

SSIM, LPIPS and PI were calculated to evaluate the sharp-

ness and fidelity of results. The results are shown in Tab.

1, in which the arrows indicate if high ↑ or low ↓ values

are desired. Besides, our solution RFB-ESRGAN won the

NTIRE 2020 Perceptual Extreme Super-Resolution Chal-

lenge according to preliminary results. We present the top

6 results from the Challenge in Tab. 2, more information on

the evaluation and competing methods can be found in the

challenge report [34].

Team PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓
Our Team 23.38 0.5504 0.348 3.97

CIPLAB 22.77 0.5251 0.352 3.76

HiImageTeam 23.53 0.5624 0.368 4.38

Winner AIM19 24.52 0.5800 0.418 6.28

ECNU 25.56 0.6336 0.497 8.10

SIA 22.86 0.5896 0.434 5.81

Table 2: Results of NTIRE 2020 perceptual extreme SR

challenge. The PSNR, SSIM, LPIPS and PI are calculated

on the center 1,000x1,000 subimages of the DIV8K test im-

ages [34].

4.4. Ablation Study

In order to study the effects of each component of the

proposed RFB-ESRGAN, we remove the different compo-

nents of RFB-ESRGAN to measure the influence of it. The

overall visual comparison is shown in Fig. 7. Each column

images represents the super resolution results of the model

with configurations shown in the top. Among them, Config-

urations of 2nd column represents the model use only Sub-

pixel Convolution for upsampling, 3nd column represents

the model use only Nearest Neighbor Interpolation for up-

sampling, 4nd colunn represents the model Alternately use

Subpixel Convolution and Nearest Neighbor Interpolation

for upsampling. Detailed of ablation study is provided as

follows.

RFB. In order to prove the effect of RFB, we remove

all RFBs in the model while keep the entire structure of the

model unchanged. From some cases of 4nd column, we can

observe that the textures of hair from people and fur from

cat are too rough, and some with wrong direction. While

the results of RFB-ESRGAN in 5nd column achieve fine

and smooth hair and fur.

Methods for Upsampling. We have Alternately used

Nearest Neighbor Interpolation (NNI) and Subpixel Con-

volution (SPC) in upsampling stage, shown in Fig. 5. In

order to demonstrate the effect of this upsampling methods,

we test the upsampling methods of using only NNI in 3nd

column and using only SPC in 2nd column. As shown in

the 3nd column, results of the method with only NNI are

more blurry than the other upsampling methods. While us-

ing only SPC, the textures of some cases are too sharp and

not natural (see image 1608 and 1643 in 2nd column), and

also some unreal artifacts have been generated (see image

1617 in 2nd column). It can be observed our upsampling

method yields the most clear and realistic results.

Ensemble. To evaluate the effect of model ensemble, we

compare the SR results with model ensemble and without

model ensemble. From 5nd column, we can observe that

the results without ensemble have obvious noise though the

textures are sharper and clear. While most noises can be

eliminated by model ensemble as shown in 6nd. The hair

textures become more natural (see image 1601 and image

1645), and the noise is suppressed to some extent (see image

1617 and 1643).

Besides, we have calculated PSNR, SSIM, LPIPS and PI

on the results of 1,401-1,500 images form DIV8K, which

haven’t been used for training. The results are shown in

Tab. 3. The configuration of each nnd column is as shown

as Fig. 7.

Method PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓
2nd column 23.40 0.50 0.370 3.73

3nd column 24.09 0.54 0.363 4.18

4nd column 23.60 0.52 0.365 3.93

5nd column 23.60 0.52 0.357 3.92

6nd column 24.03 0.54 0.345 4.27

Table 3: The PSNR, SSIM, LPIPS and PI are calculated on

the center 1,000x1,000 subimages of 1,401-1,500 images

from the DIV8K.



1 2 3 4 5 6

Ensemble ✗ ✗ ✗ ✗ X

RFB X X ✗ X X

SPC X ✗ X X X

NNI ✗ X X X X

1601 from DIV8K

1608 from DIV8K

1617 from DIV8K

1643 from DIV8K

1645 from DIV8K

Figure 7: Overall visual comparisons for showing the effects of each component in RFB-ESRGAN. SPC means Sub-pixel

convolution and NNI means Nearest Neighbor Interpolation, which are used in upsampling stage.

5. Conclusion

We proposed RFB-ESRGAN for single image extreme

perceptual super resolution problem. For ×16 scale super

resolution, we proposed using multi-scale receptive fields

for extracting multi-scale features of LR image. In addi-

tion, we proposed using small convolution kernels to extract

detailed features of input image for reconstructing the de-

tailed features of SR image. We have also proposed using

nearest interpolation and sub-pixel convolution alternately

for improving the information exchange between spacial

and depth, and reducing the amount of parameters in up-

sampling stage. Our experiments and the results of NTIRE

2020 Perceptual Extreme Super-Resolution Challenge have

demonstrate the effectiveness of our solution for perceptual

extreme super-resolution.
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