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Abstract

Face retouching is a widespread application in modern

smartphone cameras with its high business value evidenced

by its broad user base. We propose a real-time face soften-

ing approach that smooths blemishes in the facial skin re-

gion, followed by a wavelet band manipulation to restore

the underlying skin texture, which produces a highly ap-

pealing ‘beautified’ face that retains its natural appear-

ance. Softening is carried out by an attribute-aware dy-

namic smoothing filter that is guided by facial attributes,

including the number of blemishes and coarseness of facial

skin texture. The proposed solution is robust to wide vari-

ations in lighting conditions, skin nonuniformities, blem-

ishes, the presence of facial accessories, and delicate hair-

like regions. The method includes an explicit facial hair

preservation module to preserve their delicate texture while

smoothing blemishes. We perform a qualitative compari-

son of our proposed face softening approach with numerous

state-of-the-art techniques and commercial products. We

demonstrate the power of our method in producing beau-

tified faces at a minimal performance cost, which enables

smooth execution on low-power devices like smartphones.

1. Introduction

Face retouching is among the most popular applications

available across the entire spectrum of modern smartphone

cameras, influenced by its transformative capability on fa-

cial images. Its importance and market relevance is further

indicated by the presence of many face beauty related ap-

plications in the top 100 applications on Google Play [3],

such as YouCam [4], B612 [2] and ModiFace [1]. While a

universal definition of face beauty remains debatable, ex-

isting literature shows that face smoothing, also called face

softening, is a primary component in improving facial at-

tractiveness [14, 11].

Traditional face softening solutions apply general-

(a) Input (b) ModiFace [1] (c) FabSoften

Figure 1: A visual comparison of face beautification results.

purpose smoothing filters to address skin imperfections [32,

21, 7]. However, these methods do not differentiate between

inherent facial factors that we wish to retain and the blem-

ishes that we wish to smoothen. Here, facial factors refer

to skin texture, facial features (such as nose, eyes, and lips),

facial hair, and accessories. Smoothing with these filters

thus results in over-smoothed faces that look artificial and

unnatural.

In this work, we propose a novel face beautification ap-

proach that carries out dynamic skin smoothing for smooth-

ing blemishes in the facial region, including wrinkles, spots,

patchy reflections, and skin nonuniformities. Inspired by He

and Sun [8], we have applied Guided Feathering to preserve

hair-like regions within the face, such as the beard, mus-

tache, and eyebrows. We aim to produce a softened face

that looks natural and closely resembles the original face

by retaining fine-grained skin texture and not altering the

structures of essential facial features. To this end, we intro-

duce a wavelet-based skin texture restoration module that

selectively manipulates and combines the wavelet bands

of the original and smoothed images to restore the fine-

grained skin texture that was lost during smoothing. We



design our approach to perform real-time face beautification

that is capable of running on modern smartphone cameras.

We henceforth refer to our method Face Beautification via

Dynamic Skin Smoothing, Guided Feathering and Texture

Restoration as FabSoften. Figure 1 shows an exemplar

face, and the face softening carried out by the commercial

product ModiFace [1] compared to our proposed solution,

FabSoften.

2. Related Work

Prior work in the area of face softening can be grouped

into four dominant classes: 1) Edge-Aware Smoothing Fil-

ters; 2) Layer Decomposition Based Approaches; 3) Deep

Learning-Based Approaches; 4) Generative Models. We

will discuss each class of approach in detail below.

Significant work in the domain of noise filtering is

present in the existing literature. Traditionally, face soft-

ening techniques utilized edge-aware smoothing filters that

preserve facial feature structures while smoothing blem-

ishes [34, 32, 21, 7]. Dating back to anisotropic smooth-

ing, the edge-aware methods that were developed for face

softening were categorized into two primary classes: lo-

cal and global kernels. Local approaches like the Bilateral

Filter [27] and Weighted Median Filter [34] were designed

to consider image statistics within a local window, while

global methods were designed to remove insignificant de-

tails without destroying dominant structures via optimizing

a global energy function [36]. Representative global meth-

ods include L0 smoothing [32] and Fast Global Smooth-

ing (FGS) [21], which introduced weighted tree filtering,

where the weights are determined by distance, color, and

pixel connectedness. Additional examples include Domain

Transform (DT) [26] and Mutually Guided Filter [7].

Alternatively, several methods that decompose the face

image into multiple layers to improve their perceived at-

tractiveness have been proposed [28, 31, 19]. Lu et al. [31]

first decompose a face image into three constituent layers:

lighting, detail, and color. They maintain a learned detail

layer dictionary of beautified face images and transform the

detail layer of the input to the learned one. Utilizing the

detail layer from the dictionary in this manner will result in

smoothing the skin region well. However, in these methods,

the restored skin texture details do not represent the original

skin texture well. Boyadzhiev et al. [5] decompose an im-

age into sub-bands based on frequency, amplitude, and the

sign of the coefficients. They have introduced band-sifting

operators to manipulate these coefficients and generate var-

ious plausible appearances for an object. They have also

used these operators to produce variations in the appearance

of oiliness, glow, wrinkles in the skin region.

Since the relatively recent advent of deep learning,

there have been several deep neural network-based smooth-

ing techniques developed for the problem of face soften-

ing [25, 15, 13]. For example, Xu et al. [15] proposed a

Convolutional Neural Network (CNN) based method to pre-

dict smoothed image gradients, and then run an expensive

step to reconstruct the smoothed image itself. Li et al. [13]

employed a deep learning model to modify the geometry of

the face shape to achieve higher attractiveness. Specifically,

they use the back-propagated gradient flow to modify fa-

cial landmarks with the guidance of an attractiveness score.

These techniques suffer from a lack of explainability of the

network’s decision, and also consume significant resources

during inference runtime.

The growing popularity of generative models for a va-

riety of image generation tasks [30] has recently extended

to face editing. Diamant et al. [22] proposed a generative

model that can beautify any face image conditioned on the

desired level of beautification. Liu et al. [10] developed a

two-stage deep network for automatic group photo beau-

tification by editing facial expressions. Though these ap-

proaches tend to produce realistic results, there is very little

user control in achieving beautification in the desired fash-

ion. Chen et al. [33] designed a face attribute manipulation

system in which the face image is decomposed into its se-

mantic components for selective processing of each facial

region. Region-specific processing provided the previously

lacking control of editing each facial attribute separately.

Nevertheless, employing generative models for face beau-

tification results in synthesized skin textures, which is of-

ten unacceptable due to their unrealistic appearance [30].

Finally, mobile applications such as B612 [2] and Mod-

iface [1] are popular among digital consumers, and pro-

vide a considerable measure of control to the user over the

beautification process. We, however, take inspiration from

work done by Lee et al. [17], who perform skin smoothing

for portrait images via segmenting the skin region, as de-

tailed in Section 3.2. They utilize the segmentation mask to

smooth the original image and blend this smoothed image

with the original image for beautification.

Most of the above mentioned classical and neural

network-based solutions focused on two primary problems:

i) Edge-preserving noise or blemish smoothing. ii) Re-

taining facial skin texture. Our comparative evaluation

of these facial beautification techniques, as shown in Sec-

tion 4, proves the need for a unified framework to address

the problem of face softening. In this work, we propose

a method of face beautification via skin softening with re-

stored skin texture. The primary contributions of this paper

are: 1) Attribute-Aware Dynamic Filter (ADF) for smooth-

ing facial blemishes, deep wrinkles, nonuniformities in skin

texture, and reflections. 2) Wavelet-based Skin Texture

Restoration (STR) to selectively manipulate the wavelet

bands across the input and smoothed image. This mod-

ule restores the fine-grained original skin texture to obtain

a natural-looking softened face. 3) Guided Feathering (GF)



Figure 2: Top: a flow diagram of the proposed facial beautification pipeline. Bottom: a) Original image b) Detected facial

landmarks[12] c) Detected spots d) Skin mask e) ADF: Result after skin smoothing f) STR: Result after texture restoration

g) Final output.

technique to generate a refined skin-probability mask for

hair-like regions (eyebrows, mustache, beard) to retain the

sharpness of their delicate texture.

3. Proposed Method

Facial skin softening is a process of reducing the skin

imperfections, without altering the underlying skin textures

and facial features. After an initial preprocessing step to

extract the face and remove large blemishes, we introduce

three novel contributions: a) ADF Module for optimal fa-

cial smoothing. b) STR module for skin texture retention.

c) GF module for hair region preservation. Figure 2 shows

the flow diagram of the proposed skin-softening algorithm.

These contributions are explained in more detail in this sec-

tion.

3.1. Preprocessing

Before employing the ADF for skin softening, we re-

quire a preprocessing step to generate a crude skin mask

and remove large blemishes in the skin region. We con-

sider a blemish to be a low-intensity imperfection in the

skin that is localized to a small region. This step is essen-

tial as filtering does not eliminate large blemishes, and they

require additional spatial concealment. We first detect the

faces present in the image and their corresponding 68 facial

landmark points using a landmark point detector [12]. We

then join the landmark points on the boundary of each fa-

cial feature (eyes, nose, lips) using cubic curves to obtain

an approximate outer contour of these facial features. To

get the approximate face shape, we join the landmark points

located at the facial boundary and complete the upper face

region, which lacks landmarks, using an ellipse. To gener-

ate a binary skin mask, we fill skin regions with ones and

non-skin features with zeros. To detect blemishes in the skin

region, we first employ the Canny Edge detector [6] to lo-

calize strong edge patterns. We perform a depth-first traver-

sal from these detected edge pixels for a depth of 200 to find

strong, connected edges that are likely to represent blemish

boundaries. If a loop is formed during this traversal, we

consider it as a large blemish. From this point forward, we

refer to these large blemishes as ”spots.” We further prune

these spots using their edge magnitude and shape informa-

tion to reject weak candidates, as shown in Fig. 2c. Finally,

we conceal detected spots by replicating pixel values from

their neighboring blemish-free skin patches.

3.2. Skin Mask Generation

Retaining the sharpness of facial features and fine hair-

like regions such as eyebrows, eyelashes, beards, and mus-

taches are essential for natural-looking face beautification.

Fine individual textures such as hair strands are very sus-

ceptible to blurring effects during face softening due to their

proximity to adjacent equally thin textures. A great degree

of care must thus be taken during face softening with larger

kernels to prevent blurring artifacts.

Traditional skin-mask generation algorithms generally

fall into three broad categories: 1) Color pixel classifica-

tion [29, 24], which generally apply Bayesian classifiers

with histogram techniques. These techniques often fail due

to the high variability of skin coloration while segment-

ing out hair regions. 2) Gaussian Mixture Model (GMM)

methods [17], which use facial feature alignment to create



(a) (b) (c)

Figure 3: Skin mask refinement using Guided Feathering

(GF). a) Original Image b) Approximate mask [17] c) Re-

fined mask. The representative image was taken from a lo-

cal, internally maintained database.

an approximate skin map, and perform skin/non-skin pixel

classification via the GMM. This results in a skin proba-

bility mask which requires an additional edge-refinement

step to distinguish fine facial features (such as hair regions)

from the skin. 3) Deep learning-based facial feature seg-

mentation approaches [20] [35]. These techniques employ

Convolutional Neural Networks (CNNs) to perform pixel-

accurate semantic segmentation over facial features. Specif-

ically for beautification, Liang et al. [14] proposed adap-

tive, region-aware facial skin masks for facial skin beautifi-

cation. This method suffers from hair regions lacking preci-

sion and requiring human intervention for hyper-parameter

tuning. Our GF module retains fine hair textures while uti-

lizing fixed parameters, thereby requiring no additional re-

finement steps, and is robust to skin color variation.

Inspired by Guided Filtering [8], we use our spot-

concealed input face image from the preprocessing step as a

guide to refine the skin-probability mask. This pixel-based

(a) Original (b) FGS [21] (c) muGIF [7] (d) ADF

Figure 4: Comparison of Edge-aware filtering methods.

approximate skin probability mask for skin and non-skin re-

gions is computed as introduced by Lee et al. [17] and illus-

trated in Fig. 3b. Feathering results in a highly refined skin

mask, as seen in Fig. 3c, with the hair regions restored. The

window radius parameter r and the regularization parameter

ǫ of the Guided Filter are tuned to smoothen strongly in skin

regions and simultaneously preserve delicate feathery hair-

like textures. In our experiments, we observed r = 10 and

ǫ = 200 values performed best for our purpose. We further

observed that while using a higher value of r increased the

intensity of smoothing, it caused intolerable blurring arti-

facts in hair regions. As we performed pixel-based approx-

imate skin probability computation, some of the pixels lo-

cated inside the eyes, lips, and inner mouth regions are also

being classified wrongly as skin pixels because of similar

local appearance. To address this, we have used the con-

tours of these features as defined in Section 3.1 and filled

the regions inside with zeros in the refined skin mask.

3.3. Skin Imperfection Smoothing

For smoothing skin imperfections, it is essential to de-

sign an appropriate smoothing filter that preserves facial

features like eyes, lip-lines, eyebrows, while smoothing

out skin imperfections alone. For this purpose, we ex-

perimented with several edge-preserving filters, including

the Fast Global Smoothing Filter (FGS) [21], Guided Fil-

ter [8], and Mutually Guided Image Filter (muGIF) [7]. Fig-

ure 4 shows a visual comparison of these filters compared

to the ADF module applied in the skin smoothing context.

When the smoothing strength is low, the FGS Filter per-

forms poorly and retains a significant number of blemishes.

Increasing the smoothing strength creates flat patches in the

skin region. This effect is especially noticeable when the

face is illuminated unevenly. The muGIF provides a bet-

ter balance between preserving details and skin smoothing

than the FGS filter. However, both these filters perform

poorly in hair regions by blurring finer details, as seen in

Fig. 4b and 4c. We utilize an Attribute-aware Dynamic

Guided Filter (ADF) that strikes the optimal balance be-

tween good skin smoothing and preserving fine details in

hair regions, as shown in Fig. 4d. We modify the origi-

nal Guided Filter proposed by He et al. [8], as detailed be-

low. The Guided Filter provides a degree of control over

the amount of smoothing and kernel size via its parameters

ǫ and r, respectively. It divides an image into windows with

radius r and performs smoothing over these windows.

We introduce the ADF module wherein the parameters

r and ǫ are not fixed across image windows but are com-

puted based on input image statistics. The parameter r is

the window radius and represents the influence window of

a kernel centered at pixel i. A higher value of r implies

the influence of a pixel i is spread over a large spatial loca-

tion, which results directly in a higher amount of smooth-



Figure 5: STR pipeline: skin texture restoration using wavelet domain processing.

ing. In the case of face smoothing, we desire more smooth-

ing at uniform skin regions like the cheeks and forehead.

On the other hand, for facial features like the eyes, lips, and

nose that have clearly defined boundaries and fine textures,

less or no smoothing is desired. To this end, we have used

the probability-based skin mask computed in Section 3.2

to select the kernel radius for every window. Specifically,

for each window, we defined the window radius as a lin-

ear transformation of the skin probability at the window’s

central pixel location i:

ri = αr ∗ (Pskin(i)) + βr (1)

where Pskin(i) is the skin probability at central pixel lo-

cation i. If the central pixel is a skin pixel, then Pskin(i)
will be close to 1, and its corresponding window radius will

be larger as desired for uniform skin regions. On the other

hand, if the central pixel is not a skin pixel, then Pskin(i)
will be close to 0, then the window radius will be a smaller

value near βr, achieving minimal smoothing in these re-

gions.

The regularization parameter ǫ controls the amount of

smoothing. A higher ǫ value results in a higher level of

smoothing. We have used a fixed global value of ǫ based on

the number of spots present in the face, as calculated in the

preprocessing step in Section 3.1. Recognizing that a higher

number of spots calls for additional smoothing, we defined

ǫ to be the linear transformation of the number of spots:

ǫ = αǫ ∗ (numspots) + βǫ (2)

This formulation results in a higher amount of smoothing in

faces with more spots as desired. We have set αr = 10 and

βr = 10 for all our experiments. For the ǫ computation, we

have kept αǫ = 5 and βǫ = 100. We provide an exemplar

image from the Helen dataset [16] in Fig. 6 to visually il-

lustrate the effect of varying control parameters αr and αǫ

on smoothing. This particular image had numspots = 60.

3.4. Skin Texture Restoration

As mentioned previously in Section 3.3, the fundamen-

tal shortcoming of applying smoothing filters to the face

beautification problem is that they wipe clean the essen-

tial, fine-grained texture in skin regions. To address this

concern, we have included a wavelet-based STR in our

face softening pipeline. We employ wavelet domain im-

αr0

αr1

αr2

αǫ0 αǫ5 αǫ10

Figure 6: A visual demonstration of the effect of variation

of αr = 0,1,2 and αǫ = 0,5,10 on smoothing.



age decomposition as it effectively separates low-frequency

and high-frequency components of the image. This choice

was validated during experimentation as we observed that

fine-skin textures were present in high-frequency bands

while blemishes and skin nonuniformities were dominant

in low-frequency bands. This separation of components

in the wavelet domain helped orthogonalize our softening

pipeline. We describe the STR algorithm in detail below:

Given an input image I , we first applied a strong smooth-

ing filter to obtain a filtered output S via the ADF as de-

fined in Section 3.3, and the result is illustrated in Fig. 4d.

We then transformed both I and S to their corresponding

wavelet representations Iw and Sw.
For each wavelet level l, we calculated a

weighted average between the corresponding bands
I lw(LL,HH,HL,HH) and Sl

w(LL,HH,HL,HH)
to obtain wavelet layers of the desired output
Ol

w(LL,HH,HL,HH), based on the following equa-
tions:

O
l

w(LL) = α
l

LL ∗ Ilw(LL) + (1− α
l

LL) ∗ S
l

w(LL) (3)

O
l

w(HH) = α
l

HH ∗ Ilw(HH) + (1− α
l

HH) ∗ Sl

w(HH) (4)

O
l

w(HL) = α
l

HL ∗ Ilw(HL) + (1− α
l

HL) ∗ S
l

w(HL) (5)

O
l

w(LH) = α
l

LH ∗ Ilw(LH) + (1− α
l

LH) ∗ Sl

w(LH) (6)

In the course of our experimentation, we observed that

the HH band contains a large proportion of the skin tex-

ture information of an image. The HL and LH bands do

contain some texture information; however, these bands pri-

marily contain small blemishes and spots, which we wish

to eliminate from our processed output Ow. To generate

Ow, we thus compute a weighted average between the HH

bands of Sl
w and I lw, whereas all other bands (HL, LH , LL)

are directly copied from Sw. We used values of αl
LL = 0,

αl
LH = 0, αl

HL = 0, while αl
HH is computed using Eq. 7.

While we have used a constant value for αHL, αLH , and

αLL for simplification, we leave their intelligent computa-

tion based on facial statistics for future work.

To gain control over the amount of texture we add, we

have defined αHH as a linear function of texture intensity,

which we define in Eq. 8. To achieve beautification that

looks natural and not over-processed, we require the texture

content in skin regions of our output O to resemble the tex-

ture content of the original image I . We have defined αl
HH

as follows:

αl
HH = γ ∗ TI + β (7)

here γ = 0.5, and β = 1.0. TI is a texture intensity metric

which we define as follows:

TI =

∑
x

∑
y |I(x, y)− Ib(x, y)| ∗ Pskin(x, y)

255
(8)

Here I is the original image, and Ib is the output of bi-

lateral filter [27] applied on all pixel locations (x, y) over

I . The difference between the bilateral smoothed output

and the original image captures the texture details present.

We further perform pixel-wise multiplication with the skin

probability mask from Section 3.2 to obtain texture details

in only the skin region. Finally, we aggregate these values

and normalize to the input image intensity range (0, 1). By

definition, TI is a scalar global image metric, which rep-

resents the amount of original texture present in the skin

region.

As the features captured in the wavelet domain become

more coarse as we propagate towards higher layers, we re-

duce the value of αl
HH by a factor of two in every succes-

sive wavelet layer, from the l = 1 to l = 4. Using different

weights for each level and band provides significant con-

trol over the amount of texture that one desires to retain.

To obtain the final output image O, we carry out an inverse

wavelet transform on processed wavelet representation Ow

as computed in Eq. 3 - 6. The entire pipeline of the STR is

illustrated in Fig. 5.

In summary, the power of the STR module comes from

taking more information from the lower frequency levels of

Sw and less information from the lower frequency levels of

Iw to obtain Ow and vice versa for high-frequency bands.

This results in a fusion of the uniform skin region in the fil-

tered output S (which are represented by low-frequency lev-

els) with the texture present in the input image I (which is

represented by high-frequency levels). This fusion creates

a filtered output S, where the facial nonuniformities present

in low-frequency bands of the original image are smoothed

out while the skin texture present in high-frequency bands

is retained.

4. Experiments and Results

We have compared our results with two state-of-the-art

edge-preserving filters i) Mutually Guided Image Filter-

ing (muGIF) filter [7] and ii) Fast Global Smoothing filter

(FGS) [21]. We have also compared the proposed method

with popular commercial face beautification applications

B612 [2] and ModiFace [1]. For our evaluation, we have

used OpenCV [9] library for FGS, and the source code pro-

vided by Guo et al. for muGIF [7]. We have used the An-

droid mobile applications for B612 [2] and ModiFace [1]

from the Google Play Store [3] to generate results. A quali-

tative comparison of the softened outputs of these methods,

along with our proposed FabSoften solution, is shown in

Fig. 7.

For the task of blemish removal, we observe that the FGS

filter removes blemishes well, but fails to retain essential

skin textures and facial feature structures as highlighted in

green boxes in Fig. 7. Although muGIF retains more facial

feature structures than the FGS filter, it still produces un-

natural outputs, as seen in Fig. 7. ModiFace and B612 do a

better job in smoothing skin region and retaining the skin-



(I)

(II)

(III)

(IV)

(V)

(VI)

(a) Original (b) FGS [21] (c) muGIF [7] (d) ModiFace [1] (e) B612 [2] (f) FabSoften

Figure 7: A qualitative comparison of the proposed method with popular face enhancement systems. We crop zoomed-in

portions of the image to highlight each method’s performance on skin texture retainment and preserving hair regions.

texture than edge-preserving filters, which are not explicitly

designed for this purpose. In the green box in Fig. 7(I) as

well as Fig. 7(IV), we observe FabSoften performs best in

removing small blemishes.

For the task of skin texture retention, we observe from

Fig. 7 that FabSoften outperforms other methods, as high-

lighted further in the green box crops. B612 performs the

next best at retaining skin texture but noticeably contains

washed out patches without visible texture, as shown in

Fig. 7(I) and (II). As seen in the green box crops of Fig. 7(II)



Figure 8: GLCM Homogeneity: A box-plot of the texture

homogeneity of all evaluated methods with the input image.

and (III), all methods except FabSoften and B612 create

blurring artifacts in hair regions. These artifacts give the

output an increasingly artificial and over-processed appear-

ance. Analyzing varied conditions of lighting, we observed

that FabSoften and B612 were able to retain features well

while smoothing the skin region, as shown in Fig. 7(V). We

further observed our method to perform well in the presence

of facial accessories, as seen in Fig. 7(VI), where the eye-

glasses have been retained. All images used in this paper,

including those in Fig. 7, are from the Helen dataset [16]

unless otherwise mentioned.

To quantitatively evaluate the texture restoration capa-

bility of the STR module, we used the Gray-Level Co-

Occurrence Matrix (GLCM) [23], which represents tex-

ture with statistical features. We randomly sampled 48

images from the Helen dataset [16] and cropped ten non-

overlapping patches containing only skin pixels for each

of these samples. We then computed the GLCM homo-

geneity feature for each patch and averaged them to get the

homogeneity of the given image. From an analysis of the

GLCM homogeneity box-plot in Fig. 8, FabSoften was able

to achieve similar texture homogeneity distribution with the

input image, thereby demonstrating the power of the STR

module.

As a qualitative comparison, we performed a user study

to evaluate the visual performance of the methods shown

in Fig. 7, similar to that followed by Li et al. [18]. A

total of 80 volunteers participated in this study. We ran-

domly sampled 200 images from the Helen dataset [16]

and applied five softening methods to generate the outputs:

FGS [21], muGIF [7], ModiFace [1], B612 [2] and the pro-

posed method FabSoften. We presented these five outputs

in a random order to our survey volunteers and asked them

to rank the results considering the perceived quality of the

image, realism of the image, and the quality of the image’s

Table 1: Results of the User Study.

Methods Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

FGS [21] 0.0 0.89 1.32 9.72 88.07

muGIF [7] 2.34 5.47 39.56 46.08 6.55

ModiFace [1] 3.37 6.45 47.68 37.3 5.38

B612 [2] 35.28 52.71 7.05 4.96 0.0

FabSoften 59.01 34.66 4.39 1.94 0.0

skin texture. Rank 1 represents the best beautification result,

and Rank 5 represents the worst beautification result for any

given image. The results of the study are shown in Table 1.

This study showed that the proposed method ranked first 59
percent of the time, followed by B612, which was chosen

35 percent of the time. The edge-preserving filters FGS and

muGIF were ranked very low due to their artificial appear-

ance, which is caused by washed-out texture. One of the

open challenges with FabSoften is its difficulty in obtain-

ing perfect skin masks for side profile faces due to possible

errors in landmark point detection as well as contrast varia-

tions near face sides.

FabSoften is optimized to run in under 90 milliseconds,

executing preprocessing, skin mask generation, skin imper-

fection smoothing, and texture restoration. FabSoften was

tested on 12-megapixel images on a Samsung Galaxy S10

running a Qualcomm Snapdragon 855 processor.

5. Conclusions

We presented a new method of face softening that re-

moves facial blemishes while retaining skin textures to pro-

duce highly appealing faces. Our proposed FabSoften so-

lution is either comparable or superior to both the state-of-

the-art edge-preserving filters and commercial face soften-

ing applications in the following aspects: a) Blemish re-

moval while retaining facial feature sharpness. b) Restoring

skin texture as well as fine hair texture c) Handling varied

lighting conditions. The low-cost performance and control

provided by FabSoften are highly suitable for deployment

on smartphone devices. We leave the incorporation of fa-

cial intelligence in the form of face shape, skin type, age,

and gender in our face softening solution as future work.
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