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Abstract

We develop deep convolutional neural networks (CNNs)
for moiré artifacts removal by exploiting the complex prop-
erties of moiré patterns in multiple complementary do-
mains, i.e., the pixel and frequency domains. In the pixel
domain, we employ multi-scale features to remove the moiré
artifacts associated with specific frequency bands using
multi-resolution feature maps. In the frequency domain,
we design a network that processes discrete cosine trans-
form (DCT) coefficients to remove moiré artifacts. Next, we
develop a dynamic filter generation network that learns dy-
namic blending filters. Finally, the results from the pixel and
[frequency domains are combined using the blending filters
to yield moiré-free images. In addition, we extend the pro-
posed approach to arbitrary-length burst image demoire-
ing. Specifically, we develop a new attention network to
effectively extract useful information from each image in
the burst and align them with the reference image. We
demonstrate the effectiveness of the proposed demoireing
algorithm by evaluating on the test set in the NTIRE 2020
Demoireing Challenge: Track I (Single image) and Track 2
(Burst).

1. Introduction

Moiré patterns occur in images captured by digital cam-
eras when the subject contains repetitive details that exceed
the resolution of the camera sensor [32]. The captured im-
ages contain strange-looking patterns called moiré artifacts.
Moiré patterns have various and complex shapes; they can
appear as stripes, curves, and ripples. Furthermore, moiré
patterns overlap different color variations superposed onto
the images. Moiré artifacts cause significant degradation
to the visual quality of the images and the performance of
subsequent image processing and computer vision applica-
tions. Thus, it is crucial to develop effective demoireing al-
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gorithms to remove moiré artifacts, and many of these have
recently been proposed.

The most common classical approach to removing moiré
patterns is to add an optical low-pass filter to the camera
lens for anti-aliasing [25]. However, this approach may
cause over-smoothing due to the loss of high-frequency
components. Another approach is employing color filter ar-
ray subsampling [24] based on the gradients of color differ-
ence interpolation. However, this approach has a high com-
putational complexity which renders it unsuitable for prac-
tical applications, and its output quality relies heavily on
the green channel. Recently, a signal processing-based ap-
proach [32] that explores low-rank and sparsity constraints
for moiré pattern removal in the frequency domain was de-
veloped. However, it may fail in regions with complex
moiré patterns.

Recent works have shown that deep learning-based ap-
proaches are more effective than model-based algorithms.
For example, Sun et al. [28] proposed a method for mod-
eling moiré patterns by learning from a huge dataset. Even
though they provided better results than model-based ap-
proaches, their network may yield poor results when test
images are taken with different camera settings from their
training data. He et al. [13] developed a neural network for
moiré pattern removal by investigating multiple properties
of the moiré patterns in the pixel domain. More recently,
in the AIM 2019 Demoireing Challenge [34], several deep
learning-based approaches to remove moir¢ artifacts for im-
ages captured the monitors have been proposed [0]. How-
ever, these approaches still have difficulties in removing se-
vere moiré artifacts or those with strong color textures due
to the lack of accurate models of moire patterns.

In this work, we develop deep convolutional neural net-
works (CNNs) to remove moiré artifacts in images in mul-
tiple complementary domains, specifically in the pixel and
frequency domains. The proposed network is composed of
three subnetworks: the pixel network, frequency network,
and fusion network. First, the pixel network converts im-
ages with moiré patterns into feature maps and processes
these features at different resolutions, as a moiré pattern



spans a wide range of frequencies. Second, inspired by
recent observations on moiré patterns [32, 13], moiré ar-
tifacts are removed in the frequency domain using the dis-
crete cosine transform (DCT). The frequency network pro-
cesses DCT coefficients to remove moiré artifacts in the fre-
quency domain. Subsequently, the dynamic filter genera-
tion network learns the dynamic blending filters. Finally,
the outputs of the pixel network and the frequency network
are combined by the dynamic blending filters to generate
a moiré-free image. Additionally, we extend the proposed
network to burst-image demoireing, which removes moiré
artifacts in multiple images with different geometric trans-
formations of the same scene. We demonstrate the effec-
tiveness of the proposed demoireing algorithm through the
NTIRE 2020 Demoireing Challenge [33]. We achieved an
average PSNR of 38.28 dB for Track 1 (Single image) and
38.50 dB for Track 2 (Burst).

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of related works. Section 3
describes the proposed algorithm. Section 4 discusses the
experimental results. Finally, Section 5 concludes the pa-
per.

2. Related Works

Moiré pattern removal: Moiré patterns are a common
degradation that occurs in images captured by conventional
cameras because of the interference between the frequency
of textures in images or display screens and camera sen-
sors. Several algorithms have been proposed to remove dif-
ferent types of moiré patterns. For example, Yang et al. [32]
proposed low-rank constraint and sparse matrix decompo-
sition to remove moiré patterns in high-frequency textures
by observing and analyzing the moiré patterns of textures
in the frequency domain. Recently, several deep learning-
based demoireing algorithms have been developed and have
shown to be more effective than conventional model-based
algorithms. Sun et al. [28] exploited intrinsic correlations
between moiré patterns and image components at different
levels in a multi-resolution pyramid network. He ef al. [13]
proposed a framework to remove moiré patterns by consid-
ering three components: a multi-scale feature aggregation
in the pixel domain, an edge predictor to estimate the edge
map of moiré-free images, and an appearance classification
to classify moiré patterns using multiple appearance labels.
Recently, in the AIM 2019 Demoireing Challenge [34], sev-
eral deep network architectures were proposed [0]. These
networks employed state-of-the-art blocks and modules that
have been applied to image restoration to remove moiré pat-
terns.

Image restorations: Image restoration generally focuses
on noise removal, contrast enhancement, or high-frequency
detail reconstruction. Deep learning models have been
successfully applied to image restoration tasks, including

super-resolution [ 10, 16, 36, 18], denoising [37, 19], deblur-
ring [2], dehazing [4, 35], and compression artifact reduc-
tion [9, 5]. These learning-based algorithms have achieved
state-of-the-art performance in image quality improvement.
It was shown that a block or module developed for a certain
image restoration task also performs well in other restora-
tion tasks [38].

Demoireing can be considered as image restoration, as

it attempts to reconstruct a clean image by removing moiré
artifacts. Among the state-of-the-art modules and blocks in
image restoration, the dense block (DB) [14, 29, 35] and
residual dense block (RDB) [38] are most closely related
to demoireing. DB shows effectiveness in super-resolution
by preserving low-level information to reconstruct high-
frequency details, while RDB is an extension of DB that
extracts abundant local features via densely connected con-
volutional layers and avoids gradient vanishing in a deep
network. Because our goal is not only to remove moiré pat-
terns but also to reconstruct missing information, DB and
RDB are important and relevant modules necessary for this
work. However, because moiré patterns are complex and
difficult to distinguish from texture and color in images, the
straightforward adoption of DB and RDB modules may not
provide a high performance.
Attention mechanisms in deep learning: Attention mech-
anisms facilitate deep neural networks to determine where
to focus and improve the representation of interest. Re-
cently, attention mechanisms have been shown to be a crit-
ical component in deep learning and have been extensively
employed in computer vision [39, 21, 1, 11]. Among the
many variations of the attention module, the convolutional
block attention module (CBAM) [30] showed efficacy in
image denoising [3, 27] and super-resolution [8, 7] because
it directs the network to focus on essential features and sup-
presses unnecessary ones. Therefore, we employ CBAM in
the proposed network.

Additionally, there is an approach to incorporate atten-
tion processing to allow the models to identify misaligned
regions before merging the features [31]. By determining
misaligned image regions at an early stage of the network,
the algorithm yields high-quality results with less artifacts
than conventional algorithms. Thus, we employ an attention
module in [31] for burst-image demoireing to avoid mis-
aligned features before moiré pattern removal.

3. Proposed Algorithms
3.1. Dual-domain Network

We design a dual-domain network to effectively remove
moiré artifacts and generate a high-quality clean image.
Figure 1 shows the architecture of the proposed network,
which takes the moiré image as input and then reconstructs
a clean image. Specifically, the proposed dual-domain net-
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Figure 1: Architecture of the proposed dual-domain network.
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Figure 2: Architectures of the ADB, RADB, and fusion net-
work.

work is composed of three subnetworks: the pixel network,
frequency network, and fusion network. First, we estimate
the individual results produced by the pixel network and the
frequency network. Subsequently, the fusion network uses
these results to generate moiré-free images by learning the
dynamic filters.

Pixel network: The pixel network processes an input image

in the pixel value domain. Based on the recent observation
that multi-scale contextual information is effective in image

restoration [6, 12], we use multi-scale features in the pixel
value domain. In addition, assuming that the moiré arti-
facts have global structures in images, we first extract edge
maps using the edge extraction layer and concatenate them
with the inputs. The pixel network is composed of multi-
ple branches of different resolutions. The branch at the top-
level processes feature maps of the original resolution of the
input image, while the other branches process coarser fea-
ture maps. The first convolutional layer (Conv) with a ker-
nel size of 2 x 2 and a stride of 2 in each branch is responsi-
ble for downsampling the feature map from the higher-level
branch by a factor of 2. By converting the input image into
multiple feature maps at different resolutions, we exploit
different levels of details from the input images. At each
branch, the output feature maps from the first layer are fed
into a sequence of attention dense block (ADB) and resid-
ual attention dense blocks (RADB) as shown in Figures 2(a)
and (b), respectively, which are composed of CBAM [30],
DB [14, 29], and RDB [38]. We increase the resolution of
the feature map at each branch using the upsampling mod-
ule, which is a combination of a single convolutional layer
and pixel shuffle [26] and then concatenate a feature map
with that of the finer branch. Finally, at the end of the top
branch, a convolutional layer is used to generate the final
output image.

Frequency network: Moiré patterns are complex in terms
of distributions in the frequency domain [32]. According
to an observation in [13], images with moiré patterns are
indistinguishable from clean images, as moiré patterns are
spread across a wide range of frequency bands. Therefore,
exploring the properties of moiré patterns in the frequency



domain is necessary for their efficient removal. Thus, we
develop an additional subnetwork to process the DCT co-
efficients of the input images to remove moiré artifacts in
the frequency domain. The network is built by cascading a
single ADB and three RADBs, shown in Figures 2(a) and
(b), respectively, and a convolutional layer. The final output
image is obtained by applying the inverse discrete cosine
transform (IDCT).

Fusion network: We obtain the moiré-free image by com-
bining the two images obtained from the pixel network and
the frequency network, as shown in Figure 1. Since these
two images have different characteristics, they are used as
complementary candidates of the moiré-free image. A com-
mon approach to yield the final result from the two can-
didates is to use a convolutional layer with a kernel size
of 1 x 1 for pixel-wise blending. However, this approach
may cause the final image to retain the artifacts if either
network fails to accurately remove them. To alleviate this
issue, we instead employ a dynamic filter generation net-
work [15] that takes the aforementioned pair of candidates
as input and outputs local blending filters. These filters are
then used to yield the moiré-free image. Figure 2(c) shows
the proposed fusion network using dynamic local blending
filters. The coefficients of the filters are learned through a
dynamic blending filter network [15].

3.2. Extension to Burst-Image Demoireing

We extend the dual-domain network in Section 3.1 to
burst-image demoireing. In burst-image demoireing, a set
of images captured of the same target, where each image has
a different geometric transformation, is considered. While
each image contains different moiré patterns, they still re-
tain pieces of useful information about the underlying clean
image. This additional information in the sequence should
be exploited for the effective removal of moiré artifacts. To
this end, we add an additional subnetwork in the pixel net-
work, i.e., the attention network, for feature extraction and
alignment, as shown in Figure 3. The architecture of the
proposed attention network is illustrated in Figure 4.
Attention network: The advantage of burst images over
a single image is the redundant information across the im-
ages. To fully exploit this advantage, we develop an atten-
tion network composed of global feature extraction, feature
alignment, and feature merging. Global feature extraction
is the first global module [22] in the attention network. The
key design goal is to capture the variations between each
image and generate global feature maps that contain addi-
tional information from the burst that can be combined ef-
fectively. Additionally, to ensure that the additional infor-
mation can directly influence the moiré pattern removal, we
fuse the global features with its input features using a con-
volutional layer. Second, feature alignment considers the
misalignment in the images due to the different geometric

transformations and selects the center image as the refer-
ence. We employ the attention module in [31] to predict
the attention maps against the reference. These attention
maps can suppress the different geometric distortions in the
non-reference images, which prevents the undesirable fea-
tures from reaching the merging process whose results are
used as inputs for the dual-domain network. Finally, fea-
ture merging processes the stack of aligned features with
respect to the reference and the global module to obtain the
final global features containing additional information for
the moiré artifact removal network.

Dual-domain network: We use the same frequency net-
work in Section 3.1 for burst-image demoireing. Specifi-
cally, the frequency network takes only the center image in
the sequence as input and removes moiré artifacts therein.

3.3. Implementation Details

The proposed algorithm includes three neural networks:
the pixel network, frequency network, and fusion network.
In our implementation, each convolution is followed by
a scaled exponential linear unit (SELU) activation func-
tion [17]. In each training batch, we apply geometric trans-
formations of 90°, —90°, and 180° rotations and horizon-
tal and vertical flipping, thereby producing seven additional
augmented versions of each image. We trained the net-
works using the AdamW optimizer [20] with 5; = 0.9 and
Ba = 0.999. The learning rate was fixed to 102, and the
batch size was set to 16. We trained the network using the
L5 loss. We implemented our model using PyTorch [23].

We experimentally found that training the networks sep-
arately is more efficient than end-to-end training in terms
of both training time and memory space. Thus, first, we
trained the pixel network and the frequency network sepa-
rately. Then, we trained the fusion network. In the chal-
lenge, we also employed ensemble strategies by applying
geometric transformations of 90°, —90°, and 180° rota-
tions and horizontal and vertical flipping, thereby producing
seven additional augmented versions of each image. There-
fore, we yield eight different output images using the pro-
posed network. Inverse geometric transformations are ap-
plied to the output images generated from the augmented
images. Finally, the final output image is generated by av-
eraging the eight output images.

We used the training dataset provided by the NTIRE
2020 Demoireing Challenge [33].! Because the challenge
does not provide ground-truth images for validation, we
randomly selected 500 images from the training dataset as
the test set for the experiments. Thus, the new training
dataset contains 9,500 images out of 10,000. The train-
ing took approximately two days for single image and three
days for burst images using a computer with Intel® Core™

Uhttps://competitions.codalab.org/competitions/22223
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19-9900X @4.4GHz CPU, 64GB RAM, and Nvidia RTX™
2080 Ti GPU.

4. Experimental Results
4.1. Quantitative and Qualitative Evaluation

In the testing phase, the dual-domain network is fully
end-to-end, in that it takes a moiré image as input and pro-
duces a moiré-free image. Table 1 shows the quantitative
comparisons on the test set for both tracks in the challenge,
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Figure 5: Single-image demoireing results for the test set. (a) Ground-truth, (b) moiré images, and outputs of (c) pixel
network, (d) frequency network, and (e) fusion network. PSNR scores are provided below each image.

Table 1: Quantitative comparison of the demoireing perfor-
mances of the proposed dual-domain network in the NTIRE
2020 Demoireing Challenge: Track 1 (Single image) and
Track 2 (Burst). The boldfaced numbers denote the best
results.

| | Pixel | Frequency | Fusion |
[Track 1 | 38.07 | 3561 | 38.74 |
[Track2 | 3848 | 3561 | 39.22 |

i.e., Track 1 (Single image) and Track 2 (Burst). We com-
pute the average PSNR scores. Because the fusion net-
work effectively combines the results from the pixel and
frequency networks using the learnable filters, it shows the
highest PSNR scores. In addition, using burst images with
the proposed attention network further improves the perfor-
mance by 0.48 dB by effectively exploiting full information
from the images.

Figure 5 visually compares the demoireing results. The
pixel network in Figure 5(c) yields blurring artifacts in
highly-textured regions, although it effectively removes
moiré artifacts. The frequency network in Figure 5(d) pre-
serves fine details more faithfully compared with the pixel
network; however it provides severe blurring artifacts. The
fusion network in Figure 5(e) yields the highest-quality im-
ages, preserving the high-frequency details and effectively
removing the moiré artifacts. This is because the fusion
network learns the blending filters and merges the results
from the two networks. We also verify the effectiveness of
the attention network for burst-image demoireing using the
dual-domain network. Figure 6 shows that burst demoire-
ing results in a significantly higher image quality than sin-
gle image demoireing in Figure 5, as demonstrated by the
higher PSNR scores.
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Figure 6: Burst-image demoireing results for the test set. (a) Ground-truth, (b) moiré images, and outputs of (c) pixel network,
(d) frequency network, and (e) fusion network. PSNR scores are provided below each image.

4.2. Model Analysis

We conduct ablation studies to analyze the contributions
of the key components in the pixel network, frequency net-
work, and fusion network.

Pixel network: To analyze the optimal number of levels
and the effectiveness of the edge extraction layer in a multi-
resolution pixel network, we train the proposed pixel net-
work using various settings. Table 2 compares the PSNR
performances of the different settings. First, the number
of levels has a significant impact on the demoireing per-
formance; as the number of levels increases, the PSNR
score gets higher accordingly. When the edge extraction
layer is used, the demoireing performance significantly im-
proves. More specifically, adding the edge extraction layer
improves the PSNR score by 0.4 dB when the number of
levels is 5.

Frequency network: We analyze the effects of the CBAM
module in the frequency network by evaluating the number

Table 2: Analysis of the pixel network.

| No. of levels | Edge Extraction Layer | PSNR |

1 - 37.25
1 v 37.86
2 - 37.32
2 v 37.67
3 - 37.46
3 v 37.81
4 - 37.72
4 v 38.05
5 - 37.88
5 v 38.28

of RADBs and convolutional layers in each RADB. Table 3
shows the quantitative comparison of the different settings.
We see that the frequency network with three RADBs and
10 convolutional layers achieves the highest PSNR score.



Table 3: Analysis of the frequency network.

] No. of RADBs \ No. of Convs in RADB \ PSNR ‘

3 3 34.02
3 5 34.49
3 10 35.22
5 3 34.31
5 5 34.49
5 10 35.04

Table 4: Analysis of the fusion network.

’ \ Conv \ Fusion Network ‘
[ PSNR | 38.72 | 38.86 |

Table 5: Analysis of the loss functions and residual learn-
ing.

| Loss | Residual [ PSNR |

Lo - 38.86
Ly v 38.77
Ly - 38.84
Ly v 38.86

Table 6: Analysis of the attention network for burst-image
demoireing.

’ Attention module \ Global Module \ PSNR ‘

v - 37.82
- v 37.65
v v 37.93

Fusion network: We analyze the effectiveness of the fu-
sion network with a dynamic filter generation network over
a1 x 1 convolutional layer. Table 4 shows the quantitative
comparison of these settings. The fusion network yields
a PSNR score 0.14 dB higher than the convolutional layer,
which confirms the effectiveness of the proposed fusion net-
work.

Loss functions and residual learning: We analyze the per-
formance of the proposed network trained with different
loss functions [40] and residual connection. Table 5 shows
the quantitative comparison of these combinations. First,
training with the L loss has less impact to directly learn-
ing moiré-free images without residual connection. When
the residual connection is used, it achieves the highest score.
Additionally, training with the L loss yields 0.09 dB higher
than that with the Lo loss to learn moiré patterns with resid-
ual connection.

Burst-image demoireing: To analyze the effectiveness of
the attention module and the global module in the proposed
attention network, we train the proposed network to remove

moiré artifacts in burst images using different combinations
of the modules. Table 6 shows the quantitative compari-
son of the module combinations. We can achieve the high-
est demoireing performance when both attention and global
modules are used.

5. Conclusions

In this work, we developed a dual-domain CNN consist-
ing of a pixel network, frequency network, and fusion net-
work to remove moiré artifacts in images. The pixel net-
work converts moiré images directly into feature maps and
processes these features at different resolutions. The fre-
quency network removes moiré artifacts in the frequency
domain by processing the DCT coefficients. Finally, the
outputs of the pixel network and the frequency network are
combined using the learned dynamic blending filters to gen-
erate a moiré-free image. We also showed that the proposed
dual-domain network can be extended to remove moiré ar-
tifacts in multiple images with different geometric trans-
formations of the same scene. We demonstrated the effec-
tiveness of the proposed demoireing algorithm through the
NTIRE 2020 Demoireing Challenge: Track 1 (Single im-
age) and Track 2 (Burst).
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