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Abstract

We develop deep convolutional neural networks (CNNs)

for moiré artifacts removal by exploiting the complex prop-

erties of moiré patterns in multiple complementary do-

mains, i.e., the pixel and frequency domains. In the pixel

domain, we employ multi-scale features to remove the moiré

artifacts associated with specific frequency bands using

multi-resolution feature maps. In the frequency domain,

we design a network that processes discrete cosine trans-

form (DCT) coefficients to remove moiré artifacts. Next, we

develop a dynamic filter generation network that learns dy-

namic blending filters. Finally, the results from the pixel and

frequency domains are combined using the blending filters

to yield moiré-free images. In addition, we extend the pro-

posed approach to arbitrary-length burst image demoire-

ing. Specifically, we develop a new attention network to

effectively extract useful information from each image in

the burst and align them with the reference image. We

demonstrate the effectiveness of the proposed demoireing

algorithm by evaluating on the test set in the NTIRE 2020

Demoireing Challenge: Track 1 (Single image) and Track 2

(Burst).

1. Introduction

Moiré patterns occur in images captured by digital cam-

eras when the subject contains repetitive details that exceed

the resolution of the camera sensor [32]. The captured im-

ages contain strange-looking patterns called moiré artifacts.

Moiré patterns have various and complex shapes; they can

appear as stripes, curves, and ripples. Furthermore, moiré

patterns overlap different color variations superposed onto

the images. Moiré artifacts cause significant degradation

to the visual quality of the images and the performance of

subsequent image processing and computer vision applica-

tions. Thus, it is crucial to develop effective demoireing al-
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gorithms to remove moiré artifacts, and many of these have

recently been proposed.

The most common classical approach to removing moiré

patterns is to add an optical low-pass filter to the camera

lens for anti-aliasing [25]. However, this approach may

cause over-smoothing due to the loss of high-frequency

components. Another approach is employing color filter ar-

ray subsampling [24] based on the gradients of color differ-

ence interpolation. However, this approach has a high com-

putational complexity which renders it unsuitable for prac-

tical applications, and its output quality relies heavily on

the green channel. Recently, a signal processing-based ap-

proach [32] that explores low-rank and sparsity constraints

for moiré pattern removal in the frequency domain was de-

veloped. However, it may fail in regions with complex

moiré patterns.

Recent works have shown that deep learning-based ap-

proaches are more effective than model-based algorithms.

For example, Sun et al. [28] proposed a method for mod-

eling moiré patterns by learning from a huge dataset. Even

though they provided better results than model-based ap-

proaches, their network may yield poor results when test

images are taken with different camera settings from their

training data. He et al. [13] developed a neural network for

moiré pattern removal by investigating multiple properties

of the moiré patterns in the pixel domain. More recently,

in the AIM 2019 Demoireing Challenge [34], several deep

learning-based approaches to remove moiré artifacts for im-

ages captured the monitors have been proposed [6]. How-

ever, these approaches still have difficulties in removing se-

vere moiré artifacts or those with strong color textures due

to the lack of accurate models of moire patterns.

In this work, we develop deep convolutional neural net-

works (CNNs) to remove moiré artifacts in images in mul-

tiple complementary domains, specifically in the pixel and

frequency domains. The proposed network is composed of

three subnetworks: the pixel network, frequency network,

and fusion network. First, the pixel network converts im-

ages with moiré patterns into feature maps and processes

these features at different resolutions, as a moiré pattern
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spans a wide range of frequencies. Second, inspired by

recent observations on moiré patterns [32, 13], moiré ar-

tifacts are removed in the frequency domain using the dis-

crete cosine transform (DCT). The frequency network pro-

cesses DCT coefficients to remove moiré artifacts in the fre-

quency domain. Subsequently, the dynamic filter genera-

tion network learns the dynamic blending filters. Finally,

the outputs of the pixel network and the frequency network

are combined by the dynamic blending filters to generate

a moiré-free image. Additionally, we extend the proposed

network to burst-image demoireing, which removes moiré

artifacts in multiple images with different geometric trans-

formations of the same scene. We demonstrate the effec-

tiveness of the proposed demoireing algorithm through the

NTIRE 2020 Demoireing Challenge [33]. We achieved an

average PSNR of 38.28 dB for Track 1 (Single image) and

38.50 dB for Track 2 (Burst).

The remainder of this paper is organized as follows. Sec-

tion 2 provides an overview of related works. Section 3

describes the proposed algorithm. Section 4 discusses the

experimental results. Finally, Section 5 concludes the pa-

per.

2. Related Works

Moiré pattern removal: Moiré patterns are a common

degradation that occurs in images captured by conventional

cameras because of the interference between the frequency

of textures in images or display screens and camera sen-

sors. Several algorithms have been proposed to remove dif-

ferent types of moiré patterns. For example, Yang et al. [32]

proposed low-rank constraint and sparse matrix decompo-

sition to remove moiré patterns in high-frequency textures

by observing and analyzing the moiré patterns of textures

in the frequency domain. Recently, several deep learning-

based demoireing algorithms have been developed and have

shown to be more effective than conventional model-based

algorithms. Sun et al. [28] exploited intrinsic correlations

between moiré patterns and image components at different

levels in a multi-resolution pyramid network. He et al. [13]

proposed a framework to remove moiré patterns by consid-

ering three components: a multi-scale feature aggregation

in the pixel domain, an edge predictor to estimate the edge

map of moiré-free images, and an appearance classification

to classify moiré patterns using multiple appearance labels.

Recently, in the AIM 2019 Demoireing Challenge [34], sev-

eral deep network architectures were proposed [6]. These

networks employed state-of-the-art blocks and modules that

have been applied to image restoration to remove moiré pat-

terns.

Image restorations: Image restoration generally focuses

on noise removal, contrast enhancement, or high-frequency

detail reconstruction. Deep learning models have been

successfully applied to image restoration tasks, including

super-resolution [10, 16, 36, 18], denoising [37, 19], deblur-

ring [2], dehazing [4, 35], and compression artifact reduc-

tion [9, 5]. These learning-based algorithms have achieved

state-of-the-art performance in image quality improvement.

It was shown that a block or module developed for a certain

image restoration task also performs well in other restora-

tion tasks [38].

Demoireing can be considered as image restoration, as

it attempts to reconstruct a clean image by removing moiré

artifacts. Among the state-of-the-art modules and blocks in

image restoration, the dense block (DB) [14, 29, 35] and

residual dense block (RDB) [38] are most closely related

to demoireing. DB shows effectiveness in super-resolution

by preserving low-level information to reconstruct high-

frequency details, while RDB is an extension of DB that

extracts abundant local features via densely connected con-

volutional layers and avoids gradient vanishing in a deep

network. Because our goal is not only to remove moiré pat-

terns but also to reconstruct missing information, DB and

RDB are important and relevant modules necessary for this

work. However, because moiré patterns are complex and

difficult to distinguish from texture and color in images, the

straightforward adoption of DB and RDB modules may not

provide a high performance.

Attention mechanisms in deep learning: Attention mech-

anisms facilitate deep neural networks to determine where

to focus and improve the representation of interest. Re-

cently, attention mechanisms have been shown to be a crit-

ical component in deep learning and have been extensively

employed in computer vision [39, 21, 1, 11]. Among the

many variations of the attention module, the convolutional

block attention module (CBAM) [30] showed efficacy in

image denoising [3, 27] and super-resolution [8, 7] because

it directs the network to focus on essential features and sup-

presses unnecessary ones. Therefore, we employ CBAM in

the proposed network.

Additionally, there is an approach to incorporate atten-

tion processing to allow the models to identify misaligned

regions before merging the features [31]. By determining

misaligned image regions at an early stage of the network,

the algorithm yields high-quality results with less artifacts

than conventional algorithms. Thus, we employ an attention

module in [31] for burst-image demoireing to avoid mis-

aligned features before moiré pattern removal.

3. Proposed Algorithms

3.1. Dual­domain Network

We design a dual-domain network to effectively remove

moiré artifacts and generate a high-quality clean image.

Figure 1 shows the architecture of the proposed network,

which takes the moiré image as input and then reconstructs

a clean image. Specifically, the proposed dual-domain net-
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Figure 1: Architecture of the proposed dual-domain network.
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Figure 2: Architectures of the ADB, RADB, and fusion net-

work.

work is composed of three subnetworks: the pixel network,

frequency network, and fusion network. First, we estimate

the individual results produced by the pixel network and the

frequency network. Subsequently, the fusion network uses

these results to generate moiré-free images by learning the

dynamic filters.

Pixel network: The pixel network processes an input image

in the pixel value domain. Based on the recent observation

that multi-scale contextual information is effective in image

restoration [6, 12], we use multi-scale features in the pixel

value domain. In addition, assuming that the moiré arti-

facts have global structures in images, we first extract edge

maps using the edge extraction layer and concatenate them

with the inputs. The pixel network is composed of multi-

ple branches of different resolutions. The branch at the top-

level processes feature maps of the original resolution of the

input image, while the other branches process coarser fea-

ture maps. The first convolutional layer (Conv) with a ker-

nel size of 2×2 and a stride of 2 in each branch is responsi-

ble for downsampling the feature map from the higher-level

branch by a factor of 2. By converting the input image into

multiple feature maps at different resolutions, we exploit

different levels of details from the input images. At each

branch, the output feature maps from the first layer are fed

into a sequence of attention dense block (ADB) and resid-

ual attention dense blocks (RADB) as shown in Figures 2(a)

and (b), respectively, which are composed of CBAM [30],

DB [14, 29], and RDB [38]. We increase the resolution of

the feature map at each branch using the upsampling mod-

ule, which is a combination of a single convolutional layer

and pixel shuffle [26] and then concatenate a feature map

with that of the finer branch. Finally, at the end of the top

branch, a convolutional layer is used to generate the final

output image.

Frequency network: Moiré patterns are complex in terms

of distributions in the frequency domain [32]. According

to an observation in [13], images with moiré patterns are

indistinguishable from clean images, as moiré patterns are

spread across a wide range of frequency bands. Therefore,

exploring the properties of moiré patterns in the frequency
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domain is necessary for their efficient removal. Thus, we

develop an additional subnetwork to process the DCT co-

efficients of the input images to remove moiré artifacts in

the frequency domain. The network is built by cascading a

single ADB and three RADBs, shown in Figures 2(a) and

(b), respectively, and a convolutional layer. The final output

image is obtained by applying the inverse discrete cosine

transform (IDCT).

Fusion network: We obtain the moiré-free image by com-

bining the two images obtained from the pixel network and

the frequency network, as shown in Figure 1. Since these

two images have different characteristics, they are used as

complementary candidates of the moiré-free image. A com-

mon approach to yield the final result from the two can-

didates is to use a convolutional layer with a kernel size

of 1 × 1 for pixel-wise blending. However, this approach

may cause the final image to retain the artifacts if either

network fails to accurately remove them. To alleviate this

issue, we instead employ a dynamic filter generation net-

work [15] that takes the aforementioned pair of candidates

as input and outputs local blending filters. These filters are

then used to yield the moiré-free image. Figure 2(c) shows

the proposed fusion network using dynamic local blending

filters. The coefficients of the filters are learned through a

dynamic blending filter network [15].

3.2. Extension to Burst­Image Demoireing

We extend the dual-domain network in Section 3.1 to

burst-image demoireing. In burst-image demoireing, a set

of images captured of the same target, where each image has

a different geometric transformation, is considered. While

each image contains different moiré patterns, they still re-

tain pieces of useful information about the underlying clean

image. This additional information in the sequence should

be exploited for the effective removal of moiré artifacts. To

this end, we add an additional subnetwork in the pixel net-

work, i.e., the attention network, for feature extraction and

alignment, as shown in Figure 3. The architecture of the

proposed attention network is illustrated in Figure 4.

Attention network: The advantage of burst images over

a single image is the redundant information across the im-

ages. To fully exploit this advantage, we develop an atten-

tion network composed of global feature extraction, feature

alignment, and feature merging. Global feature extraction

is the first global module [22] in the attention network. The

key design goal is to capture the variations between each

image and generate global feature maps that contain addi-

tional information from the burst that can be combined ef-

fectively. Additionally, to ensure that the additional infor-

mation can directly influence the moiré pattern removal, we

fuse the global features with its input features using a con-

volutional layer. Second, feature alignment considers the

misalignment in the images due to the different geometric

transformations and selects the center image as the refer-

ence. We employ the attention module in [31] to predict

the attention maps against the reference. These attention

maps can suppress the different geometric distortions in the

non-reference images, which prevents the undesirable fea-

tures from reaching the merging process whose results are

used as inputs for the dual-domain network. Finally, fea-

ture merging processes the stack of aligned features with

respect to the reference and the global module to obtain the

final global features containing additional information for

the moiré artifact removal network.

Dual-domain network: We use the same frequency net-

work in Section 3.1 for burst-image demoireing. Specifi-

cally, the frequency network takes only the center image in

the sequence as input and removes moiré artifacts therein.

3.3. Implementation Details

The proposed algorithm includes three neural networks:

the pixel network, frequency network, and fusion network.

In our implementation, each convolution is followed by

a scaled exponential linear unit (SELU) activation func-

tion [17]. In each training batch, we apply geometric trans-

formations of 90◦, −90◦, and 180◦ rotations and horizon-

tal and vertical flipping, thereby producing seven additional

augmented versions of each image. We trained the net-

works using the AdamW optimizer [20] with β1 = 0.9 and

β2 = 0.999. The learning rate was fixed to 10
−3, and the

batch size was set to 16. We trained the network using the

L2 loss. We implemented our model using PyTorch [23].

We experimentally found that training the networks sep-

arately is more efficient than end-to-end training in terms

of both training time and memory space. Thus, first, we

trained the pixel network and the frequency network sepa-

rately. Then, we trained the fusion network. In the chal-

lenge, we also employed ensemble strategies by applying

geometric transformations of 90◦, −90◦, and 180◦ rota-

tions and horizontal and vertical flipping, thereby producing

seven additional augmented versions of each image. There-

fore, we yield eight different output images using the pro-

posed network. Inverse geometric transformations are ap-

plied to the output images generated from the augmented

images. Finally, the final output image is generated by av-

eraging the eight output images.

We used the training dataset provided by the NTIRE

2020 Demoireing Challenge [33].1 Because the challenge

does not provide ground-truth images for validation, we

randomly selected 500 images from the training dataset as

the test set for the experiments. Thus, the new training

dataset contains 9,500 images out of 10,000. The train-

ing took approximately two days for single image and three

days for burst images using a computer with Intel® Core™

1https://competitions.codalab.org/competitions/22223
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i9-9900X @4.4GHz CPU, 64GB RAM, and Nvidia RTX™

2080 Ti GPU.

4. Experimental Results

4.1. Quantitative and Qualitative Evaluation

In the testing phase, the dual-domain network is fully

end-to-end, in that it takes a moiré image as input and pro-

duces a moiré-free image. Table 1 shows the quantitative

comparisons on the test set for both tracks in the challenge,
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(28.48) (34.34) (34.25) (35.52)

(20.95) (37.78) (30.30) (38.53)

(a)

(21.01)

(b)

(41.24)

(c)

(34.61)

(d)

(42.35)

(e)

Figure 5: Single-image demoireing results for the test set. (a) Ground-truth, (b) moiré images, and outputs of (c) pixel

network, (d) frequency network, and (e) fusion network. PSNR scores are provided below each image.

Table 1: Quantitative comparison of the demoireing perfor-

mances of the proposed dual-domain network in the NTIRE

2020 Demoireing Challenge: Track 1 (Single image) and

Track 2 (Burst). The boldfaced numbers denote the best

results.

Pixel Frequency Fusion

Track 1 38.07 35.61 38.74

Track 2 38.48 35.61 39.22

i.e., Track 1 (Single image) and Track 2 (Burst). We com-

pute the average PSNR scores. Because the fusion net-

work effectively combines the results from the pixel and

frequency networks using the learnable filters, it shows the

highest PSNR scores. In addition, using burst images with

the proposed attention network further improves the perfor-

mance by 0.48 dB by effectively exploiting full information

from the images.

Figure 5 visually compares the demoireing results. The

pixel network in Figure 5(c) yields blurring artifacts in

highly-textured regions, although it effectively removes

moiré artifacts. The frequency network in Figure 5(d) pre-

serves fine details more faithfully compared with the pixel

network; however it provides severe blurring artifacts. The

fusion network in Figure 5(e) yields the highest-quality im-

ages, preserving the high-frequency details and effectively

removing the moiré artifacts. This is because the fusion

network learns the blending filters and merges the results

from the two networks. We also verify the effectiveness of

the attention network for burst-image demoireing using the

dual-domain network. Figure 6 shows that burst demoire-

ing results in a significantly higher image quality than sin-

gle image demoireing in Figure 5, as demonstrated by the

higher PSNR scores.
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(28.48) (36.39) (34.25) (36.53)

(20.95) (39.86) (30.30) (40.11)

(a)

(21.01)

(b)

(42.15)

(c)

(34.61)

(d)

(42.55)

(e)

Figure 6: Burst-image demoireing results for the test set. (a) Ground-truth, (b) moiré images, and outputs of (c) pixel network,

(d) frequency network, and (e) fusion network. PSNR scores are provided below each image.

4.2. Model Analysis

We conduct ablation studies to analyze the contributions

of the key components in the pixel network, frequency net-

work, and fusion network.

Pixel network: To analyze the optimal number of levels

and the effectiveness of the edge extraction layer in a multi-

resolution pixel network, we train the proposed pixel net-

work using various settings. Table 2 compares the PSNR

performances of the different settings. First, the number

of levels has a significant impact on the demoireing per-

formance; as the number of levels increases, the PSNR

score gets higher accordingly. When the edge extraction

layer is used, the demoireing performance significantly im-

proves. More specifically, adding the edge extraction layer

improves the PSNR score by 0.4 dB when the number of

levels is 5.

Frequency network: We analyze the effects of the CBAM

module in the frequency network by evaluating the number

Table 2: Analysis of the pixel network.

No. of levels Edge Extraction Layer PSNR

1 - 37.25

1 X 37.86

2 - 37.32

2 X 37.67

3 - 37.46

3 X 37.81

4 - 37.72

4 X 38.05

5 - 37.88

5 X 38.28

of RADBs and convolutional layers in each RADB. Table 3

shows the quantitative comparison of the different settings.

We see that the frequency network with three RADBs and

10 convolutional layers achieves the highest PSNR score.
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Table 3: Analysis of the frequency network.

No. of RADBs No. of Convs in RADB PSNR

3 3 34.02

3 5 34.49

3 10 35.22

5 3 34.31

5 5 34.49

5 10 35.04

Table 4: Analysis of the fusion network.

Conv Fusion Network

PSNR 38.72 38.86

Table 5: Analysis of the loss functions and residual learn-

ing.

Loss Residual PSNR

L2 - 38.86

L2 X 38.77

L1 - 38.84

L1 X 38.86

Table 6: Analysis of the attention network for burst-image

demoireing.

Attention module Global Module PSNR

X - 37.82

- X 37.65

X X 37.93

Fusion network: We analyze the effectiveness of the fu-

sion network with a dynamic filter generation network over

a 1 × 1 convolutional layer. Table 4 shows the quantitative

comparison of these settings. The fusion network yields

a PSNR score 0.14 dB higher than the convolutional layer,

which confirms the effectiveness of the proposed fusion net-

work.

Loss functions and residual learning: We analyze the per-

formance of the proposed network trained with different

loss functions [40] and residual connection. Table 5 shows

the quantitative comparison of these combinations. First,

training with the L1 loss has less impact to directly learn-

ing moiré-free images without residual connection. When

the residual connection is used, it achieves the highest score.

Additionally, training with the L1 loss yields 0.09 dB higher

than that with the L2 loss to learn moiré patterns with resid-

ual connection.

Burst-image demoireing: To analyze the effectiveness of

the attention module and the global module in the proposed

attention network, we train the proposed network to remove

moiré artifacts in burst images using different combinations

of the modules. Table 6 shows the quantitative compari-

son of the module combinations. We can achieve the high-

est demoireing performance when both attention and global

modules are used.

5. Conclusions

In this work, we developed a dual-domain CNN consist-

ing of a pixel network, frequency network, and fusion net-

work to remove moiré artifacts in images. The pixel net-

work converts moiré images directly into feature maps and

processes these features at different resolutions. The fre-

quency network removes moiré artifacts in the frequency

domain by processing the DCT coefficients. Finally, the

outputs of the pixel network and the frequency network are

combined using the learned dynamic blending filters to gen-

erate a moiré-free image. We also showed that the proposed

dual-domain network can be extended to remove moiré ar-

tifacts in multiple images with different geometric trans-

formations of the same scene. We demonstrated the effec-

tiveness of the proposed demoireing algorithm through the

NTIRE 2020 Demoireing Challenge: Track 1 (Single im-

age) and Track 2 (Burst).
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