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Abstract

OCR for printed classical Indic documents written in

Sanskrit is a challenging research problem. It involves com-

plexities such as image degradation, lack of datasets and

long-length words. Due to these challenges, the word ac-

curacy of available OCR systems, both academic and in-

dustrial, is not very high for such documents. To address

these shortcomings, we develop a Sanskrit specific OCR

system. We present an attention-based LSTM model for

reading Sanskrit characters in line images. We introduce a

dataset of Sanskrit document images annotated at line level.

To augment real data and enable high performance for our

OCR, we also generate synthetic data via curated font se-

lection and rendering designed to incorporate crucial glyph

substitution rules. Consequently, our OCR achieves a word

error rate of 15.97% and a character error rate of 3.71%

on challenging Indic document texts and outperforms strong

baselines. Overall, our contributions set the stage for ap-

plication of OCRs on large corpora of classic Sanskrit texts

containing arbitrarily long and highly conjoined words.

1. Introduction

Optical Character Recognition (OCR) forms an essential

component in the workflow of document image analytics.

As with other document-related tasks, the advent of deep

learning has produced sophisticated and reliable OCR sys-

tems for many script systems worldwide [1, 18, 20, 21, 22,

34, 39]. However, barring recent exceptions [1, 4, 14, 24],

progress has been less than satisfactory for the numerous

scripts from Indian subcontinent.

Figure 1: Some images from previous works [16, 19, 23, 28]

(above the blue line) and our work (below). Observe the

differences in word length and the uneven line alignment in

our case.

One reason for the slow progress is the unique challenges

with Indic scripts [7, 29]. In many Indic scripts, two or more

characters often combine to form conjuncts which consid-

erably increase the vocabulary to be tackled by OCR sys-

tems [3, 9]. Furthermore, the visual appearance of conjunct

characters is generally more complicated than the individ-

ual elementary script characters. Compounding the chal-

lenge, the glyph substitution rules for conjunct characters

lack consistency across fonts (refer Figure 2).

Even within Indic documents, those written in the clas-

sical language Sanskrit exhibit the highest levels of com-

plexity and variety in terms of conjunct characters. Ad-

ditionally, these documents, typically rendered in Devana-

gari, routinely contain sentences where words themselves

conjoin to arbitrary lengths (see Figure 1). Due to this

1



Shobhika

Sanskrit 2003

Samyak Devanagari
Poppins

Tillana

Kalam

Baloo

Amita

Yatra One

Dekko

Figure 2: Synthetic images for a Sanskrit sentence in 10 different fonts. Observe that fonts, while seemingly consistent, may

contain rendering issues. E.g., note the breaks in shirorekha (the line joining characters in a Devanagari word) in some of the

conjunct characters in the Dekko font. Also, in Yatra One font, the dot at the end of last 2 words are slightly misplaced.

phenomenon, approaches relying on character-level pro-

cessing [2, 11, 12, 15] are not viable. The same is the

case with more recent approaches which assume vernac-

ular word-level segmentation and annotation [16, 19, 29].

Apart from academic approaches, open [36] and commer-

cial [10] document-level OCR systems are available for De-

vanagari. However, as we shall show, these approaches do

not work satisfactorily across the range of conjuncts and

word-lengths present in Sanskrit documents. Another fun-

damental issue is the lack of annotated Sanskrit document

image datasets itself.

To address limitations mentioned above, we propose an

OCR for classical Indic documents containing arbitrarily

long conjoined words. In our model, a Convolutional Neu-

ral Network (CNN) followed by a Bi-directional Long Short

Term Memory (BLSTM) encode the input image sequence.

Another LSTM then separates the essential parts of the en-

coded sequence via a single-headed soft-attention mecha-

nism and decodes to obtain the output text (Sec. 4). On the

data front, we introduce a Sanskrit document image dataset

with multiple classical texts annotated at line level. In ad-

dition, we use carefully prepared synthetic data to augment

real data and to increase the coverage of our OCR (Sec. 3).

For code, pre-trained models and other resources, visit

https://github.com/ihdia/sanskrit-ocr.

2. Related Work

Attempts to recognize Devanagari date to late 70s and

were mostly confined to recognition of disjoint charac-

ters [30, 35]. The next wave of works utilized larger train-

ing corpora , various combinations of hand-crafted feature

extraction and classification approaches for improved per-

formance. Bansal et al. [2] combine diverse knowledge

sources for Devanagari OCR. Jawahar et al. [11] use a

DAG-SVM [25] to recognize separated character images.

Kompalli et al. [15] enhance the accuracy of character seg-

mentation based approaches by applying recognition driven

segmentation. Sankaran et al. [28, 29] further improve text

recognition on Hindi word images. Mathew et al. [19] show

improved results for Devanagari while presenting a multi-

lingual word-level OCR system involving Recurrent Neural

Networks (RNNs).

Motivated by the lower annotation burden in obtain-

ing line-level annotations and better context affordance for

character recognition, approaches have been proposed for

obtaining OCR line-level outputs in documents [4, 14, 24].

Karayil et. al. [13] train a line-level segmentation-free 1-

d Long Short Term Memory (LSTM) model on vernacu-

lar Hindi document images which typically contain shorter

words relative to Sanskrit texts. Sanskrit-specific OCRs

are still limited to character and conjunct character im-

ages [1, 26, 31]. To the best of our knowledge, we propose

the first line-level OCR for Sanskrit documents. Our pro-

posed approach operates at line-level using a single-headed

attention-based bi-directional LSTM. In addition, our ap-

proach can deal with a much larger range of word lengths

across larger document corpora.

The use of synthetic data to assist the development of

OCR systems is well documented. Karayil et. al. [13] train

a 1-d Long Short Term Memory (LSTM) model with syn-



Book Pages Lines Words

Nirnaya Sindhu 379 13691 95549
Kavyaprakasha of Mammata 611 6919 26841

Kshemakutuhalam 525 3238 17716
Total 1515 23848 140,106

Table 1: Statistics of our annotated datasets.

thetic as well as real Hindi lines. This work uses 7 fonts for

rendering 1000 synthetic line images and 621 real line im-

ages for training 1-D LSTM. Dutta et. al. [5] train a CNN-

RNN hybrid model for small length handwritten word im-

ages using synthetic word images rendered with 100 Uni-

code fonts for pre-training. We use synthetic data as part

of our approach as well. However, the procedure requires

greater care compared to existing approaches since we need

to ensure font-level support for conjunctions.

3. Datasets

We have two sources of data – existing Sanskrit docu-

ment image texts and synthetically rendered Sanskrit texts.

Document image texts: We annotated 24,000 lines from

three different classical Sanskrit texts – Nirnaya Sindhu,

Kavyaprakasha of Mammata, Kshemakutuhalam. The an-

notations were gathered from Sanskrit domain experts to

ensure good data quality. The related statistics can be found

in Table 1.

Synthetically Rendered texts: We first gathered multiple

fonts from various sources [8, 6, 33, 37]. We then short-

listed 67 fonts which enable proper rendering of conjunct

characters. To maximize diversity of synthetic data, we

sourced 5000 unique lines per font from classical Sanskrit

texts found at https://sanskritdocuments.org.

We particularly selected lines containing long words and

complex conjuncts. By rendering text lines using these

fonts, we obtained around 335k (67 × 5000) synthetic line

images with associated text ground truth to train our model.

Figure 2 depicts synthetic images of a Sanskrit sentence in

10 different fonts from our chosen set.

Figure 3 depicts the word distribution in terms of word

length across our synthetic and real documents on a log-

arithmic scale. As can be seen, the real dataset (in red)

covers only a small fraction of long words. Our synthetic

dataset (in blue) greatly increases the coverage of words

across word lengths. As Figure 3 also shows, some larger

word-lengths missing from real data are compensated by

presence via synthetic data.

3.0.1 Data Preparation

We use binary images for our synthetic data and crop the

rendered text to remove extra whitespace surrounding the

Figure 3: Coverage of words in our dataset. Note that

‘Number of words’ (y-axis) is logarithmic scale.

actual text content. As mentioned before, we curate the ren-

dered text to ensure that all font synthesized images look

similar to the original text with regards to glyph substitu-

tions/conjoined characters. We use pango1 and cairo2

libraries for text-rendering of synthetic images with prop-

erly conjoined characters.

The vocabulary set consists of 144 characters (129 De-

vanagari characters, 10 numeric digits, and 5 punctuation

symbols). The images are all normalized to a fixed height

of 32 pixels with the width adjusted according to original

aspect ratio.

4. Model

Sanskrit texts have the highest fraction of out of vo-

cabulary words among documents in different Indic lan-

guages [27]. In the field of photo OCR, lexicon-free recog-

nition has achieved great benefits using attention-based

models [17]. Therefore, we use an attention-based model

that works well for lexicon-free recognition tasks. Specifi-

cally, we use a CNN to extract image features and feed them

to a Bi-directional Long Short Term Memory (BLSTM)

model to encode the input image. We use another LSTM

with single-headed attention mechanism to decode the en-

coded features.

The input images are padded to a fixed width of 512 and

fed to a 7-layer CNN network (see Table 2) to obtain line

image features {c1, c2, ..., cn}. The CNN features are used

as input for encoder RNN which is a BLSTM model with

256 hidden units. The decoder is a two-layer LSTM (shown

at the top of Figure 4) with each layer having 128 hidden

units.

Following [38], the attention mechanism operates on

BLSTM’s hidden state sequence h (= {h1, h2, ..., hn}) in

conjunction with the hidden state representation from the

Decoder LSTM to obtain attention coefficients αt (shaded

1https://pango.gnome.org/
2https://cairographics.org/
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Figure 4: The architecture for our single-headed Attention LSTM OCR. In our setting, input image dimensions are H =
32,W = 512. The CNN architecture can be viewed in Table 2. Refer to Sec. 4 for additional details.

purple in Fig. 4) as per the equation below:

αt

i
= softmax(vTσ(Whhi +Wss

t−1)) (1)

where v,Wh,Ws are learnable parameters and st−1 is the

hidden state of the Decoder LSTM from the (t − 1)th
timestep. The resulting coefficients are used to perform soft

selection of encoder features h to obtain the so-called con-

text vector as follows:

dt =
∑

i

αt

i
ht

i
(2)

The context dt of current timestep t is concatenated

with Decoder LSTM’s corresponding hidden state st and

mapped to a linear layer followed by a softmax activation

to obtain the final output yt. Note that the result of concate-

nation mentioned above is fed as input to next timestep of

the Decoder.



Layer Filter Size Filters Stride Output Dims.

(W, H) (W, H) (W, H, D)

Conv1 (3, 3) 64 (1, 1) (32, 512, 64)

ReLU - - - (32, 512, 64)

MaxPool1 (2, 2) - (2, 2) (16, 256, 64)

Conv2 (3, 3) 128 (1, 1) (16, 256, 128)

ReLU - - - (16, 256, 128)

MaxPool2 (2, 2) - (2, 2) (8, 128, 128)

Conv3 (3, 3) 256 (1, 1) (8, 128, 256)

BatchNorm - - - (8, 128, 256)

ReLU - - - (8, 128, 256)

Conv4 (3, 3) 256 (1, 1) (8, 128, 256)

ReLU - - - (8, 128, 256)

MaxPool3 (2, 1) - (2, 1) (4, 128, 256)

Conv5 (3, 3) 512 (1, 1) (4, 128, 512)

BatchNorm - - - (4, 128, 512)

ReLU - - - (4, 128, 512)

Conv6 (3, 3) 512 (1, 1) (4, 128, 512)

ReLU - - - (4, 128, 512)

MaxPool4 (2, 1) - (2, 1) (2, 128, 512)

Conv7 (2, 2) 512 (1, 1) (2, 128, 512)

BatchNorm - - - (2, 128, 512)

ReLU - - - (2, 128, 512)

MaxPool5 (2, 1) - (2, 1) (1, 128, 512)

Dropout(0.5) - - - (1, 128, 512)

Table 2: CNN details. W, H and D represent width, height

and depth respectively.

4.1. Optimization

The architecture is trained end-to-end using cross-

entropy loss defined with respect to the line sequence. For

optimization, we use AdaDelta with decay rate of 0.95
which changes the learning rate based on a moving window

of gradient updates instead of accumulating all past gradi-

ents. The initial learning rate is set to 1.0. We use mini-

batches of size 16 and stop training after 310k iterations.

The training takes 40 hours on a RTX 2080i GPU.

5. Experiments and Results

We use 70% of our real data for training, 10% for valida-

tion and remaining 20% for testing the models. We train our

model (Attention LSTM) with different training configura-

tions - C1 (mix training): mixture of synthetic and real data,

C2 (synthetic training, real fine-tune): pre-training on syn-

thetic data and fine-tuning on real data [5], C3 (mix train-

ing, real fine-tune): pre-training on mixture of synthetic

and real data and then fine-tuning on real data. We use

the hybrid CNN-RNN model introduced by Shi et. al. [32]

as a baseline. Additionally, we also compare our perfor-

mance with Tesseract [36] and the commerical OCR sys-

tem Ind.Senz [10]. We use the standard Character Error

Rate (CER) and Word Error Rate (WER) as performance

measures.

Figure 5: Distribution of word-averaged erroneous char-

acter rate (WA-ECR) as a function of length, for different

models. The lower WA-ECR the better. The test words his-

togram in terms of word lengths can also be seen in the plot

(red dots, log scale). See Section 5 for details.

Row Model Training Config CER (%) WER (%)

1 Attention LSTM C3:mix training + real finetune 3.71 15.97
2 Attention LSTM C2:synth. training + real finetune 4.59 17.97
3 Attention LSTM C1:mix training 5.18 19.14
4 CNN-RNN [32] C3:mix training + real finetune 4.72 22.53
5 CNN-RNN [32] C2:synth. training + real finetune 4.78 22.97
6 CNN-RNN [32] C1:mix training 4.83 23.04
7 Ind.senz [10] – 25.66 40.81
8 Tesseract [36] – 17.96 69.89

Table 3: Character Error Rates (CER) and Word Character

Error Rates (WER) for various models - smaller is better.

Our Attention LSTM model achieves better performance

compared to baselines.

The results can be viewed in Table 3. As the first three

rows show, our Attention LSTM model performs better than

the competing baseline (CNN-RNN) – our model decreases

WER by 7.07 additional points compared to CNN-RNN.

Our model performs substantially better than Ind.senz, de-

creasing the WER by 24.84 in this case. Also, we find the

C3 training configuration mentioned above to be the most

beneficial for performance, not only for our model, but also

for the competing CNN-RNN baseline.

To gain a better insight into performance, we compute

the word-averaged erroneous character rate (WA-ECR).

This is defined as follows: Consider a word length l. Sup-

pose el is the number of erroneous characters across all

words of length l and nl is the number of l-length words in



Sample Image 1
Ground Truth
Attention LSTM
CNN-RNN
Ind.senz

 गोत्रजः इҲत Ҳवशेषेणेत्यथर्थः  नोपवीती स्यात्  इҲत  सामान्यतः कमर्थाथर्थपुरुषाथर्थोपवीतҲनषेधात्तदप्राप्तौ
 गोत्रजः इҲत Ҳवशेषेणेत्यथर्थः  नोपवीती स्यात्  इҲत सामान्यतः कमर्थाथर्थपुरुषाथर्थोपवीतҶलषेधात्तदप्राप्तौ
 गोत्रजः  इҲत Ҳवशेषेणेत्यथर्थः  नोपवीती स्यात्  इҲत सामान्यतः कमर्थाथर्थपलु्षाथर्थोपवीतҲनषेधात्तदप्राप्तौ
 न्ध्येजः ल्ले न्त्यइएक्यै९ईः० 'नक्लोईती स्य'त् श्यइ -ः र्र्थञ्जरु-rएईइषेधतदप्रखौ

Sample Image 2
Ground Truth
Attention LSTM
CNN-RNN
Ind.senz

 अधर्थरात्रेऽथवा कुयर्थात्पारणं त्वपरेऽहҲन  इҲत हेमाद्रौ वचनाच्चाधर्थरात्रेऽप्युभयान्तेऽन्यतरान्ते
 अधर्थरात्रेऽथवा कुयर्थात्पारणं त्वपरेऽहҲन  इҲत हेमाद्रौ वचनाच्चाधर्थरात्रेऽप्युभयान्तेऽन्यतरान्ते
 अधर्थरात्रेऽथवा कुयर्थातपरणं त्वपरेऽहҲन   इҲत हेमाद्रौ वचनाच्चाधर्थरात्रेप्युभयान्तेऽन्यतरान्ते
 मधर्थरात्रेऽथवा कुयर्थात्पास्थत्वपरेऽहҲन ।।' इҲत हेमाद्रौवचनाच्चाधर्थरात्रेऽप्यमुयान्तेऽन्यतरान्ते

Sample Image 3
Ground Truth
Attention LSTM
CNN-RNN
Ind.senz

 ओजःप्रभृतीनामनुप्रासोपमादीनां  चोभयेषामिप  समवायवृत्त्या
 ओजःप्रभृतीनामनुप्रासोपमादीनां चोभयेषामिप  सभवायवृत्त्या
 अजप्रभृतीनामनुप्रासोपमादीनां  चोभयेषामिप  सभवायवतृ्या
 ओजःप्रभूतीनामनुप्रासोपमादीनां चोभयेषामिप समंवायवृप्स

Sample Image 4
Ground Truth
Attention LSTM
CNN-RNN
Ind.senz

 प्रख्यम् ।   तत्समथर्थनाय यत् अथर्थान्तरन्यासोपादानम् तत्  आलेख्य-
 प्रख्यम् ।  तत्समथर्थनाय यत् अथर्थान्तरन्यासोपादानम् तत्  आलेख्य-
 प्र्यम्  तत्समथर्थनाय यत् अथर्था्तरन्यासोपादानम् तत्  आलले्य-
 प्रख्यम् । तत्समथर्थनाययत् अथर्थान्तरन्यासोपादानम् तत् आलेख्य-

Figure 6: Qualitative results for different models. Errors relative to ground truth are highlighted in red. Blue highlighting

indicates text missing from at least one of the OCRs. A larger amount of blue within a line for an OCR indicates better

coverage relative to others OCRs. Smaller amount of red indicates absence of errors.

test set. WA-ECRl = el/nl. Given the heavy-tailed nature

of our data distribution, this is a strict performance mea-

sure which heavily penalizes models which exhibit large

number of word-level errors for longer words. As can be

seen in Figure 5, our model has low WA-ECR across the

range of word lengths. Although the baseline CNN-RNN

also has a low WA-ECR, our model’s WA-ECR plot is

lower than the baseline’s, especially for word lengths above

40. This demonstrates the importance of our model’s at-

tention mechanism in recognizing especially long out-of-

vocabulary words. Also, note that our model’s WA-ECR

slightly increases for very long words. This is due to the

relative scarcity of large length words in the real datasets

used for training the OCR models (see Figure 3). This is an

issue we wish to address in future work.

In our preliminary experiments, we considered pre-

training our model solely on synthetic data. However, this

by itself, did not seem useful – the resulting model had a

CER of 27.1 and a WER of 76.01. However, as the other

rows in Table 3 for our model show, the utility of synthetic

data lies in its ability to provide a good starting point for

training with real data.

The qualitative results comparing our model with base-

lines can be viewed in Figure 6. We highlight errors in red.

If a particular OCR (say OCR-x) is successful in recogniz-

ing a piece of text but some of the competing OCRs fail to

contain this text, we blue highlight the corresponding region

in text output of OCR-x. The corresponding blue highlight

region can also be present in ground-truth. Note that higher

the blue region in OCR text, better the OCR (w.r.t other

OCR systems which do not highlight it). In summary, ab-

sence of red and large presence of blue indicate the relative

superiority of the OCR. The qualitative results once again

emphasize the good performance of our Attention LSTM

approach and reinforce observations made earlier.



6. Conclusion

We presented a single-headed Attention LSTM OCR for

the challenging domain of classical Indic documents con-

taining arbitrarily long words. Our model achieves a low

WER on a challenging dataset of Indic documents, outper-

forming challenging baselines. Our design choice of us-

ing attention mechanism, coupled with a careful training

regime, play a significant role in achieving good perfor-

mance. As part of this effort, we also introduced a dataset

of 23848 annotated line images. Additionally, we also cre-

ated a synthetic image dataset which significantly aids the

overall OCR development process. Our work sets the stage

for development of high-performing OCRs which can be

fruitfully applied to the numerous classical Indic document

collections that exist. As future work, we wish to refine

the Attention LSTM model with a focus to further decrease

WER, incorporate OCR correction systems [27] and also to

decrease the reliance on real data for training.
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