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Abstract

With the demands of intelligent traffic, vehicle counting

has become a vital problem, which can be used to mitigate

traffic congestion and elevate the efficiency of the traffic

light. Traditional vehicle counting problems focus on count-

ing vehicles in a single frame or consecutive frames. Nev-

ertheless, they are not expected to count vehicles by move-

ments of interest (MOI), which can be pre-defined by all

possible states of vehicles, combining different lanes and

directions. In this paper, we mainly focus on movement-

specific vehicle counting problem. A detection-tracking-

counting (DTC) framework is applied, which detects and

tracks objects in the region of interest (ROI), then counts

those tracked trajectories by movements. To be specific, we

propose the detection augmentation method and the Maha-

lanobis distance smoothness method to improve the multi-

object tracking performance. For vehicle counting, a shape-

based movement assignment method is carefully designed to

categorize each trajectory by movements. Experiments are

conducted on both the AICity 2020 Track-1 Dataset and the

Vehicle-Track Dataset, which is built in this paper. Exper-

imental results show the effectiveness and efficiency of our

method.

1. Introduction

Vehicle counting in the traffic scene is a crucial prob-

lem in computer vision, since it is expected to mitigate

traffic congestion and elevate the efficiency of the traffic

light. To be specific, the goal of vehicle counting by move-

ments of interest (MOI) is to find the number of vehicles

that are corresponding to MOI in a period of time, where

MOI can be pre-defined by all possible states of vehicles,

combining different lanes and directions (left-turning/right-

turning/through). Furthermore, the arrival timestamp when

vehicles move out of the region of interest (ROI) is expected

∗equal contribution

Figure 1. The visualization of the movements of interest (MOI)

and region of interest (ROI) at one intersection. Each arrow line

indicates one movement and the green lines outline the ROI.

to be given. An illustration of MOI and ROI is shown in

Fig. 1. However, accurate vehicle counting is still challeng-

ing at crowded intersections, due to the difficulties such as

the occlusions between different vehicles and poor weather

conditions.

Traditional vehicle counting problems can be divided

into two categories. One is frame-wise vehicle counting

[15, 1, 45, 50], which aims at counting vehicles in a sin-

gle frame, regardless of the identity of each vehicle. Some

studies use a density-aware strategy [5, 16, 2] , which uses

density estimation algorithms to regress the number of ve-

hicles. Density-aware strategy is suitable for heavy crowds

counting. Besides, based on the recent progress of deep

learning methods for object detection [8, 43], more stud-

ies turn to the detection-based strategy [14, 41, 15, 1, 45],

which is to detect vehicles then count the detected vehicles

afterwards. However, due to the mutual occlusions between

vehicles and the occlusions caused by roadside trees, both

density-aware and detection-based approaches usually miss

the the occluded vehicles.
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Another category of traditional vehicle counting prob-

lems is instance-wise vehicle counting, which aims at

counting vehicles in consecutive frames. Hence, those ve-

hicles that are occluded and not detected can be counted by

taking advantage of consecutive frame knowledge. Specif-

ically, these methods [10, 29] mainly follow the detection-

tracking-counting (DTC) framework, which performs mul-

tiple object tracking based on the detection results, then

counts the vehicles according to the tracking results after-

wards.

Different from the above mentioned traditional vehicle

counting problems, this paper tackles the task of movement-

specific vehicle counting. Specifically, movement-specific

vehicle counting requires to not only count the total vehi-

cle number for each MOI, but also record the timestamp

when each vehicle moves out of the ROI. Our proposed

approach mainly follows the DTC pipeline, in which we

choose Faster R-CNN [38] and DeepSORT [48] as the base-

line methods for vehicle detection and multi-object track-

ing, respectively. Though been carefully fine-tuned, this

tracking-detection pipeline still performs poorly: the par-

tially occluded vehicles are usually missed by the detec-

tor in crowded traffics, which severely increases the id-

switches in the tracking results. To remedy the defect of

the detector, we propose a detection augmentation method,

which aim at generating additional detections with high

confidence for missing/occluded objects to prevent identity

switches. Specifically, we propose two augment detections

strategies, including the detection re-match strategy and the

single object tracking (SOT) strategy. Besides, due to the

fact that the velocity of vehicles frequently changes sharply

in the intersections, it is difficult to set a fixed threshold for

the Mahalanobis distance in DeepSORT. For instance, when

the vehicle accelerates sharply, the variance could be very

large. As a consequence, the Mahalanobis distance could

be extremely small. To avoid such situation, we propose a

Mahalanobis distance smoothness method for a reasonable

distance.

Furthermore, to deal with movement-specific vehicle

counting problem, we propose a shape-based movement as-

signment method. The main idea of this method is to gen-

erate a typical trajectory for each MOI, and calculate the

shape similarity between each trajectory and each typical

trajectory in the typical trajectory set. The optimal move-

ment of one trajectory can be generated by the typical tra-

jectory with the best shape similarity among the typical tra-

jectory set. Different with [25] which also uses vehicle tra-

jectories, our method does not need zones to delimit trajec-

tory and the trajectories in our method is mostly selected

from tracklets set in videos. Besides, the distance mea-

surement method between tracked vehicle and trajectories

in our method is more efficient. Our method is evaluated on

both AICity 2020 Track-1 Dataset and the Vehicle-Track

Dataset, which is built in this paper. Experimental results

show the effectiveness and efficiency of our method.

The main contributions are as follows: (1) We apply

a DTC framework for movement-specific vehicle counting

problem, which is a new and challenging task. (2) The de-

tection augmentation method and the Mahalanobis distance

smoothness method are proposed to improve the multi-

object tracking performance. (3) A shape-based movement

assignment method is carefully designed to categorize each

trajectory into different movements.

2. Related Work

Object Detection. Object detection is one of the most

fundamental and challenging problems in computer vision.

Feature extraction is one of the primary tasks in object de-

tection. Before the emergence of deep learning algorithms,

most object detection algorithms [46, 20] are built based

on manual features (such as HOG[11] and SIFT[27]), Then

use the extracted features to train SVM, Adaboost and other

classifiers to obtain detection results. However, these meth-

ods are not adaptive to rotations, since they are not ro-

bust in the complex scenes. The advent of deep learning

has changed this situation. It uses a data-driven approach,

which avoids manual feature extraction and allows the ma-

chine to automatically learn feature expressions from mas-

sive amounts of data, making the detection ability greatly

improved. In the era of deep learning, object detection can

be divided into two categories: ”two-stage detection” and

”one-stage detection”, where the former (RCNN [23], Fast

RCNN [22], Faster RCNN [38] etc.) regards the detection

as a “coarse-to-fine” process while the later (YOLO [34],

SSD [32], YOLOv2 [35], YOLOv3 [36], etc.) regards it

as to “complete in one step”[55]. Meanwhile, the imple-

mentation of the excellent object detection algorithm cannot

lack large labeled datasets. As a result, a number of well-

known datasets and benchmarks are released by many re-

search institutions, including the datasets of PASCAL VOC

Challenges [18, 17], MS-COCO Detection Challenge [31],

ImageNet Large Scale Visual Recognition Challenge [39],

etc.

Multi-Object Tracking. Multi-Object tracking (MOT)

is another very important task in computer vision. In recent

years, with the improvement of object detection, many ex-

isting MOT studies adopts the tracking-by-detection strat-

egy, which performs object detection first and then associate

the detections afterwards. These studies can be grouped

into offline methods and online methods. The offline meth-

ods can use detections from the whole frame sequences,

and then conduct global optimization, containing graph-

based methods and hierarchical methods. The former meth-

ods construct the MOT as a graph model, which can be

optimized using k-shortest path [6], minimum cost flow

[28, 13, 47], and subgraph decomposition[44, 12], while
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Figure 2. Our proposed detection-tracking-counting framework. Best viewed in color.

the latter methods construct the trajectories in a hierarchi-

cal manner. In comparison, Online object tracking only use

the detections from current and previous frames. Recent

online MOT methods model MOT problem as a data asso-

ciation problem between the tracked objects and the detec-

tions. The key is to evaluate the similarity between each

tracked object and each detected object by using different

mechanisms, including the attention mechanism [9, 21, 53],

the single object tracking mechanism for pre-processing

[9, 53]) and different neural networks(Recurrent Neural

Networks [19, 33, 40, 54, 21] and Reinforcement Learning

[49, 37]).

Vehicle Counting. The existing methods of vehi-

cle counting can be mainly divided into two categories:

density-aware approches [5, 16, 2] and detection-aware ap-

proches [10, 3, 42, 52, 50, 8, 43]. The density-aware method

aims at learning a regression function by using object fea-

tures to predict the counting results, while the features can

either be done by manually crafting features [16] or be used

to annotate data to train feature extractors [2]. However,

these methods can only estimate the possible number of ob-

jects, but cannot accurately count the objects. Fortunately,

the detection-aware methods can achieve more accurate

counting results. Generally, the detection-aware approches

can be grouped into two categories, including frame-wise

vehicle counting [52, 14, 41, 8, 43] and instance-wise ve-

hicle counting [10, 3, 42]. The goal of frame-wise vehicle

counting is to count vehicles in a single frame, regardless of

the identity of each vehicle. However, the frame-wise works

can only estimate the possible number of vehicles in a sin-

gle frame, but cannot accurately count the vehicles in the

instance level. The instance-wise vehicle counting takes tra-

jectories, which generated by detection/tracking systems, as

input, and the counting techniques are applied to the trajec-

tories in order to reduce the deviation between the number

of tracks and the actual number of instances. Hence, those

vehicles that are occluded and not detected can be counted

by taking advantage of consecutive frame knowledge.

3. Methodology

As shown in Figure 2, our proposed detection-tracking-

counting framework contains three major steps: frame-wise

vehicle detection, online multiple vehicle tracking and typ-

ical trajectory-based vehicle counting. Given one video as

input, our framework is able to output a list of counting re-

sults, in which each line records one counted vehicle. Each

step in our proposed framework will be elaborated in detail

in subsequent sections.

3.1. Object Detection

We choose a two-stage Faster R-CNN [38] as the de-

tector, which adopts Resnet50 [24] as the backbone fea-

ture extractor. We further enhance the backbone with FPN

[30] for better usage of the mutliscale context information.

Also, we use a pretrained model on COCO and fine-tune

this model on the manually annotated data in AICity 2020

Track-1 Dataset.

3.2. Online Multi­Object Tracking

After obtaining the detection results of each frame, we

use DeepSort [48] as the baseline method for online multi-

object tracking. We acknowledge that other offline track-

ers might perform better, we perform online tracking in our

proposed method which realizes more applications in online

traffic control scenarios.

3.2.1 Preliminary

DeepSort [48] adopts a single hypothesis tracking method-

ology with recursive Kalman filtering and frame-by-frame

data association. Tracklet state space in Kalman filtering

is defined in the eight dimensional state space (u, v, γ, h,
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ẋ, ẏ, γ̇, ḣ), including the bounding box center position (u,

v), aspect ratio γ, height h, and their respective velocities

in image coordinates. For each tracklet k we use a stan-

dard Kalman filter with constant velocity motion and lin-

ear observation model. Different from [48], we formulate

a combination feature with color histogram feature, motion

feature and shape feature [51] of objects to obtain similarity

matrix between detections and predicted Kalman states of

tracklets. To disregard infeasible assignments based on pos-

sible object locations, the (squared) Mahalanobis distance

between detections and predicted Kalman states is calcu-

lated as:

d(i, j) = (dj − yi)
T S−1

i (dj − yi) (1)

where we denote Si as covariance matrix and the the projec-

tion of the i-th tracklet distribution into measurement space

by (yi, Si) and the j-th bounding box detection by dj .

Then, we perform Hungarian algorithm to match the de-

tections and tracklets based on the gated similarity matrix

we calculate above. In the final stage, we run intersection

over union association as proposed in the original SORT

algorithm [7] to avoid mismatch caused by sudden appear-

ance changes.

For each tracklet k, we count the number of frames

since its last successful association with detection, and

delete the tracklets that exceed a predefined maximum age

Amax. Unmatched detections after matching will be initi-

ated and these new tracklets are classified as tentative during

their first N INIT frames. Tracklets that are not success-

fully associated during their first N INIT frames will be

deleted.

However, the basic pipeline algorithm depends on the

performance of detection model, hence it is hard to work

well in complicated scenes in AICity task. For instance,

when severe occlusion occurs, there is high probability that

the detection of the occluded object is missing. Thus, we

propose a series of methods as below to solve the problems

in these complex scenarios.

3.2.2 Detection Augmentation Method

It is difficult to detect objects under low image quality or

severe occlusion in heavy traffic scenarios. Lots of ID

switches will occur and affect the final counting results se-

riously. To deal with such situation, we propose a detection

augmentation method to supplement missing detections for

data association. Specially, two strategies are proposed for

detection augmentation, including the detection re-match

strategy and the single object tracking strategy.

Detection Re-Match Strategy. There is a high proba-

bility that we can only get one detection when two objects

are in severe occlusion. When two tracklets compete for

the same detection in the matching stage, one of them will

Figure 3. The examples of detection missing fixed when detec-

tion re-match strategy is used(bottom) comparing with the prelim-

inary(upper).

move into unmatched state, which could cause ID switches

of vehicles. Hence, we propose the detection re-match strat-

egy. If both tracklets satisfy the intersection over union as-

sociation threshold, we simply duplicate this detection and

update the Kalman state space of both these two tracklets by

weighted position between the last history position and the

matched detection. Figure 3 shows the visualization results

without and with our detection re-match startegy.

Single Object Tracking Strategy. We use single object

tracking strategy to predict and add possible position when

no detection bounding box is available. For unmatched

tracklets after above stage, we limit a search region by ex-

panding the last history position and do template matching

method in the current frame image to predict a possible po-

sition. The predicted position will be used as matched de-

tection hypothesis and to update the Kalman state space.

We maintain a counter which is incremented if the tracklets

is recovered by single object tracking method and reset to 0

when the tracklet has been associated with a real detection

bounding box. Tracklets exceed a predefined maximum age

Agemax, or the predict confidence is lower than the prede-

fined threshold will stop using single object tracking strat-

egy.

Mahalanobis Distance Smoothness Method The stan-

dard Kalman filter we used is based on constant velocity

motion and linear observation model, which is not suitable

for all situations in reality. In AICity task scenes, many ve-

hicles will stop or start in the intersections where velocity

of vehicle changes sharply. According to formula (1), the

difference between dj −yi will be relatively large while the

state estimation uncertainty covariance Si relatively main-

tains small at this motion stage, which will cause the Ma-

halanobis distance to exceed the predefined threshold. We

modify the calculation formula by adding identity matrix to

Si to avoid sudden change during non-linear motion stage:

d(i, j) = (dj − yi)
T (Si + αE)−1(dj − yi) (2)
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Figure 4. The visualization of the typical trajectories for each

movements. The arrow lines indicate movements and the colored

lines indicate the selected typical trajectories.

where α is a parameter to balance the original covariance

matrix and the identity matrix E.

3.3. Vehicle Counting

In this section, we introduce our proposed shape-based

vehicle counting method. Specifically, we first select the

typical trajectories for each movement. Then, we assign

one movement for each vehicle tracklet by measuring the

distances between tracklets and the typical trajectories of

the movements. Finally, the movement assignment and the

frame ID when the certain vehicle is fully exiting the ROI

are recorded as the final counting output.

3.3.1 Typical Trajectories Selection

We propose a semi-automatic approach for typical trajec-

tory selection which combines a rule based computation and

manual labeling. First, we label the entrance line and the

exit line for each movement. For each movement, we sub-

sequently collect a set of trajectories which hit both of the

entrance line and exit line. After that, we manually select

one or two trajectories as typical trajectories for each move-

ment from the trajectory set. Besides, for those movements

with empty trajectory set, we manually draw a set of points

to serve as the typical trajectory. Figure 4 visualizes our

selected typical trajectories.

3.3.2 Shape-Based Movement Assignment

Next, given a vehicle tracklet, we assign one movement

based on the distance measurement between the tracklet and

typical trajectories in the same camera.

Specifically, let dH(t, j) denote the Hausdorff distance

between tracklet t and typical trajectory j of movement m.

Both of t and j consist of the center points of all the bound-

ing boxes in them. Then, the distance between tracklet t and

movement m is:

dt,m = min
j∈traj(m)

dH(t, j) (3)

Moreover, since Hausdorff distance regards the tracklet and

trajectory as disordered point sets, we further propose to

measure the direction similarities between the tracklet and

typical trajectories. Specifically, let ~vt denote the vector

which points from the starting bounding box to the terminal

bounding box in tracklet t. tstart(∗) and tend(∗) denote the

pixel coordinates of the center of the starting bounding box

and the terminal bounding box, respectively. Similarly, we

can define ~vj using typical trajectories, which can be written

as,

~vt = 〈tend(x)− tstart(x), tend(y)− tstart(y)〉 (4)

~vj = 〈jend(x)− jstart(x), jend(y)− jstart(y)〉 (5)

θt,j denotes the angle between ~vt and ~vj . Then, the angle

between tracklet t and movement m is:

θt,m = min
j∈traj(m)

θ(t, j) (6)

Algorithm 1 shows our proposed Hausdorff distance-

based movement assignment algorithm. In order to facili-

tate more robust movement assignment, we further propose

to utilize spatial constrains which are manually collected.

For example, for movement 1 in the right hand-side video

in Figure 4, the center of the starting bounding box should

not be located in the right half of the video frame.

Algorithm 1 Shape-based Movement Assignment

Input: Given one video:

1: tracklet indices T = {1, ..., T};

2: Movement indices M = {1, ...,M};

3: Threshold H;

4: Spatial constrain SC(∗);
Output: Movement assignment M : T → M;

5: for each t ∈ [1, T ] do

6: Compute distance vector Dt = [dt,m];
7: Sort M using Dt in increasing order;

8: for each m ∈ [1,M ] do

9: if dt,m > H or SC(t,m) < 0 or θt,m > π/2
then

10: continue

11: end if

12: M(t) = m
13: break

14: end for

15: end for

16: return M

3.3.3 Vehicle Counting

Finally, given the tracklet and the corresponding movement

assignment, we record the frame ID that a certain vehicle

exiting the ROI as the counting output.
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4. Experiments

4.1. Datasets

AICity 2020 Track-1 Dataset The data set contains 31

video clips (about 9 hours in total) captured from 20 unique

camera views (some cameras provide multiple video clips

to cover different lighting and weather conditions.). These

cameras locate in a city in the United States as well as from

state highways in Iowa. Each camera view comes with a

detailed instruction document describing the region of in-

terest (ROI) and movements of interest (MOI). The 9 hours

of video in track 1 are split into two data sets A and B. Data

set A (5 hours in total) along with all the corresponding in-

struction documents and a small subset of ground truth la-

bels (for demonstration purpose) are made available to par-

ticipating teams. Data set B will be reserved for later test-

ing. Since the dataset B is not available to participates, we

provide experimental results on datasetA in the subsquent

sections. Detection model is fine-tuned on the AICity 2020

Track-1 DatasetA with pretrained model on COCO. We to-

tally annotate 17918 frames from the video in AICity2020

Track-1 datasetA and only cars and trucks are labeled.

Vehicle-Track Dataset We introduce a new dataset,

named Vehicle-Track Dataset, for vehicle tracking at multi-

pule intersections. This dataset contains 11 video clips

(about 1 hour in total) captured from 11 unique cameras

at 8 different intersections from one Chinese City (some in-

tersections contain more than one camera to cover different

movements). Also, each video comes with one binary mask

map describing the region of interest (ROI). For all of the

11 videos, all the vehicles in the ROI are manually labeled

with the bounding box and tack Id. Besides, each vehicle is

labeled with one of the four types: car, bus, truck, van.

4.2. Evaluation Metrics

Evaluation Metrics for vehicle Counting For AIC-

ity2020 dataset, we adopt the official evaluation metrics in

AICity 2020 Challenge. The finally score S1 is a weighted

combination between efficiency score S1efficiency and ef-

fectiveness score S1effectiveness:

S1 = 0.3 ∗ S1efficiency + 0.7 ∗ S1effectiveness (7)

where S1efficiency measures the time consumption com-

pared which the total length of all videos under certain

computational resources. S1effectiveness is computed as a

weighted average of normalized weighted root mean square

error scores nwRMSE across all videos, movements, and

vehicle classes in the test set, with proportional weights

based on the number of vehicles of the given class in the

movement. To reduce jitters due to labeling discrepancies,

each video is split into segments and we consider the

cumulative vehicle counts from the start of the video to the

end of each segment. Detailed illustrations of efficiency

score S1efficiency and effectiveness score S1effectiveness
can be found on the official website of AICity2020 Chal-

lenge: https://www.aicitychallenge.org/

2020-data-and-evaluation/.

Evaluation Metrics for Vehicle Tracking For our pro-

posed Vehicle-Track Dataset, we adopt a standard metric,

the CLEAR MOT [4], for multiple vehicle tracking evalua-

tion.

4.3. Implementation details

We employ Resnet50 [24] with FPN [30] as the back-

bone network in Faster R-CNN [38]. The network is trained

with standard SGD optimizer for 90000 iters. The learn-

ing rate is initialized as 0.02 and is decreased by 0.1 at the

30000 and 50000 iters. Random horizontal flip is applied to

reduce overfitting. The input resolution is fixed to 800∗800.

Evaluation on Vehicle-track dataset is carried out using

Amax = 20 frames and N INIT = 3 frames in online tracking

stage. Detections are threshold at a confidence score of 0.3.

In our tracking strategies, Asot max is set to 10 and mini-

mize template match confidence is set to 0.9. The α in Ma-

halanobis distance smoothness method is set to 50 and the

gating distance is adjusted from 9.4877 to 50. The threshold

of similarity matrix is adjusted to 0.6.

We run our experiments on a server with 4 Tesla P4

GPUs which efficiency base factor calculated by AICity

task1 tool is 0.4649. GPUs are only used for running de-

tection model on all frames extracted from task1 videos.

4.4. Ablation Experiments

The ablation study on the AICity Track-1 datasetA is

intended to show three aspects:(1) the affect of detection

on counting results; (2) the effectiveness of online track-

ing strategies; (3) the suitable counting method for counting

tracklets by typical trajectories.

Comparisons between detection Models. Beside the

Faster R-CNN with ResNet50-FPN as backbone we use in

the final submission, we also train other several detection

model to test how the detection results affect our method,

including Faster R-CNN with SENet154-FPN [26] as back-

bone and YOLOv3 [36]with ResNet50 as backbone. The

test results are listed in Table 1 and Faster R-CNN with

backbone Resnet50 is selected to get a trade-off between ef-

fectiveness and efficiency. Different detection results from

several model get the similar effectiveness score which inti-

mate that our tracking and counting methodology is robust

to detection results.

Online tracking strategies. In this place, we evaluate

the effects of our tracking strategies. In Table 2, Deep-

Sort means the basic pipeline of DeepSort in which we re-

place the deep reid feature with the combination of color

histogram feature, motion feature and shape feature. Deep-

Sort(+DA) corresponds to using detection augmentation
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model S1effectiveness S1efficiency

Faster R-CNN(SE154) 0.901492 0.773492

Faster R-CNN(Res50) 0.902973 0.948114

YOLOv3(Res50) 0.898484 0.955951

Table 1. Counting results based on different detection model. The

effectiveness is calculated based on the manually annotated count-

ing ground-truth for first 5 minutes of each video in the AICity

2020 Track-1 DatasetA.

Method MOTA ↑ MOTP ↑ ID Sw. ↓

DeepSort 88.76 88.12 492

DeepSort(+DA) 88.69 88.12 483

DeepSort(+MDS) 88.90 88.12 439

Ours 88.81 88.12 431

Table 2. Comparison with different strategies in online multi-

object tracking.

Method S1effectiveness Run time

line-based 86.44 174s

NCC-based 89.87 704s

shape-based 92.06 71s

shape-based+D+S 93.44 71s

Table 3. Comparison with different methods in counting stage.

method and DeepSort(+MDS) corresponds to using the ma-

halanobis distance smoothness method. We finally use both

strategies in online multi-object tracking stage. With these

strategies the identity switches reduce substantially while

the tracking speed maintains as before.

Comparisons between different counting strategies

To demonstrate the effectiveness of our proposed vehicle

counting method, we conduct a comparison between alter-

native approaches and different settings based on our pro-

posed Hausdorff distance-based method. As shown in Ta-

ble 3, line-based denotes the counting strategy that only

adopts the starting and ending line to identity movement for

each tracklet. NCC-based denotes the similarity between

tracklets and the typical trajectories are computed based on

the normalized correlation. shape-based denotes our pro-

posed counting strategy based on Hausdorff distance mea-

surement. shape+D+S denotes the full strategy proposed in

section 3.3 which further incorporates direction and spatial

constrains.

4.5. Overall Score on AICity2020 Tack1 Dataset

Comparisons of the overall scores As shown in Table

4, our proposed vehicle counting method outperforms all

the other competitors in terms of the overall score S1.

TeamID S1 score

99(Ours) 0.9389

110 0.9346

92 0.9292

26 0.8936

22 0.8852

Table 4. Top 5 overall scores of the vehicle counting task in AIC-

ity2020 track 1. Our proposed method outperforms all the other

competitors in terms of the overall score S1.

5. Conclusion

In this paper, we apply a detection-tracking-counting

(DTC) framework for movement-specific vehicle count-

ing problem. To improve the multi-object tracking perfor-

mance, we propose the detection augmentation method and

the Mahalanobis distance smoothness method. For vehicle

counting, a shape-based movement assignment method is

carefully designed to categorize each trajectory into differ-

ent movements. Experimental results show the effective-

ness and efficiency of our method.
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