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Abstract

Vehicle re-identification, multi-camera vehicle track-

ing, and anomaly detection are essential for city-scale in-

telligent transportation systems. Both vehicle re-id and

multi-camera tracking are challenging due to variations in

aspect-ratio, occlusion, and orientation. Robust re-id and

tracking systems must consider small scale variations in a

vehicle’s appearance to accurately distinguish among vehi-

cles of the same make, model, and color. Scalability is crit-

ical for multi-camera systems, as the number of objects in a

scene is not known a-priori. Anomaly detection presents a

unique challenge due to a dearth of annotations and varied

video quality. In this paper, we address the task of vehicle

re-id by introducing an unsupervised excitation layer to en-

hance representation learning. We propose a multi-camera

tracking pipeline leveraging this re-id feature extractor to

compute a distance matrix and perform clustering to obtain

multi-camera vehicle trajectories. Lastly, we leverage back-

ground modeling techniques to localize anomalies such as

stalled vehicles and collisions. We show the effectiveness

of our proposed method on the NVIDIA AI City Challenge,

where we obtain 7th place out of 41 teams for the task of

vehicle re-id, with an mAP score of 66.68% and achieve

state-of-the-art results on the Vehicle-ID dataset. We also

obtain an IDF1 score of 12.45% on multi-camera vehicle

tracking, and an S4 score of 29.52% for task of anomaly

detection, ranking in the top 5 for both tracks.

1. Introduction

In recent years, there has been great demand to develop

automated and intelligent transportation systems for smart

cities that can facilitate dynamic traffic routing, traffic plan-

∗The first three authors equally contributed to this work.

ning, gathering vehicle-specific analytics like speed [17],

and traffic anomaly detection. Moreover, the development

of Deep Convolutional Neural Networks (DCNNs) has en-

abled the development of effective solutions to these chal-

lenges. For the past three years, NVIDIA AI City Chal-

lenge has pushed the boundaries of intelligent transporta-

tion systems. In this paper, we present a deep learning-

based algorithm for the task of vehicle re-identification (re-

id), and end-to-end pipelines for Multi-Camera Tracking

(MTC) and anomaly detection.

Vehicle re-id refers to the task of identifying all true

matches of a given vehicle identity in a large gallery set

composed of images of different vehicles that are cap-

tured under diverse conditions, e.g., different image quality,

orientation, weather condition and lightening. Therefore,

learning robust representations able to handle the aforemen-

tioned conditions is of great importance. At the same time,

a representation learning algorithm should be both real-time

and scalable to adapt to a large number of vehicles and traf-

fic cameras in the wild. To this end, we propose the fast and

accurate Excited Vehicle Re-identification (EVER) model

to meet these challenges. Recent work has shown the im-

portance of attending to local regions, vehicle key-points,

[13, 37] and part bounding boxes [9] to create robust deep

features. However, generating key-point annotations and

part bounding boxes is costly and will not scale across dif-

ferent domains. [14] has proposed a novel self-supervised

model to generate residual maps that act as pseudo-attention

maps. In this work, we take advantage of the residuals gen-

erated from [14] to excite intermediate feature maps during

the course of training and encourage the feature extraction

model to learn robust representations.

Multi-Camera Tracking aims to determine the position

of objects under consideration, at all times from video

streams taken by multiple cameras. The resulting multi-

camera trajectories enable applications including visual an-



alytics, suspicious activity and anomaly detection. In recent

years, the number of cameras in highways, parking lots and

intersections have increased dramatically, so it has become

paramount to automate MCT. MCT is a notoriously difficult

problem: Cameras are often placed far apart to reduce costs,

and their fields of view do not always overlap. This results

in extended periods of occlusion and large changes in view-

point and illumination across different fields of view. In

addition, the amount of data to process is enormous. In this

work, we present a system for MCT that leverages advances

in Single Camera Tracking [32,36,39] and our proposed ve-

hicle re-id model discussed above to obtain trajectories of

vehicles under different cameras.

Vehicle anomaly detection attempts to automatically lo-

calize stalled vehicles and collisions using existing traffic

camera infrastructure. Anomalous vehicles are uniquely

represented in both the foreground and background of a

scene. Parked vehicles are typically only represented in a

background model, while moving vehicles are only repre-

sented in the foreground model. Anomalous vehicles can

be characterized by their transitions between the foreground

and background. These transitions provide distinct oppor-

tunities to localize the spatio-temporal bounds of anoma-

lous vehicles. Our proposed method leverages this prop-

erty to identify a variety of anomalies, while also minimiz-

ing computational complexity. The proposed anomaly de-

tection algorithm first creates background and foreground

masks for each frame. We detect vehicles that are present

in the background image, and filter these proposals using a

pre-calculated road mask. It is important to note that this

method is unsupervised, and uses a Hybrid-Task Cascade

Network [3] pretrained on COCO [19] from the MMdetec-

tion framework [4]. We achieve an F1 score of 59.46%.

2. Related Works

Vehicle Re-identification: Successful Vehicle re-id re-

quires learning features robust to variations in orientation,

illumination and occlusion. Due to the expansive litera-

ture, we briefly review several recent methods on vehicle

re-identification.

Large-scale vehicle re-id datasets such as Vehicle-ID [21],

VeRi-776 [22], CityFlow-ReID [33] have made it possible

to learn global feature embeddings. However, these global

representations may fail to take into account the minute

details among visually similar vehicles of the same make,

model and color. In addition, the global appearance of a

given vehicle varies significantly as its viewpoint changes

depending on the camera. To alleviate this issue, several

methods [9, 13, 23, 37, 41] have been proposed to enhance

the discrimative capability of DCNNs by enforcing atten-

tion on local regions of a vehicle such as head and tail lights,

grill, bumpers and wheel patterns. Zhou et al. [44] learns

a viewpoint-aware representation for vehicle re-id through

view-dependent attention. [14] proposed a self-supervised

attention generation eliminates the need for extra annota-

tions for vehicle’s local regions. Also, [27,42] leverages ve-

hicle attribute classification to attend to informative regions,

e.g., predicting color and vehicle type to learn attribute-

based auxiliary features to assist the global representation.

Metric learning is widely used in an effort to make ro-

bust representations. [5, 16] propose various triplet losses

to carefully select hard triplets across different viewpoints

and vehicles to learn an improved appearance-robust repre-

sentation.

Multi-Object Tracking (MOT): Object tracking plays an

important role in solving many fundamental computer vi-

sion tasks. The success of object detectors [6,10,18,20,28]

has garnered significant interest in object tracking, result-

ing in many of robust single camera trackers for pedestrian

and vehicles. Sun et al. [31] posed MOT as a data associ-

ation problem and trained a Deep Affinity Network (DAN)

to obtain the association matrix in an end-to-end fashion.

DAN also accounts for multiple objects appearing and dis-

appearing between video frames. [35] extends the problem

of MOT to multi-object tracking and segmentation (MOTS).

Voigtlaender et al. in [35] annotate dense pixel-wise labels

for existing tracking datasets using a semi-automatic anno-

tation procedure and propose a new baseline which jointly

addresses detection, tracking and segmentation. [38] argues

that the two-stage (object detection followed by data asso-

ciation) tracking-by-detection paradigm suggested by most

modern MOT systems can lead to efficiency issues for real-

time MOT and hence proposed a real-time system that fa-

cilitates learning detection and appearance embeddings by

a shared model. They formulate the problem as a multi-

task learning setup and report the first near real-time MOT

system.

Multi-Camera Multi-Object Tracking: [30] learns good

features for multi-camera tracking and re-id with a DCNN

using an adaptive weighted triplet loss for training and a

new technique for hard-identity mining. [34] proposed a

unified three-layer hierarchical approach for solving track-

ing problems in multiple non-overlapping cameras. Similar

to our proposed pipeline, Tesfaye et al. in [34] first solve

within-camera tracking and then solve across-camera track-

ing by merging tracks of the same object in all cameras in

a simultaneous fashion. They use the constrained dominant

sets clustering (CDSC) technique, a parametrized version

of standard quadratic optimization to solve both the track-

ing tasks.

Anomaly Detection: Recent work in vehicle anomaly de-

tection has focused on detecting stopped vehicles through

a two-stage pipeline, first using background modeling to

identify vehicle proposals, and refining these proposals by

identifying regions of interest. [1] models each scene by

computing an moving-average image for each scene, de-
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Figure 1. SAVER [14] crudely reconstructs the input image using

a VAE. Subtracting the generated image from the input yields the

residual image in which salient regions are highlighted.

tects multi-scale vehicles through a perspective transforma-

tion, and regresses the start and end time of each anomaly

through a spatio-temporal information matrix. Similarly,

[26] approaches the task of background modeling by calcu-

lating an average image for each scene, and utilizes multi-

ple detectors optimized for various road conditions to local-

ize anomalous vehicles. [15] considers the spatio-temporal

consistency of tracklets to filter out moving vehicles and

refines these predictions by constructing binary masks to

highlight regions of interest. Our proposed method differs

from previous approaches, and leverages a Gaussian mix-

ture model (GMM) to simultaneously create background

and foreground representations and identify anomalous ve-

hicles in near real-time.

3. Vehicle Re-Identification

In this section we present our proposed approach, Ex-

cited Vehicle Re-identification (EVER), for the vehicle re-

id track of the challenge. EVER consists of three modules,

namely Self-Supervised Residual Generation, an Excitation

Layer and Feature Extraction.

3.1. Self­Supervised Residual Generation

Inspired by SAVER [14], which generates both a per im-

age coarse template of a given vehicle and a residual image

that carries vehicle-specific details critical for re-id, we take

advantage of the residual image to generate robust features.

The residual image containing minute details serves as a

pseudo-attention map. Figure 1 demonstrates how a resid-

ual image is obtained and how it highlights salient parts of

the vehicle.

3.2. Excitation Layer

Although SAVER uses the residuals to augment the input

image to a re-id model via convex combination, we propose

to only employ the residuals during training to excite the

intermediate feature maps and assist the feature extraction

model to learn more discriminative vehicle representations.

Intermediate feature map excitation has been shown to be

an effective approach for vehicle re-identification [9, 13]
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Figure 2. Intermediate feature maps are excited during training

with the help of the residual image. This is done by producing

an excitation that is a function of the residual image, channel-

averaged feature maps and α(t). Note that during inference this

layer acts as an identity function on the feature maps.

and object detection [7]. In particular, we follow the ex-

citation method proposed in [7] which is only applied sig-

nificantly during initial epochs of training and monotoni-

cally decreases the degree of excitation as training contin-

ues. This is done by computing the excitation factor α(t) as

follows:

α(t) = 0.5×

(

1 + cos(
πt

T
)

)

(1)

where t = 1 . . . T is the epoch number and T is the to-

tal number of training epochs. Figure 2 shows how inter-

mediate feature maps are excited while training the re-id

model. Subsequently, inference is only requires a forward

pass of the re-id model without generating residual image,

i.e., α(t) = 0, which ultimately reduces the computational

complexity of EVER. This makes our proposed approach

quite competitive for real-time applications.

3.3. Feature Extraction

For the purpose of discriminative deep feature extraction,

we chose the backbone architecture of ResNet-152 [11] for

our re-id model. Recently, [24] established a set of train-

ing techniques for the task of person re-id which is shown

to outperform many complicated methods and serves as a

strong baseline. These tricks have also been shown as ef-

fective for the task of vehicle re-id [14]. Therefore, as our

baseline, we adopt these tricks, i.e., Learning Rate Warm-

up, Random Erasing Augmentation, Label Smoothing, and

Batch Normalization Neck, for training the ResNet model



Table 1. Performance comparison between baseline and the proposed method on Large-scale Vehicle Datasets

Dataset

Model

CityFlow-ReID Veri-776 VehicleID

mAP(%)
CMC(%)

mAP(%)
CMC(%)

Small Medium Large

CMC(%) CMC(%) CMC(%)

@1 @5 @1 @5 @1 @5 @1 @5 @1 @5

Baseline 62.36 60.55 60.74 78.51 95.10 98.00 80.00 95.30 77.30 91.70 75.20 88.60

Proposed 66.68 65.40 65.68 79.90 95.90 98.20 84.50 96.40 79.70 94.70 77.40 91.80
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Figure 3. Overview of proposed EVER pipeline. Re-id model has

ResNet-152 architecture. During training features maps after Res-

1 and Res-2 blocks are excited with the help of residuals.

and compare it against similar settings with the addition of

the excitation layer, i.e. EVER. Figure 3 shows our pro-

posed pipeline. We optimized both baseline and EVER

models for the following batch hard triplet [12] and cross

entropy objectives:

Lt =
1

B

B
∑

i=1

∑

a∈bi

[

γ + max
p∈P(a)

||xa − xp||2 − min
n∈N (a)

||xa − xn||2

]

+

(2)

and

Lc = −
1

N

N
∑

i=1



(WT
c(xi)

xi + bi)− log





C
∑

j=1

eW
T
j xi+bj









(3)

In Eq. 2, B, bi, a, γ, P(a) and N (a) are the total number of

batches, ith batch, anchor sample, distance margin thresh-

old, positive and negative sample sets corresponding to a

given anchor respectively. Moreover, xa, xp, xn are the ex-

tracted features for anchor, positive and negative samples.

Batches are constructed in a way that they have exactly 4
instances of each ID used. In Eq. 3, xi refers to the ex-

tracted feature for an image belonging to class i. Further-

more, Wc(xi), bi are the classifier’s weight vector and bias

associated with class i respectively, and N and C repre-

sent the total number of samples and classes in the training

dataset.

3.4. Experiments

In this section, we test the effectiveness of our proposed

method. We compute the most commonly used re-id met-

rics, namely mean Average Precision (mAP) and Cumula-

tive Matched Cure (CMC) @1 and @5 for CityFlow-ReID,

Veri-776 and VehicleID benchmarks. Table 1 compares the

performance of both the baseline and EVER models. The

evaluation of CityFlow-ReID is done via an online server

intended for the Challenge. With the goal of achieving the

highest performance among participating teams, we applied

re-ranking method [43] on our model’s extracted features

from CityFlow-ReID dataset as a post-processing step. It

can be observed that for all the three datasets EVER model

significantly improves the re-id metrics and achieves the

state-of-the-art results on all three test splits of VehicleID

dataset. Table 2 shows how our model is ranked among top

performers of the challenge.

Table 2. Top 8 performers of 2020 NVIDIA AI City vehicle re-id

challenge

Team Name mAP (%)

Baidu-UTS 84.13

RuiYanAI 78.10

DMT 73.22

IOSB-VeRi 68.99

BestImage 66.84

BeBetter 66.83

UMD RC 66.68

Ainnovation 65.61

3.5. Run­time performance

As discussed in section 3.2, one of the main advantages

of EVER is its inference run-time. On a single GeForce

TITAN Xp card, on average it takes only 13.5 milliseconds

to process batches of size 128 and extract robust features.

This makes EVER a particularly fast model for real-time

applications.

4. Multi-Camera Tracking

In this section we describe our Multi-Camera Tracking

(MCT) pipeline. We start by describing various Single-

Camera Tracking (SCT) methods used in our work in Sec-

tion 4.1. We then describe our Multi-Camera Tracking

pipeline in Section 4.2. We conclude by describing all ex-

periments in Section 4.3.
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Figure 4. Proposed pipeline for Multi Camera Tracking of Vehicles

4.1. Single­Camera Tracking

Significant advances in object detection [6,10,18,20,28]

aided the emergence of the tracking-by-detection paradigm

[8, 40], which drastically improved the performance of var-

ious SCT methods for human and vehicle tracking. Such

methods leverage the highly accurate spatial localization ca-

pabilities of the detectors, along with well-embedded ap-

pearance and temporal relationships for computing similar-

ity measures to determine accurate object tracks.

4.1.1 Object Detection

In this work, we use Mask-RCNN object detector proposed

in [10]. Mask R-CNN network builds on the Faster R-

CNN [28] architecture with two major contributions. 1) Re-

placing the ROI Pooling module with a more accurate ROI

Align module and 2) Inserting an additional branch (other

than classification and bounding box heads) out of the ROI

Align module to compute the object mask for the task of

instance segmentation.

4.1.2 DeepSORT

Simple online and real-time tracking (SORT) [2] is a simple

framework that performs Kalman filtering in image space

and frame-by-frame data association using the Hungarian

method with an association metric that measures the bound-

ing box overlap. While achieving overall good performance

in tracking precision and accuracy, SORT returns a rela-

tively high number of identity switches. To improve the per-

formance of SORT, DeepSORT [39] was proposed to over-

come the issue by replacing the original association metric

with a metric that combines motion and appearance infor-

mation from a CNN pre-trained on a re-id dataset.

4.1.3 MOANA

Due to noisy detections and identity switches caused by

occlusion and similar appearance among nearby targets in

MOT systems, [32] proposed “Modeling of Object Appear-

ance by Normalized Adaptation”(MOANA) that learns on-

line a relatively long-term appearance change of each target.

The proposed model is compatible with any feature of fixed

dimension or its combination, whose learning rates are dy-

namically controlled by adaptive update and spatial weight-

ing schemes. To handle occlusion and nearby objects shar-

ing similar appearances, they design cross-matching and re-

id schemes based on the application of the proposed adap-

tive appearance models.

4.1.4 TrackletNet Tracker (TNT)

TNT [36] leverages appearance, temporal and interaction

cues together into a unified framework based on an undi-

rected graph model. The vertices in the graph model are

tracklets and the edges measure connectivity of two track-

lets. Under such a graphical representation, tracking can

be regarded as a clustering problem that groups the track-

lets into one big cluster. The tracklets are generated based

on IoU and appearance features similarity. When these cri-

teria become unreliable due to camera motion, they adopt

epipolar geometry to compensate and predict the position

of bounding boxes in the next frame. TNT is trained to

measure the continuity of two input tracklets by combining

both trajectory and appearance information.

4.2. Multi­Camera Tracking Pipeline

Our Multi-Camera tracking pipeline proceeds as follows

• Detect and track all vehicles in all the videos.

• Extract EVER re-id features from every track to use as

track descriptors



Table 3. Comparison of 3 SCT algorithms on 4 videos of 2 scenes in the validation set provided by the NVIDIA AI City Challenge 2020.

Tracking Method

S02 S05

c006 c007 c008 c009 c010 c016 c017 c018

DeepSORT 6.4 43.3 11.2 16.1 10.9 39.4 21.9 63.3

MOANA 8.7 51.8 15.7 21.4 11.2 38.6 34.6 67.8

TrackletNet 9.3 50.0 15.3 17.8 11.1 43.4 25.6 71.5

Table 4. Comparison of MCT algorithms on 4 videos of S02 in the

validation set of the 2020 NVIDIA AI City Challenge.

Tracking Method

S02

IDF1 IDP IDR

DeepSORT 44.13 63.57 33.80

MOANA 28.43 33.87 24.50

TrackletNet 33.19 41.12 27.83

Table 5. Top 8 performers of 2020 NVIDIA AI City multi-camera

tracking challenge

Team Name Score

INF 0.4585

XJTU-Alpha 0.4400

DukBaeGi 0.3483

EINI CQUPT 0.3411

UMD RC 0.1245

Albany NCCU 0.0620

Youtu 0.0452

SJTU yutinggao 0.0387

• Construct a distance matrix using appearance and tem-

poral cues

• Cluster all the tracks to obtain final multi-camera

tracks

The overall system is shown in Figure 4.

Single Camera Tracks: We use a SCT to get complete

vehicle tracks for every video.

Track Descriptors: Owing to the superior discriminative

ability of our proposed EVER (Section 3) system, we use

it to extract re-id features for N (N = 10 in this work)

randomly selected frames for every track in all the videos

to obtain the corresponding track descriptors. We use the

track descriptors to compute a distance matrix D which can

be used to merge tracks of vehicles under different cam-

eras. Since models for vehicle re-id are trained to identify

cars under different viewpoints and imaging conditions, it

is fitting to use a re-id model to merge tracks from different

cameras.

Distance matrix using Appearance and Temporal Cues:

Using the track descriptors, we compute a distance matrix

D = [dij ]
i,j=M
i,j=0 = 1 − cos(fi, fj), where cos(u, v) =

uT v
‖u‖‖v‖ is the cosine similarity between vectors u, v; fi, fj

are track i and j descriptors respectively and M is the to-

tal number of tracks from all the videos. Furthermore,

two adjacent tracks of the same car usually have similar-

ities in time. To incorporate this into the distance ma-

trix, we use a temporal IoU. Specifically, we scale the dis-

tance matrix by temporal overlap in the following manner:

dij = dij ∗ (1−
t1∩t2
t1∪t2

).

Clustering: After computing the distance matrix as

described above, we perform clustering to obtain multi-

camera tracks. Since tracks from the same camera shouldn’t

be merged together, we set the corresponding values in the

distance matrix to a very high value to discourage the clus-

tering algorithm to place the tracks in the same cluster.

Since the number of clusters is not known beforehand, we

apply bottom up Agglomerative clustering method to merge

and obtain the multi camera tracks.

4.3. Experiments

Dataset: For all our experiments, we use the data provided

as a part of 2020 NVIDIA AI City Challenge. The dataset

contains 215.03 minutes of videos collected from 46 cam-

eras spanning 16 intersections in a mid-sized U.S. city. The

dataset is divided into 6 scenarios. 3 of the scenarios are

used for training, 2 are used for validation, and the remain-

ing one is for testing. In total, the dataset contains nearly

300K bounding boxes for 880 distinct annotated vehicle

identities. Only vehicles passing through at least 2 cameras

have been annotated.

Evaluation Metric: For MTMC tracking, the IDF1 score

[29] will be used to rank the performance of each tracker.

IDF1 measures the ratio of correctly identified detections

over the average number of ground-truth and computed de-

tections. Other popular evaluation measures adopted by

the MOT challenge [25], such as Multiple Object Track-

ing Accuracy (MOTA), Multiple Object Tracking Precision

(MOTP), mostly tracked targets (MT), and false alarm rate

(FAR) are also provided by the evaluation server. In Table 3

shows the comparison of the three SCT methods on scene 2

of the validation set. We use the IDF1 score for comparison

as this is the metric used for ranking various submissions in

the competition. In Table 4, we compare the multi-camera

tracking performance for the three SCT methods. In Table



5, we compare the results of top 8 submissions in the public

leaderboard of the 2020 NVIDIA AI City Challenge. For

this submission we use the TNT [36] SCT.

5. Anomaly Detection

In this section, we present our approach for near real-time

anomaly detection using statistical methods and out-of-the-

box detection and tracking algorithms. Our method lever-

age a Gaussian mixture model to model both background

and foreground instances, and uses a Hybrid Task Cascade

Network and SORT for object detection and tracking re-

spectively.

5.1. Foreground and Background Model

We use a Gaussian mixture based segmentation algorithm

proposed by [45] that adaptively selects an appropriate

number of Gaussian distributions for each pixel, and has

been shown to adapt well to scenes with varying illumi-

nation. For each frame, we generate both foreground and

background images. The Gaussian mixture model consid-

ers the last N frames when defining the background and

foreground regions. Through experimental evaluation, we

found that N = 120 adequately filters moving traffic, while

capturing anomalous vehicles transitioning from the fore-

ground to the background.

5.2. Vehicle Detection

Scale invariance and robustness to low resolution vehicle

images are important considerations when selecting a vehi-

cle detector for anomaly detection. We found that the Hy-

brid Task Cascade Network [3] is able to reliably localize

small vehicles at low detector thresholds. Since running the

Hybrid Task Cascade Network is computationally expen-

sive, we only run detections on every 30th frame, allowing

our pipeline to run in near real-time. Furthermore, we only

run the detector on background frames to reduce the number

of occlusions.

5.3. Tracking

We utilize SORT as defined in 4.1.2, Since we only cal-

culate detections on background frames, the SORT tracker

drops tracks and reassigns identities less frequently. We use

the length of the track as a proxy for the likelihood that a

given track is anomalous. We avoid using deep-learning

based trackers since it adds additional computational com-

plexity to our proposed pipeline, and will likely only pro-

vide marginal benefit since a re-id model trained on high

quality vehicle images will likely fail to generalize to this

domain.

5.4. Post­Processing

Aberrations such as aliasing and frozen frames can intro-

duce artifacts into all sub-systems in an anomaly detection

pipeline. To avoid false positive predictions due to poor

video quality, we detect when consecutive frames have a

per-pixel difference less than a fixed threshold, and ignore

predictions from that region of a video. Additionally, we

construct a road mask to highlight regions of interest and re-

move false positive detections by averaging the foreground

frames together.

5.5. Anomaly Detection Pipeline

Localizing anomalous vehicles in near real-time requires

robust background modeling, object detection, and light-

weight tracking. Anomalous vehicles, particularly stalled

vehicles, uniquely transition between the foreground and

background. A lack of supervised data leads to the use

of traditional computer vision and statistical methods. Fig-

ure 5 demonstrates our end-to-end pipeline. We approach

background modeling through the use of a Gaussian mix-

ture model. Since vehicle detection is an essential part in

localizing anomalies, we prioritized using a computation-

ally expensive deep learning model, but only run inference

on every 30th frame. We apply an online tracker to clus-

ter these detections, and apply several heuristics to remove

false positive results.

Figure 6 shows the qualitative performance of our system on

the 2020 NVIDIA AI City Challenge dataset. We note that

our proposed pipeline is able to accurately spatially local-

ize most anomalous vehicles. However, our pre-trained de-

tector often produces false positive results in night scenes,

and bad weather conditions. Additionally, our foreground

model is able to produce high quality road masks in busy

scenes, but creates sparse representations when vehicles in

a scene are sparse, or moving very slowly.

5.6. Experiments

Dataset: The NVIDIA AI City Challenge provides 200

fixed camera videos of unconstrained traffic scenes taken

from highways and intersections in Iowa. These 200 videos

are divided equally into training and testing sets. Each video

is approximately 15 minutes long. The dataset includes a

variety of illumination and weather conditions.

Evaluation Metric: Each anomaly detection pipeline is

evaluated on its ability to accurately localize the start time

of an anomaly. The S4 score is defined as F1 × (1 −

NRMSE), where the F1 score is the accuracy in selecting

videos containing anomalies, and NRMSE measures the ac-

curacy of the temporal bounds for each prediction. Table 6

shows how our method compares against other top perform-

ers in the challenge.

5.7. Run­time Performance

We compute the run-time of each module in our pro-

posed pipeline and show that end-to-end pipeline runs in

near real-time. We run each module five times on five
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Figure 5. Our proposed anomaly detection pipeline is able to accurately localize multi-scale anomalies in near real time.
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Figure 6. The Hybrid Task Cascade Network is able to accurately

localize small vehicles in normal weather conditions, but generates

false positive results in poor weather and less lighting.

Table 6. Top 8 performers in the 2020 NVIDIA AI City anomaly

detection challenge

Team Name S4 (%)

Firefly 96.95

SIS Lab 57.63

CETCVLAB 54.38

UMD RC 29.52

HappyLoner 29.09

Orange-Control 23.86

PapaNet 0.1703

Team Gaze NSU UAP 0.0958

videos each and average across each trial to normalize for

variations in a given scene. All modules run on a CPU, ex-

cept detector inference, which uses a single NVIDIA Titan

X (Pascal). Table 7 demonstrates that the primary bottle-

necks in our pipeline are the Gaussian mixture model and

detector. Our current pipeline can process approximately

18 FPS. We can significantly reduce processing time by

streaming relevant data to subsequent modules rather than

saving to disk, and use a lighter detector trained on more

domain specific data.

Table 7. Processing Time Analysis for 15-minute Video Clip

Component Processing Time (minutes)

GMM Segmentation 12.7

Object Detection 11.39

Road Mask Construction 1.13

Object Tracking 0.05

Proposal Filtering 4e-6

Proposal Refinement 4e-6

End-to-End 25.29

6. Conclusion

In this paper, we summarizes our contributions to the 2020

NVIDIA AI City Challenge for the tasks of vehicle re-

identification, multi-camera vehicle tracking, and anomaly

detection, and highlight the computational efficiency of our

proposed methods. As a byproduct, We achieve state-of-

the-art results on the VehicleID dataset using the proposed

EVER model and are ranked 7th out of 41 teams. We are

also ranked in the top 5 in public leaderboards for both

multi-camera tracking and anomaly detection.
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