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Abstract

This paper presents an upright and stabilized omnidi-

rectional depth estimation for an arbitrarily rotated wide-

baseline multi-camera inertial system. By aligning the

reference rig coordinate system with the gravity direction

acquired from an inertial measurement unit, we sample

depth hypotheses for omnidirectional stereo matching by

sweeping global spheres whose equators are parallel to the

ground plane. Then, unary features extracted from each

input image by 2D convolutional neural networks (CNN)

are warped onto the swept spheres, and the final omnidi-

rectional depth map is output through cost computation by

a 3D CNN-based hourglass module and a softargmax op-

eration. This can eliminate wavy or unrecognizable visual

artifacts in equirectangular depth maps which can cause

failures in scene understanding. We show the capability of

our upright and stabilized omnidirectional depth estimation

through experiments on real data.

1. Introduction

Omnidirectional vision is becoming more popular for

various application, e.g., AR/VR, robotics, or automonous

driving systems. In vision-based navigation systems for au-

tonomous vehicles, it is necessary to estimate omnidirec-

tional depths to detect and avoid surrounding obstacles. To

this end, many omnidirectional vision systems and depth es-

timation methods have been proposed, for example, multi-

ply mounted stereo cameras [15], wide field-of-view (FOV)

fisheye lenses [2, 17, 16], and 360° catadioptric lenses or

spherical panoramic cameras can be used for the omnidi-

rectional depth estimation.

Recently, a wide-baseline omnidirectional multi-view

stereo setup which uses only four fisheye cameras each

of which has 220° FOV, and a spherical-sweeping method

in which the input fisheye images are warped onto the
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pre-defined global spheres to match omnidirectional stereo

correspondences are presented [17]. Further in [16], the

spherical-sweeping method is adopted in deep neural net-

works, which consists of the unary feature extraction,

spherical-sweeping, and cost volume computation blocks,

and the proposed network named OmniMVS estimates

an omnidirectional depth map in an end-to-end manner.

Meanwhile, using the same camera systems, [12] have

proposed a robust omnidirectional visual odometry (VO),

ROVO, which utilizes omnidirectional visual features ex-

tracted from the proposed hybrid-projection images. Both

OmniMVS [16] and ROVO [12] are extended and inte-

grated into a localization and dense mapping system, Om-

niSLAM [18]—omnidirectional depth maps output by Om-

niMVS are integrated into the VO for better feature track-

ing, and estimated depth maps and rig poses are fused into a

global 3D map. OmniSLAM [18] has shown the capability

of its omnidirectional vision system, and favorable 3D per-

ception performances through experiments on both indoor

and outdoor rig setups.

In the process of the spherical-sweeping proposed

in [17], the rig center is chosen for the origin of the spheri-

cal coordinate system, and the xz-plane is aligned close to

the camera centers, i.e., the equators of the global spheres

are in the camera center plane, and the output omnidirec-

tional depth map follows equirectangular projection (ERP)

corresponding to the spherical coordinate system. In real-

world environments, the camera rig can move in arbitrary

direction (e.g., mounted on a drone or hand-held by a per-

son), and the result ERP depth maps or warped images are

rotated and the structures and lines become wavy. These

visual artifacts can lead to failures in visual scene under-

standing, e.g., semantic segmentation or object detection.

Also shakes of the rig cause large and consistent rotational

motion in result videos, and the users or recognition systems

can be confused.

In this paper, we present an upright and stabilized om-

nidirectional depth estimation from an arbitrarily rotated

multi-camera inertial systems. We estimate the gravity di-
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rection using an inertial-measurement unit (IMU) in the ini-

tialization stage, and we align the rig poses from VO with

the initialized gravity direction. With the gravity-aligned

rig poses, we sweep global spheres so that the equators are

parallel to the ground plane with uniformly sampled depth

hypotheses to find omnidirectional stereo correspondences.

Using deep neural networks, OmniMVS [18] extracts deep

features from input images, and then warps onto the up-

right spheres to compute the matching cost volume by a 3D

encoder-decoder architecture. Finally the upright stabilized

omnidirectional depth map is acquired by a softargmax op-

eration.

2. Related Work

Many algorithms have been proposed for the omnidirec-

tional depth estimation [2, 11, 15]. Schönbein et al. [11]

use rectified omnidirectional images from two horizontally

mounted 360° FOV catadioptric cameras for disparity esti-

mation. Gao and Shen [2] projects the ultra-wide FOV fish-

eye images from two vertically mounted cameras onto four

directions to compute omnidirectional depth maps. Im et

al. [4] use a short omnidirectional video for depth esti-

mation of static scenes by temporally matching correspon-

dences between adjacent frames. Recently SweepNet [17]

and OmniMVS [16] propose a wide-baseline camera sys-

tem with ultra-wide FOV lenses for omnidirectional depth

estimation. SweepNet computes the matching costs be-

tween pairs of views, then the cost volume is processed by

SGM [3]. On the other hand OmniMVS adopts an end-

to-end deep neural network that considers all images at the

same time. It can handle several hard cases of multiple true

matches or textureless regions by learning the regularization

of the cost volume using a 3D encoder-decoder network.

Meanwhile, there have also been methods for camera ro-

tation estimation from 360° images by extracting lines and

vanishing points [1, 6], and deep neural networks [5].

3. Upright Stabilized Depth Estimation

In this section we briefly summarize the OmniMVS and

ROVO algorithms, then describe the upright sweeping algo-

rithm for upright and stabilized depth estimation.

3.1. Review of OmniMVS

We use the same wide-baseline multi-camera rig system

and spherical sweeping with [17, 16, 18]. OmniMVS [16,

18] consists of unary feature extraction, spherical sweep-

ing, and cost volume computation modules for dense om-

nidirectional depth estimation by multi-view stereo match-

ing. The input images from the cameras are processed

using the unary feature extraction network to build deep

feature maps {Fi}, where i indicates the camera index.

Similar to plane sweeping in conventional stereo, spheri-

cal sweeping generates a series of N concentric spheres

with different radii to build the spherical feature maps for

dense matching. Specifically, for each inverse depth hy-

pothesis d, each ray in the W × H equirectangular im-

age p(θ, φ) = (cos (φ) cos (θ), sin (φ), cos (φ) sin (θ))⊤,

where (θ, φ) is the spherical coordinate of p, is projected

to the corresponding sphere of radius 1/d. The inverse ra-

dius dn is swept from 0 to dN−1, where 1/dN−1 is the mini-

mum depth being considered. The 3D point X on the sphere

is projected back to the input images to find the deep fea-

ture vectors for the ray, i.e., for the i-th camera, the image

pixel coordinate xi is computed by the projection function

Πi with the intrinsic and extrinsic parameters; xi = Πi(X).
Thus a point at 〈θ, φ〉 on the sphere of radius ρ is projected

to Πi(ρp(θ, φ)) in the i-th fisheye image.

The unary feature maps of 1

2
WI × 1

2
HI × C with C

channels are extracted from the input fisheye images of

WI × HI . The equirectangular spherical feature map for

the n-th sphere is built by

Sn,i(θ, φ) = Fi(
1

2
Πi(p(θ, φ)/dn)), (1)

where Fi is the unary feature map of i-th camera and dn is

the n-th inverse depth. The result spherical feature maps are

four W ×H×C× (N/2) tensors (only every other spheres

are used due to memory and speed issues), and they are

concatenated to build the 4D omnidirectional feature data

for matching.

Finally the 3D encoder-decoder architecture computes

and regularizes the cost volume of W × H × (N/2). The

minimum index of inverse depths for each ray is chosen by

the softargmax operation.

3.2. Review of ROVO

To estimate rig poses, we adopt ROVO [12] without

depth map integration [18]. ROVO consists of four steps:

hybrid projection, intra-view tracking and inter-view match-

ing, robust pose estimation, and joint pose optimization.

Instead of using raw fisheye images or rectified images

using a pinhole camera model, ROVO uses the hybrid pro-

jection model which combines planar and cylindric projec-

tion models. It can handle ultra-wide FOV imgaes with

> 180 deg with little radial distortion and also improves

inter-camera feature matching as the appearances in two im-

ages are similar. The ORB features [9] are detected in each

projected image, and are temporally tracked using KLT [7].

The inter-view feature matching between adjacent cameras

is performed, where feature correspondences across views

enable 3D triangulation of the features. From the 2D-3D

feature correspondences, the rig pose is computed using ro-

bust multi-view P3P RANSAC [12] which uses the corre-

spondences in all views, and the the result pose is optimized

by minimizing the reproection errors of all inlier features in



Figure 1: Qualitative results of upright adjusted omnidirectional depth estimation. From left: input images, before applying

adjustment, and after. Color-coded inverse depth map and corresponding re-projected reference panorama images are shown.

all views. Finally, the estimated poses and reconstructed

3D feature points in the local window are simultaneously

optimized using local bundle adjustment (LBA) [13].

3.3. Upright Spherical Sweeping

OmniMVS uses the default coordinate system whose xz-

plane is aligned with the camera centers. This is a reason-

able option as the epipolar lines between views are close to

the horizontal axis of the images. However when the rig

is moving freely in space, the horizon of the scene is not

aligned with the horizontal axis of the estimated depth map,

which causes the horizon to a wavy curve. In continuous

capture, the camera motion appears in the result video, and

sometimes it is preferable to have a stabilized output.

To this end we utilize an inertial measurement unit

(IMU) to find the gravity direction, and the rig rotation esti-

mated by ROVO [12, 18] to align the rig with the gravity. In

the initialization stage, we assume that the rig is stationary,

so that the gravitational acceleration g ∈ R
3×1 is calculated

by taking average of the accelerometer values accumulated

for a short period of time (< 50 ms), and the gravity direc-

tion ḡ is acquired by normalizing g. Since the gravity is

consistently observed from the accelerometer when the rig

is stationary, the estimated direction is quite stable, and also

the computational cost is negligible. We then transform the

initialized gravity direction to the world coordinate system

by using calibrated extrinsic between the IMU and the cam-

era rig.

The rotation for upright adjustment has 2-DOF (the roll

and the pitch) as the yaw is not related to the undesirable

visual changes. Therefore, we compute the the rotation ma-

trix R∈R
3×3 needed for the upright adjustment by aligning

the up-vector of the rig pose with the gravity direction as:

ḡ = Ri(−ui),

where ui ∈ R
3×1 is the up-vector of the estimated i-th rig

pose. Following Eq. 1, the pixel value of the aligned n-th

spherical image from i-th camera is determined as

Ŝn,i(θ, φ) = Fi

(1

2
Πi

(

R⊤(p(θ, φ)/dn)
))

, (2)

We warp the unary features extracted by the 2D CNN onto

the aligned spheres, and the final omnidirectional depth map

is acquired through the cost computation block and the sof-

targmax operation [16, 18].

4. Experiments

We use a square-shaped rig (0.3× 0.3 m) with four 220°

fisheye cameras and one Xsens MTi-10 IMU sensor, and we



Figure 2: Gravity aligned visual odometer result. Orange

denotes the original odometer estimated by ROVO [12, 18],

and blue denotes the estimated gravity direction and the

aligned odometer.

capture 4 × (1600 × 1532) gray images (20 Hz) and IMU

measurements (200 Hz). We calibrate the intrinsic and ex-

trinsic between cameras using a checkerboard [10, 14, 17].

Then, we also use the extrinsic between the camera and

IMU which calibrated by the Kalibr [8]. For the depth

and pose estimation, we use the OmniMVS and ROVO pro-

posed in [18] without additional training and depth map in-

tegration. We set the size of output depth map to W = 640
and H = 160, the number of inverse depths N = 192, and

φ from −45° to 45°. For ROVO, we set the number of fea-

tures to 4× 250, and the size of hybrid projection image to

640× 480.

We show the qualitative results of upright adjusted om-

nidirectional depth map in Fig. 1. Indoor walls and floors

as well as outdoor environments are well corrected, and ob-

jects in the adjusted depth maps and the reference images

are more recognizable than without adjustment. Figure 2

also shows the odometer result on a sequence taken around

a corridor of a building with the rig tilted to one side, and the

rig poses estimated VO (orange) are well-aligned according

to the gravity direction (blue).

5. Conclusions

In this paper we propose a upright and stabilized omnidi-

rectional depth estimation algorithm. Based on the superior

performance of OmniMVS and ROVO, the proposed algo-

rithm keeps the estimated depth maps to be upright and sta-

bilized by aligning the y axis with the gravity direction. The

experimental results shows that the proposed algorithm can

handle arbitrary rotational rig motions.
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