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Figure 1: Left: Our imagined social verification setting: Multiple people capture a speaker with their smartphones to verify the

truth of an event, even if one person is digitally manipulating the face (red). Right: Our current proof of concept capture setting.

Abstract

Deepfakes can spread misinformation, defamation, and

propaganda by faking videos of public speakers. We assume

that future deepfakes will be visually indistinguishable from

real video, and will also fool current deepfake detection

methods. As such, we posit a social verification system that

instead validates the truth of an event via a set of videos. To

confirm which, if any, videos are being faked at any point in

time, we check for consistent facial geometry across videos.

We demonstrate that by comparing mouth movement across

views using a combination of PCA and hierarchical clus-

tering, we can detect a deepfake with subtle mouth manip-

ulations out of a set of six videos at high accuracy. Using

our new multi-view dataset of 25 speakers, we show that our

performance gracefully decays as we increase the number

of identically faked videos from different input views.

1. Introduction

Current facial manipulation tools produce video which

can fool humans. While these manipulations can be benign

or humorous, like a transplant of Nicholas Cage’s face onto

every other actor, many manipulations are malicious. With

simple-to-use open-source software, anyone can create con-

vincing propaganda of a politician, can submit manipulated

video as evidence in court, or can post revenge pornography

of an ex. These faked videos of humans are often created

with deep learning [18], and have been dubbed ‘deepfakes.’

Deepfake detection approaches combat the spread of mis-

information. These methods focus on classifying individual

videos as either real or fake, often by detecting visual arti-

facts such as temporal flicker [14, 7, 11]. While state-of-the-

art deepfake generation produces video with minor artifacts,

we hypothesize that in the future these ‘tells’ will be whit-

tled away, and current detection methodologies will struggle.

Consider two videos found online, where one is a real video

of a speaker, and the other is a visually perfect deepfake of

the real video. We assume that we cannot establish which, if

either, of these two videos is unmodified.

To provide an additional tool to combat deepfakes, we

consider detection via social verification at capture time

(Figure 1): the arbiters of truthfulness are a group of video

cameras that synchronously capture a speaker, collectively

reach consensus, and then sign their videos in real time as

‘true’. This setting makes the creation of fakes more difficult

in two ways: 1) attackers must make real time modifications,

and 2) attackers must make modifications which fool the

consensus-driven representation. Forming this representation

is challenging. Cameras must agree that the depiction of the

speaker is the same even though they capture the scene at

different angles, while also rejecting cameras presenting

manipulated content to the group. Further, the operation

to reach consensus must be fast to compute and constitute

a small amount of data for real-time transfer between the

group, e.g., via a peer-to-peer wireless network. However, if

we can accomplish this, then we can ‘crowd-sign’ videos for



authenticity, and provide a basis of truth for verifying other

videos uploaded after the event.

Through this process, we assume that individual cameras

do not trust one another, but that all parties are motivated

to share data with the group by the desire to produce a

trustworthy signed video. We imagine citizen journalists

with no shared affiliation recording a speech at a protest, or a

group of news broadcasters with different political leanings

wishing to protect against video stream hacking. Finally, a

complete solution to this problem would also include an

analysis of the captured audio; our paper currently focuses

on the visual appearance of human speakers only.

Our approach Given n video streams of an event, we

assume that some k videos are manipulated in real time by

an attacker, with 0 ≤ k < n and m = n−k unedited videos.

We assume that m > k, i.e., that the largest set of consistent

videos are unedited. Our goal is to define a measure by which

we can identify the majority of unedited videos. This allows

us to decide to sign videos only when the majority is equal

to the size of the group, or under more relaxed tolerance

constraints, e.g., where one malicious attacker is ostracized.

For this, we look to establish a measure with properties

analogous to the collision-resistance of a cryptographic hash

function. In a cryptographic hash function, multiple inputs

can map to the same output, and any pair of inputs that maps

to the same output is known as a collision. A hash function

is collision-resistant if it is computationally infeasible to ef-

ficiently find a collision in the function. In our visual setting,

we look for a visual hash that can be computed per camera

feed, such that it is difficult to find another ‘meaningfully

visually different but still convincingly manipulated’ video

that has the same hash value.

We experiment with face geometry as a visual hash.

Within our scope, we focus on mouth manipulations, though

our method may generalize to other face part manipulation.

Intuitively, manipulations to the speaker’s mouth shape will

create differences in geometry between edited and unedited

videos. Face 3D geometry will be view invariant, as long as

the speaker’s face is mostly un-occluded for all cameras, and

will be difficult to replicate, since a convincing manipulation

will be reflected in a geometric representation.

First, we collect a multi-view dataset of 25 human speak-

ers from six cameras. Next, we show that off-the-shelf meth-

ods cannot reliably fit two established 3D multi-linear face

models to our videos with sufficient accuracy to detect mouth

differences. Then, we show that a simple and fast variance-

based measure on 2D mouth landmarks, computed per cam-

era as a geometric cue, can detect faked mouth motion in a

way which is robust to angle changes up to at least 65◦, and

is somewhat robust to increasing number of fakes. We show

that this is better than a naive baseline landmark distance

method, and a more complex wavelet-based signal clustering

method. In sum, our work provides evidence that untrusted

social verification systems are possible, and may prove to be

an additional useful tool to combat deepfakes.

Within the span of this work, we contribute:

• A proposal for social verification for this problem space,

• A multi-view video dataset of 25 human speakers in an

indoor environment, with deepfakes of each video which

manipulates participant mouths via speech changes, and

• A distance based on hierarchical clustering of variance in

2D mouth landmark motion over time and across views.

2. Related Work

2.1. 3D face geometry

The human face can be modelled both spatially and tem-

porally. Parametric models are popular, and are typically

constructed from datasets of laser scans [3]. The 3DMM

model is a widely used parameterized face model [6]; it is

represented by a set of shape, texture, and expression param-

eters as coefficients to a basis for the model space. We also

consider the FLAME model, which similarly parameterizes

the face, but uses a more diverse set of input data [12]. In our

experiments, we assess 2D landmark models [4] and fitting

both the 3DMM 2019 and FLAME models to our data.

2.2. Deepfake creation

Current deepfake manipulations include synthesizing a

fully fake face, swapping identities [24], manipulating spe-

cific facial attributes, or transferring expressions [27, 23].

Many deepfake creation methods focus uniquely on iden-

tity swapping, or on a mix of identity and expression swap-

ping [24, 16]. Expression transfer exemplifies more subtle

geometric manipulation than full identity swapping, so to

establish the robustness of our proposed geometry-based

method, we focus on related works on expression transfer.

Expression transfer can be accomplished with auto-

encoders [17], or with GANs paired with a variety of

problem-specific losses and modifications [28, 20, 9]. For

creating our own fakes for analysis, we use LipGAN, a pub-

licly available model which generates a talking face given

a single image or input video, and desired audio output.

K R et al. use this network to automate language agnostic

translation in video with lip synchronization [9].

Some works are not ‘deep.’ Thies et al. create Face2Face

to transfer the expression of a source actor to a target video

in real-time [22]. This method is used to generate a subset

of the fakes in FaceForensics++ [19], a dataset used to train

and evaluate deepfake detection methods. Averbuch-Elor et

al. warp portrait photos to mimic a source video, and transfer

fine details like wrinkles to heighten realism. This work can

generate convincing manipulations as long as there are no

large changes in head pose [2].
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Figure 2: Given a set of time-synchronized input videos with a subset of fakes (red), we first compute 2D facial landmarks per

video. Next, we normalize landmark motion across temporal windows per video, then perform PCA on the landmarks. From

this, we measure the shape variance as the distance of each timestep’s landmarks from the center of PCA space. Finally, we

hierarchically cluster distances per window, and threshold the resulting trees to determine which videos are fake. We illustrate

hierarchical tree cutting in the no fake, one fake, and two fakes scenarios, with the connection height proportional to its cost.

2.3. Deepfake detection

Detection methods primarily focus on finding artifacts

created by sensor noise, compression, or edits. These often

use neural networks to decide whether or not a single video

has been modified, which can overfit to their training data—

the performance of many state-of-the-art detection methods

dramatically decays for in-the-wild scenarios that have large

variation in compression, noise, and blur [27, 23].

The work of Guera et al. combines a CNN for feature

detection and an LSTM for temporal information to predict

if a video is fake given two seconds of input. As their training

set is small, this work is unlikely to generalize to in-the-wild

scenarios [7]. Li et al. look for face warping artifacts caused

by resolution changes between source videos and fake output

videos [14]. Neves et al. show that GANs leave ‘fingerprints’

in the high frequency information of their output videos.

They show that many existing detection methods rely on

detecting these fingerprints, and demonstrate that detection

accuracy drops dramatically when they remove them [15].

Detectors can also be trained on subject behaviors. Li et

al. look at eye blink rates and abnormal physiological cues

to detect fakes [13]. Agarwal et al. show that fakes can be

detected by looking for consistent action unit models for per-

sons of interest. They codify a speaker’s normal behaviors as

clusters in a high dimensional space, and detect fakes if they

fall outside these clusters [1]. However, these approaches

require an existing corpus of data for a particular speaker.

We can aid detection by creating and publicly releasing

training data. Khodabakhsh et al. create a dataset of ma-

nipulated images—Fake Faces in the Wild [11]. Rossler et

al. create FaceForensics++, a dataset of fake videos manipu-

lated using a variety of methods and at different resolutions

to try to overcome detector weakness to the variety of in-the-

wild video. They find that expression transfer methods like

Face2Face are most difficult for humans to detect, which

motivates our use of relatively subtle manipulations in image

content [19]. These datasets are all single view, so they are

not sufficient for our social verification problem space. Most

recently, Jiang et al. create the DeeperForensics-1.0 video

dataset, with a set of diverse actors shot from seven views [8].

This data is not yet publicly available.

One final consideration for detection methods is inter-

pretability. Verdoliva describes that successful detection

methods based on neural networks are hard to interpret,

which is not sufficient for many scenarios where manipu-

lated video could be considered, e.g., legal [27].

3. Method

Suppose a set of C synchronously capturing cameras

c1, ..., ci, ..., cC , where some subset of cameras produce fake

output (Fig. 2). First, we fit landmarks per video per frame

using 2D FAN [4]. For our landmark-based clustering, we

isolate and normalize our landmarks by face part. Given a

set of landmarks per frame {~mci,1, ~mci,2, ..., ~mci,n}, where

each video ci is n frames long, we perform classical prin-

cipal component analysis (PCA) on each set of landmarks

corresponding to a face part (e.g., the mouth) to obtain a sig-

nal per camera which is representative of the variation in face

part motion (Sec. 3.1). Finally, we cluster our PCA results to

separate our cameras into real and fake subsets (Sec. 3.2). As

a comparison, we also outline our 3D model fitting process

(Sec. 3.3), which we use to evaluate parameterized model

fitting (Sec. 4.2).

3.1. Landmark PCA

For each camera ci, we define an n× 2p matrix Mci :
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Each of the p part landmarks have some (x, y) pixel coor-

dinates per frame. We then perform classical PCA on each

of the matrices Mc1 , ...,McC . Our intuition is that PCA will

be able to capture the underlying variance in the landmark

movement over time, which we can then use to detect anoma-

lies across face part motion. To represent this variation com-

pactly as a signal over time per camera ci, at each frame we

represent the face’s pose as the distance from its projected

position in the PCA subspace for Mci , to the center of that

same PCA subspace. We calculate this length using the Ma-

halanobis distance metric, which can be used to find outliers

in multivariate comparisons. We define this n× 1 distance

vector for ci as ~di, where

~di =

√

∑

cols

(Mproj
ci −A)cov(Mci)

−1(Mproj
ci −A) (1)

Mproj
ci

= (Mci − M̄ci)E (2)

In Equation 2, Mproj
ci

represents the data matrix minus its

mean multiplied by the 2p× l eigenvector matrix E of that

same data matrix. In other words, Mproj
ci

is the centered data

matrix projected into PCA space. In Equation 1, cov(Mci)
is the covariance matrix of Mci , and A is an n × l matrix

which represents the 1 × l center of the PCA space of the

data matrix with l eigenvectors repeated n times. We take a

sum of the resulting inner matrix over columns of the inner

matrix result to give us our distance vector.

Intuitively, we quantify the variance of each of the p
(x, y) part landmarks over some set of n frames, with the

understanding that regardless of the pose of the head, if these

variances are similar, the face parts are moving in similar

ways throughout the given set of frames. In this way, we can

robustly quantify unusual face motion (see Figure 3).

We use the Matlab LIBRA toolbox for computing classi-

cal PCA and Mahalanobis distances per frame [25, 26].

3.2. Social verification

We now perform hierarchical clustering of our set of

vectors ~d1, ~d2, ..., ~dC to obtain a weighted binary tree t. To

perform hierarchical clustering, we first calculate the l2 dis-

tance between all of our leaves, or distance vectors. We pair

the two closest leaves with a parent node, which is then

weighted with the l2 distance between the two leaves. We

build a weighted binary tree by continuing to add leaves and

nodes, based on the current lowest distance cost. We use the

final tree’s shape and costs to determine which, if any, of the

inputs are faked, or inconsistent with the majority (Fig. 2).

Given a tree t with k connections and a distance weight

w per connection, we calculate

φ = wk/wk−1 (3)

Our φ represents the ratio of the cost of the ultimate

and penultimate connections in t. If φ is greater than a set

threshold, we say that there is inconsistency within our input

set of cameras, and at least one fake is present. We then

cluster the tree using a maximum cluster size of two, where

one cluster represents the real inputs, and the other represents

the fakes. The smaller of the two clusters is then called the

fake cluster. If φ is instead below this threshold, we say that

there are no fakes present.

We limit ourselves to the most difficult scenario where any

fakes that are present are manipulated in the exact same way,

and will therefore be clustered as a consistent sub-tree in t. In

the more trivial cases where all of the fakes are manipulated

in different ways, t will have many solitary branches with a

high connection cost. In this scenario, we would calculate φ
moving from the top of the tree down towards the bottom of

the tree, pruning off any section that falls above our threshold.

For the scope of this work, we focus on the most complex

scenario, to ensure that our methodology is feasible and

robust in the worst-case scenario.

3.3. Model fitting

We initially use RingNet, a deep learning method, to fit

the parameterized FLAME model to our video input [21].

However, we found that RingNet was not able to capture

mouth motion well, and appeared to be converging towards a

mean shape for each participant. Some visuals of this fitting

are in Appendix A. We instead frame model fitting for both

3DMM and FLAME as an optimization problem, where

we solve for model parameters and rigid transformation

parameters that minimize the re-projection error of model

vertices to their corresponding 2D landmark locations. Our

results have average re-projection error per pixel on the order

of 10−1. We run this fitting for each of our input videos to

obtain a set of model parameters per frame per video.

4. Experiments

For our method to represent a visual hash, in the loose

cryptographic sense, we need to be certain that our signals

from real cameras are view invariant, and that these signals

are hard to replicate while maintaining a visual dissimilarity

from the real video. We collect data and set up a series of

experiments to test both of these qualities.

4.1. Data

Real-world data We collect multi-view video of 25 par-

ticipants using six Canon EOS T7i Rebel cameras fitted

with 18-55mm lenses. These are arranged in an arc of 65◦



900 950 1000 1050 1100 1150 1200

Frame

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
a

h
a

la
n

o
b

is
 D

is
ta

n
c
e

Real cameras 1-6

Fake camera

t2t1 t3

Figure 3: Our Mahalanobis distances plotted over time. We highlight areas where our clustering results could correctly

differentiate mouth shape. At t1, our real video (blue) and fake video (red) are close by Mahalanobis distance, and the real and

fake corresponding mouth poses are the same. At t2, the fake mouth is open wider, and we see a visual spike in the graph. At

t3, we see our biggest difference between the real and fake mouths, where the fake is open, and the real is closed.

(a) FLAME fit with

all parameters

(b) FLAME fit with

expression parameters

(c) 3DMM fit with

all parameters

(d) 3DMM fit with

expression parameters

Figure 4: To isolate a fake camera from normal fitting variance, the fake camera (red) must be separable from the lines

corresponding to real cameras. Both the FLAME and 3DMM parameter sets are unable to differentiate between the real and

fake geometries. This result holds when comparing both the full parameter vectors, and the expression parameter vectors. We

visualize one standard deviation from the mean.

facing a seated speaker set against a black cloth backdrop.

External lights are used to keep the scene bright, and camera

settings are consistent across all cameras. We capture video

synchronously using a trigger box, where each video is on

average five thousand frames long. Participants are asked

a fixed series of innocuous questions to trigger expressive

responses (e.g., “which do you prefer: dogs or cats?”), with

the goal of collecting video with a variety of expressions.

Deepfake data We use LipGAN [9] to generate our deep-

fake videos. We pass the network our input video, one of

the original camera results, and an audio track from the Lib-

riTTS corpus dataset [29]. LipGAN synthesizes a new video

with modified mouth and jaw area from the input video. This

process creates faked scenarios that are more difficult to de-

tect than an identity swap alone. We create a deepfake for

each of the six real videos per participant, using the same

multi-minute-long audio sequence for all fakes.

Synthetic data As a proof of concept, we determine

whether we are able to capture differences in geometry at the

model level in parameter space. Given an idealized scenario

where fitting a model to video via landmarks is perfect, we

take a mesh represented through the FLAME model, then

warp it in mesh space with two different audio samples using

VOCA [5]. We show that differences in geometry caused by

mouth movement are detectable in the model’s parameter

space in our supplemental, Appendix A.



0 50 100 150 200 250 300 350 400

Window Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

Detection Accuracy vs Window Size

No Fakes

One Fake

Two Fakes

Three Fakes

(a) Our method’s accuracy

0 50 100 150 200 250 300 350 400

Window Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

Detection Accuracy vs Window Size

No Fakes

One Fake

Two Fakes

Three Fakes

(b) DWT method’s accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curve, Window size = 250

One Fake

Two Fakes

Three Fakes

(c) Our method’s ROC curve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curve, Window size = 250

One Fake

Two Fakes

Three Fakes

(d) DWT method’s ROC curve

Figure 5: Accuracy and ROC curves for our method and DWT. Error bars represent one standard deviation from the mean

across all participants. Horizontal error in the ROC curves represents uncertainty in the FPR, and vertical error represents

uncertainty in the TPR. We plot our ROC curves at a fixed window size of 250 frames. In summary, our method has higher

accuracy for all but the smallest window size. Our method is more robust to false positives.

4.2. Experimental Methods

Model evaluation For parameterized models 3DMM and

FLAME to be viable, we must confirm that the parameters

of the fitted models to the fake video are differentiable from

the normal variation in the fits to the real six views.

To compare parameter vectors across videos, we work

in a one vs. all manner. Suppose we have the parameter

vectors ~pc,1, ..., ~pc,n associated with the n frames of cam-

era c. For every frame, we calculate the mean of the Eu-

clidean distances between all pairs of cameras. More for-

mally, for every frame f , and every camera c, we calculate:
1

C

∑

j=1,...,C,j 6=c ‖~pc,f − ~pj,f‖, where we have C cameras.

Fake detection For these experiments, we use the top five

principle components from PCA, l = 5, determined empir-

ically. To test our method, we first generate a fake version

of the second, third, and fourth camera for every subject,

where the fake is as long as the real videos at three and a half

minutes, and is generated using the first 4000 frames of the

real video. These cameras are the most frontal facing, and

therefore have the best LipGAN output quality.

We run two detection experiments, one using full video

sequences, and one using sliding windows. For both experi-

ments, we evaluate two baselines in addition to our method.

The first baseline is a simple measure of how open the mouth

is at a given frame. We take the l2 distance between the

upper and lower lip for each frame of each camera, given

the feature points in the middle of the mouth. Each cam-

era then has a vector of distances, which we hierarchically

cluster as described in Section 3.2. The second baseline is a

direct decomposition of the data matrices Mci using a dis-

crete wavelet transform (DWT). We use the haar wavelet

with the maximum number of levels permitted for the signal

length. Then, we hierarchically cluster the sets of wavelet

coefficients per camera, as described in Section 3.2. We do

not compare against existing detection methods, since we

assume in our problem setup that the fake is already able to

fool single-video-based detectors.

We create four sets of inputs to use for both experiments:

1. Real = {1, 2, 3, 4, 5, 6}

2. Real = {1, 2, 3, 5, 6} and Fake = {4}

3. Real = {1, 2, 5, 6} and Fake = {3, 4}

4. Real = {1, 5, 6} and Fake = {2, 3, 4}

The worst case scenario for our problem space occurs

when we have multiple attackers manipulating video streams

in identical ways, such that the geometry across fakes is

consistent. We test how many fakes we can tolerate in this

setup, while still detecting the correct subset of real videos.

Full Sequence Experiment In the first experiment, we

test whether our method can pick out which, if any, of the



Table 1: Accuracy and false positive rates for the compared methods; DWT and our method have ratio threshold of 1.3. The

landmark-based simple mouth metric fails for all window sizes; DWT performs better; our method consistently performs better

still at all but the smallest window sizes. We bold the highest accuracy per ratio of real to fake inputs for non maximum-window

sizes, and their corresponding false positive rates. We also include whole video window sizes (‘max’). The false positive rate is

not computable for the ‘max’ case since all frames are faked, making false positives and true negatives zero.

Method Window Accuracy for # fakes / real False positive rate for # fakes / real

# frames 0 / 6 1 / 5 2 / 4 3 / 3 0 / 6 1 / 5 2 / 4 3 / 3

Simple 50 0.32± 0.03 0.20± 0.06 0.16± 0.03 0.15± 0.03 0.68± 0.03 0.79± 0.03 0.81± 0.03 0.84± 0.02
Mouth 150 0.33± 0.05 0.21± 0.08 0.16± 0.05 0.16± 0.04 0.67± 0.05 0.78± 0.05 0.80± 0.04 0.83± 0.05

250 0.35± 0.08 0.22± 0.10 0.17± 0.06 0.16± 0.05 0.65± 0.08 0.76± 0.07 0.78± 0.08 0.82± 0.06
350 0.35± 0.09 0.22± 0.11 0.19± 0.07 0.17± 0.05 0.65± 0.09 0.75± 0.09 0.75± 0.10 0.81± 0.07
max 0.40± 0.50 0.24± 0.44 0.08± 0.28 0.00± 0.00 - - - -

DWT 50 0.79± 0.09 0.64± 0.15 0.54± 0.15 0.48± 0.13 0.21± 0.09 0.31± 0.15 0.21± 0.10 0.39± 0.14
150 0.87± 0.10 0.66± 0.14 0.58± 0.14 0.53± 0.13 0.13± 0.10 0.28± 0.15 0.16± 0.09 0.32± 0.14
250 0.89± 0.09 0.68± 0.13 0.60± 0.14 0.55± 0.13 0.11± 0.09 0.27± 0.15 0.15± 0.10 0.30± 0.15
350 0.91± 0.09 0.69± 0.13 0.60± 0.13 0.56± 0.14 0.09± 0.09 0.27± 0.16 0.16± 0.12 0.29± 0.17
max 0.60± 0.50 0.48± 0.51 0.36± 0.49 0.28± 0.46 - - - -

Ours 50 0.98 ± 0.02 0.45± 0.05 0.37± 0.03 0.36± 0.02 0.02 ± 0.02 0.03± 0.02 0.04± 0.02 0.04± 0.03
150 0.97± 0.05 0.68± 0.09 0.56± 0.08 0.50± 0.08 0.03± 0.05 0.08± 0.05 0.06± 0.06 0.06± 0.05
250 0.96± 0.06 0.75± 0.10 0.63± 0.09 0.57± 0.08 0.04± 0.06 0.13± 0.07 0.09± 0.08 0.08± 0.07
350 0.95± 0.08 0.77 ± 0.10 0.68 ± 0.09 0.60 ± 0.10 0.05± 0.08 0.18 ± 0.10 0.13 ± 0.10 0.11 ± 0.10

max 0.88± 0.33 1.00± 0.00 0.92± 0.28 0.76± 0.44 - - - -

inputs are fake. Given all four input scenarios, we calculate

a clustering with a threshold of 1.3 for both baselines and

our method. We average our results across the video of all

25 participants.

Sliding Window Experiment In a real-world scenario, we

will not have the luxury of processing three minutes of video

at a time, where one video is fully fake throughout. We

therefore set up a second experiment where we use sliding

windows through time. We increase the complexity of the

fake by interleaving it with its real counterpart. For example,

if camera four is our one fake camera, we use the LipGAN

output for the first and last third of the video, and use the real

camera four data for the middle third of the fake video. We

average our results across the video of all 25 participants.

Tolerance to viewpoint angle We evaluate the pose-

invariance of our method by calculating detection accuracy

over pairs of real cameras which are a fixed number of de-

grees apart. Our input to our method is a pair of real cameras,

and the fake of camera four. We take the average accuracy

over all sets whose real camera pair is separated by the same

angular distance. These results are further compacted as

an average across all 25 participants. We estimate angular

distance between cameras from our real world setup, use a

window size of 250 frames, and use a threshold of 1.3.

4.3. Results

Model accuracy As shown in Figure 4, for both models,

the fake camera (red) is not notably different from the vari-

ance in the fit of the real geometry. This result holds true

regardless of whether we look at the subset of parameters

related to expression. Even though the overall re-projection

error of our fitting methods is low, the landmark-driven fit

to the mouth is not accurate enough to capture the geomet-

ric differences between the real and fake videos. Therefore

this model fitting approach for FLAME and 3DMM is not a

currently viable method for establishing if the cameras are

filming consistent face geometry.

Detection accuracy Based on our results (see Table 1),

we see that in scenarios where we have one video that is

faked at every frame, our method outperforms DWT for

every combination of fakes and reals.

In the windowed experiment, we see in Figure 5, while

the overall accuracy of DWT is similar to that of our method,

its false positive rate is also much more drastic. Our method

is more robust to the scenarios with no fakes. We see that our

method’s performance decays as anticipated as we increase

the number of fake cameras. We test window sizes of 50,

150, 250, and 350 frames. For our ROC curves, we generate

data using thresholds 1.1, 1.3, 1.5, 1.7, 1.9, and 2.1. Our

method, implemented in Matlab on a CPU, runs in 0.0112

seconds on average per 250 frame window.

To better understand how our accuracy results change

over window size, and to visualize where our method fails to

detect a fake, we plot histograms of the number of properly

detected fakes and the number of missed fakes in Figure 6.

The x-axis demonstrates the average l2 difference between

LipGAN’s mouth landmarks and the real video’s mouth

landmarks. Intuitively, when this distance is small, the fake

and real mouths look similar to one another. We see that

when this distance is small, and the window size is also
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Figure 6: As window size increases, our method becomes better at picking out fakes, even when the lip motion of the fake is

visually similar to that of the real mouth. For all histograms, we have one fake, and use a threshold of 1.3.
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Figure 7: Accuracy vs. pairwise camera angle. We compute

clustering accuracy across all pairs of real cameras sepa-

rated by a set number of degrees, plus one fake camera. Our

accuracy remains consistent as angular distance increases,

showing that our results are robust to different camera poses.

small, it is difficult for our method to detect fakes. However,

as the window size increases, our method’s performance

improves dramatically. Most of the error associated occurs

when the motion of the fake and real mouths is similar.

Viewpoint angle As per Figure 7, our detection accuracy

remains stable around 0.65, with a small uptick towards

0.70 for cameras that are closest together. We see through

this experiment that we are also able to detect fakes at 65%

accuracy with window sizes of 250 frames, even though we

have decreased the number of real cameras from six to two.

4.4. Limitations

Our method will not be robust if the mouth itself is small

relative to the overall video size, since that will lead to

smaller and less distinctive mouth motion. We hypothesize

that we see a drop in accuracy between processing full se-

quences and windows for two reasons. The first is that in a

window, we are more beholden to the l2 difference between

the real and fake mouth landmarks. The second is that our

method processes windows independently from one another,

so we do not temporally propagate a fake detection.

However, it is worth noting that for our desired applica-

tion, we seek to have our method running while cameras are

actively filming content. To properly detect a fake, we do not

necessarily have to detect every faked frame perfectly—we

just need to isolate fakes over time with high accuracy, while

keeping all of our real videos in one set.

5. Conclusion

We move towards a social verification system to combat

deepfakes. We can detect mouth manipulations by hierar-

chically clustering signals based on the quick-to-compute

variance of mouth landmark motion in a set of videos. Based

on our experiments, we require a window size of around 8

seconds to detect one fake out of a set of six at 75% accuracy.

As we compute this metric per video, we side-step com-

plex multi-view reconstruction issues, and propose a system

where we rely on majority rule for cross-video consistency

where no individual video needs to have trustworthy content.

Moving forward, we aim to implement the system on a

set of smartphones for real time capture. While expensive to

compute, we also plan to explore latent representations for

the geometry in the video, e.g., comparing face embeddings

in the StyleGAN latent space [10]. Finally, and conceptually,

no technology is a panacea. A social verification system

can still be gamed, e.g., a ‘deepfake flashmob’ could verify

an event given sufficient bad actors. Our work explores the

feasibility of the underlying social verification as a way to

provide an additional tool to combat deepfakes.
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