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Abstract

Deep Neural Networks are successful but highly com-

putationally expensive learning systems. One of the main

sources of time and energy drains is the well known back-

propagation (backprop) algorithm, which roughly accounts

for 2/3 of the computational cost of training. In this work

we propose a method for reducing the computational com-

plexity of backprop, which we named dithered backprop. It

consists on applying a stochastic quantization scheme to

intermediate results of the method. The particular quan-

tisation scheme, called non-subtractive dither (NSD), in-

duces sparsity which can be exploited by computing efficient

sparse matrix multiplications. Experiments on popular im-

age classification tasks show that it induces 92% sparsity on

average across a wide set of models at no or negligible ac-

curacy drop in comparison to state-of-the-art approaches,

thus significantly reducing the computational complexity of

the backward pass. Moreover, we show that our method is

fully compatible to state-of-the-art training methods that re-

duce the bit-precision of training down to 8-bits, as such be-

ing able to further reduce the computational requirements.

Finally we discuss and show potential benefits of applying

dithered backprop on a distributed training settings, in that

communication as well as compute efficiency may increase

simultaneously with the number of participant nodes.

1. Introduction

Deep neural networks (DNNs) are powerful machine

learning systems for recognizing patterns in large amounts

of data. They became very popular through recent successes

in computer vision, language understanding and other ar-

eas of computer science [11]. However, DNNs need to un-

dergo a highly computationally expensive training proce-

dure in order to extract meaningful representations from the

data. For instance, [23] showed that the training process

of state-of-the-art neural network architectures can produce

284 tons of carbon dioxide, nearly five times the lifetime

emissions of an average car. Therefore, in order to mitigate

the impact of training and/or allow for models to be trained

on resource-constrained devices, more efficient algorithms

have to be designed.

The backpropagation (backprop) algorithm [18] is most

often applied when gradient-based optimization techniques

are selected for training DNNs. However, it involves the

computation of many dot products between large tensors,

therefore playing a major role in the computational cost of

the training procedure. Techniques such quantization and/or

sparsity can be employed in order to reduce the complex-

ity of the dot products. However, when applied in a naı̈ve

manner they may induce biased, non-linear errors which can

have catastrophic effects for the convergence of the overall

training algorithm.

In this work we aim to minimize the computational com-

plexity of the backprop algorithm by carefully studying the

error induced by quantization. Concretely, we propose to

apply a particular type of stochastic quantization technique

to the gradients of the preactivation values, known as non-

subtractive dithering (NSD) [22]. NSD does not only re-

duce the precision of the preactivation values, but it also

induces sparsity. As such, we attain sparse tensors with low

precision non-zero values, properties that can be exploited

in order to reduce the computational cost of the dot products

they are involved in. Our contributions can be summarized

as follows:

• We reduce the computational complexity of the most

expensive components of the backprop algorithm by

applying stochastic quantization techniques to the gra-

dients of the preactivation values, inducing sparsity +

low-precision non-zero values.

• We show on extensive experiments that we can reach

a significant amount of sparsity (between 76%-99%)



across a wide set of neural network models, while

maintaining the non-zero values below/equal to 8-bit

precision without affecting the final accuracy neither

the convergence speed.

• Finally, we discuss the positive properties that emerge

when applying dithered backprop in a distributed set-

ting. Concretely, we show that we can reduce the com-

putational cost for training at each node by increasing

the number of participant nodes.

2. Related Work

A lot of research is dedicated to improve the performance

at inference time [6, 25, 28]. However, less research has

focused on designing more efficient training algorithms, in

particular a more efficient backward pass. In the following

we discuss some of the proposed approaches.

Precision Quantization. Most of preceding work on ef-

ficient neural network training uses Precision Quantization.

In the context of deep learning that means to transform ac-

tivation, weight and gradient values to representations of

lower precision than the regular single-point floating point

standard. It has been shown that this can significantly re-

duce the time and space complexity of deep learning mod-

els [8, 9, 7, 15, 30, 14, 3].

[8] were among the first to show that it is feasible to quan-

tize parts of state-of-the-art models without or just with neg-

ligible loss of accuracy using 10-bit multiplications. Sub-

sequently, more people followed the example and quan-

tized successfully whole models to 16-bit representations

[15, 12]. Later, even ternary and binary weight quantiza-

tions were applied, while keeping the gradients and errors in

the backward pass in full precision [7, 26]. However, these

approaches sacrifice accuracy over the baseline networks.

[3] accomplished to quantize weights, activations and all

gradient calculations, except for the weight updates, to 8-

bit. A 16-bit copy of the backpropagated gradient is saved

to compute a full-precision weight update. They argue that

the extra time required for this matrix multiplication is com-

parably small to the time required to backpropagate the er-

ror gradient and that in most layers these calculations can

be made in parallel.

Efficient Approximations. Other work investigated the

possible speed up gaining from efficient approximations of

matrix multiplications in the backward pass. [1] reduces

the complexity of the matrix multiplication by approxima-

tions through a form of column-row sampling. Using an ef-

ficient sampling heuristic, this approach achieves up to 80%

reduced computation but the authors provide no analysis

of the induced noise variance contained the weight gradi-

ents and its impact on the generalization performance. The

meProp algorithm [24] sparsifies the pre-activation gradi-

ents by selecting the k elements with the largest magnitude.

They leverage sparse matrix multiplications for a more effi-

cient backward pass. However, since this quantization func-

tion is deterministic and operates on vectors, it results in

biased estimates of the weight updates which can harm the

convergence speed as well as generalization performance of

the trained model.

In contrast, we show how dither functions can be used to

calculate unbiased weight updates efficiently, due to their

sparsity-inducing property when applied to gradient values.

Furthermore, we show how the approach can be combined

with state-of-the-art precision quantization methods in or-

der to boost the computational efficiency of the algorithm.

3. Dithered backpropagation

For fully-connected layers the operations that need to be

performed per layer during one training iteration are the fol-

lowing (note that these equations are analogous for convo-

lutional layers):

Forward pass

zl = W l · al−1 + bl (1)

al = f(zl)

Backward pass

δlz = δla ⊙ f ′(zl)

δl−1

a = (W l)T · δlz (2)

δlW = δlz · (a
l−1)T (3)

with W , b, z and a being the weight tensor, bias, preacti-

vation and activation values respectively. δW , δb, δz and

δa denote the error or gradients of the respective quantities.

With f we denote the non-linear function whereas with f ′

its derivative. l is an index referring to a particular layer

and T denotes the transpose operation. Finally, the symbols

· and ⊙ denote the dot and Hadamard product respectively.

As one can see, there are three major matrix multipli-

cations involved at each layer during one training iteration,

namely, one in the forward pass (equation 1) and two in

the backward pass (equation 2 and equation 3). Since up

to 90% of the computing time is spent on performing these

dot product operations [24], in this work we focus on reduc-

ing their computational cost. In particular, notice how the

preactivation gradients δlz are present in both matrix multi-

plications in the backward pass. Hence, in order to save op-

erations, we apply quantization functions that compresses

these gradients.

3.1. Non­subtractive dithered quantization (NSD)

For reasons that will become more apparent in the next

section, in this work we propose to apply the following



Figure 1: Distribution of preactivation gradient values be-

fore δz (left) and after δ̃z (right) NSD quantization. The

gradients have become more sparse (higher count of 0 val-

ues) and the non-zero values can be represented with low

bitwidths (low number of non-zero “buckets”). For in-

stance, this example only 1 bit is required to represented

all non-zero values.

quantization function:

x̃ = Q∆(x+ ν)

= ∆⌊
x+ ν

∆
+

1

2
⌋

(4)

with ∆ being the quantization step size and x ∈ R an

input value. ν ∼ U(−∆

2
, ∆

2
) is a random number sam-

pled from the uniform distribution between the open inter-

val (−∆

2
, ∆

2
). The quantization function in equation 4 is

sometimes referred as non-subtractive dither (NSD) [22] in

the source coding literature, with ν being a stochastic dither

signal that is added to the input before quantization. The

main motivation for adding a dither signal before quantiza-

tion is to decouple the moments of the quantization error

ǫ = Q∆(x + ν) − x from the input signal x. For instance,

it is known that the quantization error of NSD is unbiased

and has bounded variance

E[ǫ] = 0 (5)

E[ǫ2] <
∆2

4
(6)

3.2. Effects of applying NSD to the gradients

Hence, at each layer l, we now apply NSD to the gra-

dients of the preacitvation values δlz before computing the

respective dot products. For large enough stepsizes ∆, NSD

will induce sparsity (many zero values) as well as non-zero

values with low bitwidth representation (see figure 1).

To make this effect more clear, consider as an exam-

ple the convolution f(t) = (Gσ ∗ U∆)(t) between Gσ a

gaussian distribution with mean 0 and standard deviation

σ and U∆ a uniform distribution, sampling values in the

range (−∆

2
, ∆

2
). The induced average sparsity is given by

Figure 2: (left) Shape of the probability distribution result-

ing from the convolution of a gaussian with a uniform dis-

tribution, where the uniform distribution samples values be-

tween a range (−∆

2
, ∆

2
). The shape depends on the step-

size ∆ of the uniform distribution, which is chosen to be

∆ = sσ with σ being the standard deviation of the gaussian

distribution and s ∈ N a scaling factor. The dashed lines

indicate the region of values between (−∆

2
, ∆

2
). (right) the

probability of a 0 value appearing after quantization at dif-

ferent scale factors. It is calculated by integrating the area

between the dashed lines on the left plot. From both plots

one can see that sparsity increases with the scaling factor s.

the probability of f sampling a value in the same interval,

thus

P (t = 0) =

∫ ∆

2

−
∆

2

f(t)

As figure 2 shows, the probability of 0 increases with the

stepsize value. Naturally, the same applies for the maxmal

bit-width of the non-zero values since the probability of a

high number appearing after quantization decreases as the

stepsize increases.

We can then exploit this sparsity to omit operations when

computing the dot product between tensors. The altered

equations for the backward pass at each layer are then given

by:

δ̃lz = Q∆l(δlz + νl) (7)

δl−1

a = (W l)T · δ̃lz (8)

δlW = δ̃lz · (a
l−1)T (9)

with νl ∼ U(−∆
l

2
, ∆

l

2
) and δ̃lz being the matrix of quan-

tized pre-activation gradients.

Given the above analysis we propose to choose the step-

size at each layer as to be a multiple of the standard de-

viation, that is, ∆l = sσl ∀l, with σl being the standard

deviation of the preactivation gradients and s ∈ N. s is

thus a global scaling factor that controls the trade-off be-

tween compute complexity and learning performance. We

named our proposed modification of the backprop method

dithered backprop. Algorithm 1 shows a pseudocode of the



Algorithm 1 Dithered backprop quantization

1: procedure NSD(δlz , s) ⊲ Quantizes preactivation

gradients δlz of layer l
2: σl ← std(δlz) ⊲ Computes standard deviation

3: ∆l ← sσl

4: δ̃lz ← Q∆(δ
l
z) ⊲ As in equation 4

5: return δ̃lz
6: end procedure

quantization procedure of the preactivation gradients. Af-

ter quantization, the backward pass as well as the weight

update steps remain identical as in the usual algorithm.

3.3. Error statistics and convergence of the method

Due to applying NSD to all δlz , dithered backprop attains

perturbed estimates of the weight updates

δ̃l
W

= δlW + ǫlW

with ǫl
W

being the perturbation error. Hence, this begs the

question: how does this error influence the convergence of

the training method?

From [4] we know that under mild assumptions regard-

ing the loss function, if a stochastic operator is added to a

training algorithm that already converges and generates un-

biased estimates of the weight updates with bounded vari-

ance, then the respective training algorithm converges as

well. Thus, we only need to show that the error of the

weight updates is unbiased and has bounded variance, that

is

E[ǫlW ] = 0 ∀l (10)

E[(ǫlW )2] < C ∀l (11)

Although in this work we do not provide a rigorous proof

(mainly due to space constraints), it is relatively easy to see

that equation 10 and equation 11 are satisfied by modelling

the quantization error of the preactivation gradients also as

additive noise δ̃lz = δlz + ǫlz , and taking into consideration

that: 1) on a per input-sample basis, the backpropagation

of the quantization error ǫlz to the weight updates can be

modelled by a simple linear map and 2) the error ǫlz satisfies

equation 5 and equation 6.

3.4. Computational complexity

Theoretical analysis

When dithered backprop is used for training, some addi-

tional computational overhead comes form applying NSD

to the gradients of the preactivation values. However, we

argue that this cost is asymptotically negligible compared

to the cost of performing the subsequent dot products. In

the following we will highlight the rationale for the case of

fully-connected layers, however, we stress that it also ap-

plies analogously to convolutional layers.

Let G be a (k × n)-dimensional matrix whose elements

are the gradient of the preactivation values of a particular

layer. As can be seen from equation 4 and algorithm 1,

applying NSD to G requires: for each element,

1. calculate the standard deviation of the preactivation

gradients. This requires 1 multiplication + 1 addition

per element.

2. sampling from the uniform distribution between the in-

terval (−∆

2
, ∆

2
). This requires about 2 multiplications

+ 2 additions + 1 modulo operation.

3. Quantizing the value, which requires 1 addition + 1

multiplication + truncation of decimal bits

Overall, the cost can be approximately reduced to about

9 arithmetic operations per element. Thus, the computa-

tional complexity of applying NSD is of orderO(kn). If we

now include the cost of performing the subsequent sparse

matrix-matrix dot product, then the complexity becomes of

orderO(kn+pnzmkn), with pnz being the empirical prob-

ability of non-zero values in G.

In contrast, the computational complexity of a matrix

multiplication of the form W ·G with W being, for instance,

an arbitrary (m × k)-dimensional weight matrix, is of or-

der O(mkn). If we now measure the effective asymptotic

savings between the dithered dot product vs the dense dot

product algorithm by taking the ratio of both quantities we

get

comp. savings = O

(
1

m
+ pnz

)
m≫1
−−−→ O(pnz) (12)

The above equation 12 states that the asymptotic computa-

tional savings depend inversely on the amount of rows m
of the output matrix, as well as on the sparsity attained after

applying NSD. Since the number of output rows m are most

often much bigger than one, the computational savings are

dominated solely by the sparsities achieved. Later in the

experimental section we show that NSD is able to induce

high sparsity ratios (between 75% - 99%) during the entire

training procedure, thus in principle being able to achieve

significant savings.

Practical savings

Unfortunately, the above analysis does not translate directly

to real-world speedups/energy savings mainly due to the

challenges that unstructured sparsity imposes on the hard-

ware level. Nevertheless, it is worth to mention that in re-

cent years there has been significant progress in this field,

showing promising results in narrowing the gap between

the theory and practice. On a software level, [10] have



shown that they can already attain up to x2.4 speedups for

DNNs with 80%-90% sparsity, by optimizing the sparse

dot products so that it becomes more amenable to the un-

derlying hardware. On the other hand, many hardware ac-

celerators have been proposed [13, 16, 5, 17] that are able

to successfully exploit structured and unstructured sparsity,

sometimes achieving orders of magnitude more compute ef-

ficiency. In particular, [17] attained about x1.5-x8 speedups

and x1.5-x6 energy gains at sparsity ratios between 75%-

95%, ratios that are typically induced by dithered backprop

(see experiments section). Finally, [2] proposed an accel-

erator that includes an efficient implementation of dithered

quantization in order to perform DNN inference with lower

bit-precision. Hence, this progress motivates the study of

methods akin to dithered backprop, since it seems likely to

expect similar gains when such algorithms are implemented

in an efficient manner on a software level and run on simi-

larly optimized hardware architectures.

3.5. Quantizing forward pass

So far we have only discussed the reduction of the com-

putational cost of the backprop method. Although the back-

ward pass accounts for roughly 2/3 of the computational

complexity of the training iteration (see equation 1 vs equa-

tion 2 and equation 3), we are also interested in applying

methods that also reduce the computation of the forward

pass. Fortunately, some research has already been done in

this area.

[3], e.g., quantizes activation, weight and some gradient val-

ues in the backward pass to 8-bits and show that using their

method state-of-the-art results can still be achieved. In ad-

dition, they introduced Range Batch-Normalization (BN),

an approximated batch norm that scales a batch by dividing

it by its range. It has significantly higher tolerance to quan-

tization noise and improved computational complexity.

Armed with this knowledge, we similarly quantize acti-

vation and weight values in the forward pass and apply

dithered backprop in the backward pass, leaving also only

the weight update in full precision. Therefore, all compua-

tions, except for the weight update, can be calculated with

8-bit computations.

3.6. Usage in distributed training setting

A further interesting area of application of the dithered

backprop method is distributed training. In distributed train-

ing, an algorithm called synchronous stochastic gradient

descent (SSGD) is widely used [21]. It differs from single-

threaded mini-batch SGD in that the mini-batch of size m
is distributed to N total workers that locally compute sub-

mini-batch gradients. These gradients are then communi-

cated to a centralized server called parameter server that

updates the parameter vector and then eventually sends it

back. By increasing the number of training nodes and tak-

ing advantage of data parallelism, the total computation

time of the forward-backward passes on the same size train-

ing data can as such be dramatically reduced.

As mentioned in the above section, dithered backprop in-

duces unbiased noise with bounded variance to the weight

updates. Therefore, if dithered backprop is applied to N
nodes, then most of the induced noise cancels out on the

server side due to the averaging effect. Moreover, the vari-

ance of the noise goes down with 1/N . Thus, dithered back-

prop promises to reduce the computational cost per node as

the number of nodes N grows, since stronger quantization

can be applied without affecting the final performance of the

model after training. This may be beneficial for scenarios

where a large number of nodes with limited computational

resources may participate in the training procedure, e.g., a

large number of mobile devices connected through a com-

munication channel with high bandwidth such as 5G.

4. Experiments

Datasets. We conducted our experiments on four dif-

ferent benchmark datasets for image classification, namely

MNIST, CIFAR10, CIFAR100 and ImageNet.

Training Setting. For the MNIST Dataset Lenet300100

and Lenet5 were evaluated, while for CIFAR10 and CI-

FAR100 it was VGG11, AlexNet and ResNet18 and for Im-

ageNet only ResNet18. For the CIFAR datasets, we reduced

the capacity of the models to account for the dataset. That

is, for AlexNet we reduced the dimensionality of the last

two hidden layers to 2048, and for VGG11 to 512. The last

layers are adapted to account for the classes, respectively.

All Models are trained via stochastical gradient descent

with a momentum of 0.9, a weight decay of 5 × 10−4,

and a batch-size of 256 for ImageNet and 128 for the

others. We used a learning rate lr of 0.05 for AlexNet and

0.1 for the rest of the models. For the CIFAR datasets a

lr-decay setting of 0.1/100 and 0.1/45 is applied.

4.1. Accuracy & Induced Sparsity

For the listed data sets we conducted experiments for

four different methods, according to the training setting

described above. Besides the baseline method, which de-

scribes training without quantization, we applied dithered

backprop as described in the above section, the precision

quantization of [3] (8-bit training) which applies quantiza-

tion in the forward and backward pass in order to perform

training in 8-bit precision, and the combination of the latter

two. Table 1 summaries our findings.

Firstly, notice how the baseline training method exhibits

vastly different sparsities across different models, ranging

from 2% to 92%. Models trained without batchnorm such

as AlexNet exhibit already high sparsity ratios due to the

derivative of the ReLU activation function, which is often 0.

However, batchnorm layers cancel out this effect and there-



Model Dataset
Baseline Dithered Backprop 8-bit Training [3] 8bit + dith. backprop

acc% sparsity% acc% sparsity% acc% sparsity% acc% sparsity%

LeNet5 MNIST 99.31 2.05 99.35 97.52 99.34 2.09 99.35 97.18

LeNet300100 MNIST 98.45 47.48 98.40 94.92 98.43 48.61 98.52 94.85

AlexNet CIFAR10 91.23 91.35 91.26 98.95 91.03 64.62 90.81 97.05

ResNet18 CIFAR10 92.67 24.36 92.35 91.86 92.22 34.88 92.10 92.10

VGG11 CIFAR10 92.35 8.47 92.17 94.10 92.44 4.82 92.29 94.24

AlexNet CIFAR100 67.98 92.23 67.78 97.35 68.37 64.39 67.63 89.51

Resnet18 CIFAR100 69.54 18.23 69.97 87.66 70.73 13.39 69.69 87.74

VGG11 CIFAR100 70.58 6.70 70.09 91.79 71.29 83.40 70.07 91.77

Resnet18 ImageNet 71.40 6.44 71.10 75.80 71.25 3.27 71.23 75.48

Average - 83.72 33.03 83.61 92.22 83.90 35.50 83.52 91.10

Average diff. - 0 0 0.23 59.12 0 0 0.40 55.61

Table 1: Results of experiments, where acc% means accuracy in % on test set and sparsity% the average sparsity of the

gradients of the preactivation values in % over all layers and training iterations. The largest values for are marked in bold.

fore models such as LeNet5 or VGG11 exhibit high density

(low sparsity). We see a similar effect on models trained

with 8-bit precision. On average, the baseline backprop

method was able to induce only 33% sparsity across the

different models, and similarly the 8-bit backprop method

only 36%.

In contrast, after applying dithered backprop, sparsity

becomes very high across all networks, ranging between

76%-99%. In particular, notice how dithered backprop

is able to significantly increase the sparsity of networks

trained with batchnorm layers. For instance, LeNet5 goes

from 2.05% to 97.52%, a substantial increase of 95.47%.

On average, dithered backprop was able to induce 92%

sparsity across the models, increasing the sparsity ratio

by 59% from the baseline. We get similar results when ap-

plied in combination with the 8-bit training method. Here,

dithered backprop increased the sparsity by 56%, inducing

an average sparsity of 91% across the networks. If we con-

sider the speedups and energy gains reported in [17], these

results may potentially translate to x5 speedups and x4.5

energy gains on average if dithered backprop is run on spe-

cialized hardware.

We stress that the accuracies were approximately main-

tained across the experiments, changing on average only

by 0.3% between the dithered and non-dithered methods.

Moreover, the number of training epochs did also not

change, showing that dithered backprop did not harm the

convergence speed. Figure 3 shows an example where the

test error of AlexNet is plotted over the training epochs. As

can be seen, there is no recognizable difference in conver-

gence speed between the baseline model and the dithered

model. More examples can be found in the appendix.

Additionally, we also want to mention that the maxi-

mum bitwidth of the non-zero values was consistently be-

low/equal to 8-bits (see figure 8) across all experiments.
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Figure 3: Test error of VGG11 trained on CIFAR10 over

the training epochs.

Thus, dithered backprop is fully compatible to training

methods that limit the bit-precision training to 8-bits, such

as [3].

In Figure 4 we show the course of the density (# non-zero

values or 1-sparsity) of the preactivation gradient over the

entire training period of the VGG11 model. We can see how

the density of the gradients is much lower when dithered

backprop is applied across the entire training procedure.

Interestingly, we also see that the density decreases at the

beginning of training and stays approximately constant af-

terwards. Coincidentally, this trend correlates weakly with

the speed of the learning progress, which can be interpreted

as gradients carrying more information. However, it seems

that dithered backprop is successful at eliminating redun-

dant, non-useful information for learning since its density

is much lower.



Figure 4: Average density (# non-zero values or 1-sparsity)

of the preactivation gradients during training.

Figure 5: Learning performance at different levels of av-

erage sparsity the preactivation gradients of a multilayer

perceptron with two hidden layers (500, 500) trained on

MNIST, using either regular back propagation (Baseline),

dithered backprop (D. backprop) or meProp [24]. Multiple

runs with different random seeds were executed for each

configuration. Points show mean performance with stan-

dard deviation indicated as span.

4.2. Comparison to meProp

We now benchmark dithered backprop against meProp

[24], arguable the closest related work. To recall, in one of

its modes meProp sparsifies the pre-activation gradients by

selecting the k elements with the largest magnitude. This

induces biased estimates of the weight updates, which we

argue affects negatively the learning quality of the network.

Since meProp was only benchmarked on multilayer per-

ceptrons, we chose a model with two fully-connected lay-

ers with hidden dimensions of (500, 500) and trained it on

MNIST and CIFAR10 for the experiments. Figure 5 shows

the final test accuracy of the model trained on MNIST at

different levels of average sparsity of the preacitvation gra-

dients. On the appendix we show the results for CIFAR10.

As one can see, dithered backprop clearly outperforms me-

Prop at all levels of sparsity. Concretely, overall dithered

backprop achieved an average test accuracy of 98.14% at a

sparsity of 99.15%, whereas meProp only achieved 97.89%
average test accuracy at a sparsity of 94.11%.

Figure 6: Accuracy of the final model of AlexNet trained on

CIFAR10 with dithered backprop in a distributed training

setting, at different number of participating nodes config-

uration. The accuracy stays approximately constant as the

number of nodes increases.

Figure 7: Average sparsity of the preactivation gradients of

the fully-connected layers of AlexNet trained on CIFAR10

with dithered backprop in a distributed training setting, at

different number of participating nodes configuration. As

the number of nodes increases, so does the sparsity at each

node and therefore its computational savings for training.

4.3. Distributed training

In the above section we argued that applying dithered

backprop in a distributed training scenario may be bene-

ficial. The rationale was that, since the noise induced by

dithered backprop on the weight updates is unbiased with

bounded variance, then this should cancel out as the num-

ber of nodes grows due to the averaging of the parameters

on the server. In this section we try to show this effect ex-

perimentally.

To investigate this, we ran several experiments of the same

model with different amount of nodes N . While increasing

N , we also increase the scaling factor s of the dither method

in order to increase the quantization strength. At each train-

ing iteration, each node runs one forward and dithered back-

ward pass of batchsize 1, then sends its parameter gradients

to the server where it is subsequently averaged with the gra-

dients of all other nodes. Finally the averaged parameter

gradient are broadcasted back to each node, and a new train-



Figure 8: Maximal, worst-case bit-precision of the fully-

connected layers of AlexNet trained on CIFAR10 with

dithered backprop in a distributed training setting, at dif-

ferent number of participating nodes configuration. As the

number of nodes increases, the number of bits necessary

to represent the non-zero values decreases, and with it the

computational cost for training at each node.

ing iteration subsequently starts again. We then measure the

final accuracy of the model, average sparsity and worst-case

bit-precision at all N configurations.

Figures 6, 7 and 8 show the respective trends for the

fully-connected layers of AlexNet trained on CIFAR10. On

the appendix we show the same plots for the convolutional

layers as well. Each plot shows the average trend and the

standard deviation over 3 different runs of the same exper-

iments. As one can see, we can increase the sparsity and

lower the bit-precision as the number of participating nodes

N increases, while negligibly affecting the final accuracy

of the model. In other words, dithered backprop allows to

to reduce the computational cost of performing a train-

ing iteration at each node as the number of participant

nodes increases.

As a side note, we want to remark that in the generall

case high sparsities on the preactivation gradients do not

necessarily translate to communication savings. For batch-

sizes bigger than one the weight updates are with high prob-

ability densely populated, so that the full model would have

to be communicated at each iteration. Only when the batch-

size per node is equal to one (as was in the case of our ex-

perimental setup), sparsities on the preactivation gradients

directly translate to sparsity on the weight updates and con-

sequently to savings in communication cost.

5. Conclusion

In this work we proposed a method for reducing the com-

putational complexity of the backpropagation (backprop)

algorithm. Our method, called dithered backprop, is based

on applying dithered quantization on the tensor of the pre-

activation gradients in order to induce sparsity and non-zero

values with low bit-precision. It is also simple in that it has

only one global hyperparameter which controls the trade-

off between computational complexity and learning perfor-

mance of the model.

Extensive experimental results show that dithered back-

prop is able to attain high sparsity ratios, between 75%-

99% across a wide set of neural network models, boost-

ing the sparsity by 59% on average from the original back-

prop method. In addition, we showed that dithered back-

prop maintains the bit-precision of the non-zero values to

less/equal 8-bits during the entire training process, thus

being fully compatible with methods that limit the train-

ing to 8-bit precision only. However, in its current form,

dithered backprop induces unstructured sparsity which is

not amenable to conventional hardware such as CPUs or

GPUs. In future work we will consider modifications that

translate directly to speedups and energy gains without hav-

ing to rely on specialized hardware. Moreover, we will also

consider applying efficient compression algorithms to the

gradients in order to reduce memory complexity of training

as well [29, 27].

We also showed that beneficial properties emerge when

dithered backprop is applied in the context of distributed

training. For instance, we showed experimentally that as

the number of participating nodes increases, so does the

computational savings per node as well. This effect can be

advantageous when a large number of nodes with resource-

constrained computational engines participate in the train-

ing procedure, such as mobile phones. A further interesting

future work direction is to apply dithered backprop jointly

with methods that drastically reduce the communication

cost [19, 20], with the goal of minimizing both the com-

munication as well as computation cost of the distributed

training system.
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