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Abstract

Though action recognition in videos has achieved great

success recently, it remains a challenging task due to the

massive computational cost. Designing lightweight net-

works is a possible solution, but it may degrade the recog-

nition performance. In this paper, we innovatively propose

a general dynamic inference idea to improve inference effi-

ciency by leveraging the variation in the distinguishability

of different videos. The dynamic inference approach can be

achieved from aspects of the network depth and the num-

ber of input video frames, or even in a joint input-wise and

network depth-wise manner. In a nutshell, we treat input

frames and network depth of the computational graph as

a 2-dimensional grid, and several checkpoints are placed

on this grid in advance with a prediction module. The in-

ference is carried out progressively on the grid by follow-

ing some predefined route, whenever the inference process

comes across a checkpoint, an early prediction can be made

depending on whether the early stop criteria meets. For the

proof-of-concept purpose, we instantiate several dynamic

inference frameworks. In these instances, we overcome the

drawback of limited temporal coverage resulted from an

early prediction by a novel frame permutation scheme, and

alleviate the conflict between progressive computation and

video temporal relation modeling by introducing the on-

line temporal shift module. Extensive experiments are con-

ducted to thoroughly analyze the effectiveness of our ideas

and to inspire future research efforts. Results on various

datasets also evident the superiority of our approach.

1. Introduction

Action recognition in videos is one of the most active re-

search topics in the computer vision community, owing to
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(a) Different “Writing” video instances

(b) “Running” vs. “Long Jump”

Figure 1. Illustration of diverse distinguish abilities among video

instances. A few frames are sufficient to recognize “Writing”

while watching till the end of videos is required to tell “Running”

from “Long Jump”. Due to the irregular viewpoint, the second

video in (a) will require deeper network than the first one for fea-

ture abstraction.

its significant application potential for video surveillance,

video recommendation, retrieval, and so on. The two most

important aspects of evaluating video action recognition

frameworks are classification accuracy and inference cost.

Recently, significant progress has been achieved in terms of

the recognition performance in this area following the deep

convolutional network paradigm [30, 5, 4, 6, 26, 1, 8, 21].

However, the inference efficiency remains a great challenge

for large scale applications due to the heavy computation

burden of deep CNN models. Therefore, in this paper, at-



tentions are paid to the efficiency of CNN models.

There have already existed pretty much work on improv-

ing the efficiency of action recognition in videos [12, 35,

20, 2, 34, 27, 22, 28, 25, 19]. To reduce the computation

cost (aka FLOPs, which is short for float-point operations),

these works mainly focus on designing efficient network ar-

chitectures to learn more representative features for clas-

sification. Meanwhile, all such solutions treat each video

instance equally, i.e., all videos pass through a same CNN

network route in the inference phase and a same number of

frames are sampled from each video for testing, which we

believe can be further improved by inference in a dynamic

(or adaptive) fashion.

Our insight is that videos differentiate from each other

in terms of their distinguishability, which leads to two con-

sequences. First, varying number of frames are needed for

recognizing videos. For instance, as illustrated in Fig.1(a),

it is quite natural for a human to tell a video belongs to

“Writing” when a very few frames at the beginning of a

video are observed. However, to tell whether a video can

be categorized into “Long Jump” or “Running”, we have to

watch the video till its ending part (Fig.1(b) as an example).

Second, varying network capability is needed for categoriz-

ing videos due to diverse dominance of their corresponding

visual features. As shown in Fig.1(a), due to an irregular

viewpoint, the second row is a non-typical “Writing” video

so it demands more capable network for feature abstraction.

Motivated by these observations, in this paper, we pro-

pose a novel idea of dynamic inference to improve action

recognition efficiency. Computation resource is adaptively

allocated among difference videos according to their dis-

tinguishabilities. The dynamic inference approach can be

achieved from aspects of the network depth and the input

video frames, or even in a joint input-wise and network

depth-wise manner. Specifically, we treat input frames and

network blocks as a 2-dimensional grid, where we have pre-

defined K grid points as checkpoints, to each of which a

prediction head is appended. At the inference phase, when-

ever the inference process comes across a checkpoint, an

early prediction can be made depending on whether the

early stop criteria meets. For the proof-of-concept pur-

pose, dynamic inference frameworks are instantiated us-

ing the MSDNet [14] and ResNet [13] backbone CNNs.

In these instances, we overcome the drawback of limited

temporal coverage resulted from an early prediction by

a novel frame permutation scheme and alleviate the con-

flict between progressive computation and video tempo-

ral relation modeling by introducing an online temporal

shift module [20]. Extensive experiments are conducted

on multiple well-known datasets, including Kinetics-400

[17], Something-Something v1 and v2 [9], UCF101 [24]

and HMDB51 [18]. We empirically analyze the different

behaviours of input-wise, network depth-wise as well as

joint-input-depth-wise dynamic inferences and show their

strength and weakness to readers for comprehensively un-

derstanding our idea. Besides, experimental results verify

that our solution can significantly reduce the average FLOPs

while maintaining excellent recognition accuracy, showing

the superiority of dynamic inference for action recognition.

Our major contributions are summarized as follows:

• We are the first to improve action recognition effi-

ciency from the dynamic inference viewpoint, which

is previously neglected. Our work makes the reader

think of efficient action recognition differently from

lightweight model designing.

• For proof of concept, we turn dynamic inference idea

into practical network instances by proposing frame

permutation and online temporal shift to tackle the

raised obstacles of limited temporal coverage and con-

flict between progressive computation and temporal re-

lation modeling.

• Extensive empirical analysis based on the three in-

stances shows the strength and weakness of input-

wise, network depth-wise and joint dynamic infer-

ences under different circumstances. Our models also

achieve significant efficiency improvement compared

to their fixed inference counterparts.

2. Related Work

Action recognition has drawn great research attention in

the community [29, 33, 23, 30, 6, 26, 1, 34, 22, 31, 27, 28,

35, 2, 12, 20]. Our work focuses on efficient action recog-

nition and it is closely related to the following two lines of

research jobs.

More efficient network architectures specifically de-

signed for video recognition have been well studied in the

literature. Following the I3D [1] paradigm for spatial-

temporal modeling, S3D [34], P3D [22], R(2+1)D [27],

MFNet [2] and StNet [12] are proposed to reduce com-

putation overhead of 3D convolution while remaining the

spatial-temporal modeling property. These works choose

to decompose 3D convolution into 2D spatial convolution

followed by 1D temporal convolution on either per convo-

lution operation basis or per 3D convolution network block

basis. There exist several other networks which merge 2D

and 3D information in CNN blocks to enhance the feature

abstraction capability and resort to shallower backbones

for efficiencies, such as ECO [35] and ARTNet [28]. An-

other research direction is to superimpose motion informa-

tion learning into appearance feature network to reduce the

overhead of motion stream for two-stream solution [23], the

design of the networks of such solutions is inspired by the

calculation process of dense optical flow, typical works in-

clude optical flow guided feature network [25] and motion



feature network proposed in [19]. All of these existing so-

lutions can be regarded as orthogonal research directions

to our dynamic inference idea, and they can be further im-

proved with appropriate dynamic inference adaptation.

Dynamic network route has already been studied for

the image classification task in the literature as well. In

[11], depth dropout is used in the training phase for effi-

cient deep residual network training. The idea of stochastic

depth network [15] is also leveraged as sort of regulariza-

tion of deep networks in the training phase. The dynamic

network is also proposed for testing. [10] explored halting

in recurrent networks to save computational cost. [14] pro-

pose to adaptively determine the network depth for different

images and a multi-scale dense network is designed for im-

age classification. Region level network depth adaptation

[7] is also studied for image classification. [32] dynami-

cally select which layers of a CNN should be skipped dur-

ing inference. Network depth adaptation is a very effective

solution for image classification, and significant inference

efficiency improvement is achieved. Our work is largely in-

spired by these solutions for image recognition. However,

as best as we can know, we are the first to leverage dynamic

inference for video recognition so far.

3. Approach

3.1. Dynamic Inference Formulation

Dynamic inference for video recognition poses two ori-

entations, namely input-wise and network depth-wise. Gen-

erally, action recognition can be formulated as z = P ◦
E(I0, I1, ..., IK−1), where P and E denote predictor and

feature extractor, Ii denote the ith set of input frames. Un-

der the dynamic inference scenario, the progressive predic-

tion can, in general, be formulated as:

zi =

{

P0(y0) = P0 ◦ E0(I0), if i = 0

Pi(yi) = Pi ◦ Ei(yi−1, yi−2, ..., y0, Ii) i > 0
,

(1)

where i = 0, 1, ...,K−1 is the index of progressive process-

ing step (namely, checkpoint) and yi are features extracted

at the ith step. The final prediction result z = zi when the

stop criteria Ci is met where Ci can be defined to be a func-

tion of the previous predictions as Ci : φ(z0, z1, ..., zi) > 0.

A dynamic inference framework varies in the design of Ei,
Pi, and the early stop criteria Ci.

The general dynamic inference idea can be directly spe-

cialized to input-wise or network depth-wise approaches if

Eq.2 or Eq.3 is met, respectively.

{

yi = Ei(yi−1, yi−2, ..., y0, Ii) = Ai(Ei(Ii), yi−1, ..., y0)

Ii 6= None, ∀ i ≥ 0

(2)











yi = Ei(yi−1, yi−2, ..., y0, Ii) = Ei(yi−1, ..., y0)

Ii = None, i > 0

I0 = {F0, F1, ..., Fl−1}

,

(3)

where Ai is feature aggregation function (e.g., average

pooling) and F0, ..., Fl−1 are all the sampled frames and

l is the number of sampled frames.

From Eq.1, the following concerns on designing gen-

eral dynamic inference networks raise naturally: 1) when

early stop at zi, the sampled input frames sets, I0, ..., Ii,
cover very limited part of the input video. 2) dynamic infer-

ence network should be enabled with progressive compu-

tation capability. The previous computation outputs should

be utilized to support current computation incrementally. 3)

temporal relation modeling is supposed to enhance recog-

nition performance, meanwhile temporal modeling such as

3D convolution involves temporal dependencies and it con-

flicts with progressive computation requirement.

3.2. Instantiation

Following Eq.1, we can design a variety of dynamic

inference frameworks. For the proof-of-concept purpose,

we showcase how to instantiate dynamic frameworks by

keeping the above three concerns in mind. We treat in-

put frames sets(denoted as I0, I1, ..., IN−1) and network

blocks (denoted as B0, B1, ..., BM−1) as a 2-dimensional

grid, where we have predefined K grid points (denoted as

Ii0Bj0 , Ii1Bj1 , ..., IiK−1
BjK−1

, 0 ≤ i0 ≤ i1 ≤ ... ≤
iK−1 < N & 0 ≤ j0 ≤ j1 ≤ ... ≤ jK−1 < M ) as check-

points, to each of which a prediction head is appended. At

the inference phase, whenever a checkpoint is reached, an

early prediction can be made depending on whether the stop

criteria meets. Here, the criteria for the kth checkpoint is

defined as the hypothesis of Ck : max{sk} > Tk, where

sk is the classification score at the kth checkpoint and Tk is

a threshold. Fig.2(a) and Fig.2(b) illustrate the straightfor-

ward depth-wise and input-wise dynamic scheme, in which

Ei is implemented as 2D CNN block(s) to support pro-

gressive computation. In these cases, We can see naive

depth-wise dynamic leaves temporal relation unexplored

and input-wise dynamic suffers from limited temporal cov-

erage of input frames when it stops early. To this end, we

propose a frame permutation mechanism and leverage on-

line temporal shift module to alleviate these issues.

3.2.1 Frame Permutation

Frame permutation scheme can enlarge the temporal cover-

age of input frames when it stops early and construct diverse

temporal strides for input. To exemplify this, suppose eight

frames are evenly sampled from a video with a length of

L, we can see from Fig.2(b), if three frames are processed

and early stop is made, the temporal coverage of the in-
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(a) Depth-wise

F0 F1 F2 F3 F4 F5 F6 F7

(b) Input-wise

F3 F6F5F0 F2 F7F4F1

Group1 Group2

(c) Input with permutation

F3 F6F5F0

Group1 Group2

F2 F7F4F1

(d) Unified

Figure 2. Illustration of different dynamic inference schemes when five blocks and eight frames are used for recognizing a video. Blue

arrows and circles denote 2D-CNN blocks and their corresponding feature maps. Green bricks mean prediction heads and yellow arrows

mean online temporal shift modules. The solid blue circles represent predefined checkpoints in our framework. (a) and (b) show a naive

5-level depth-wise and 4-level input-wise dynamic inference solution, respectively. (c) depicts that with frame shuffle, each group of input

frames constructs an input sequence with multiple temporal strides and the temporal coverage of the valid input is enlarged if early stop is

made. (d) shows our proposed frame permutation + online temporal shift solution.

put [F0, F1, F2] will be 3L/8. With frame permutation, the

coverage of the input [F0, F3, F5] changes to 6L/8 and the

temporal strides of 3L/8 and 2L/8 are both contained in

the inputs, as shown in Fig. 2(c).

In this paper, we set N to 8. We start with the case of

L = 8. The extract frames [F0, F1, ..., F7] are permuted

such that

[I0, I1, ..., I7] = [F0, F3, F5, F6, F1, F2, F4, F7]. (4)

The temporal order of the shuffled frames no longer holds,

and motion noise will be introduced. We divide them

into two groups, [F0, F3, F5, F6] and [F1, F2, F4, F7], such

that frames in both groups keep in sequential order. We

can also see there are multiple temporal strides, namely

3L/N, 2L/N,L/N , in both groups. If temporal relation

is modeled inside each group, multiple strides can help to

capture better temporal dynamics of different actions whose

motion intensities are varying. When the number of sam-

pled frames l equals N × E where E is the size of each

frames set, then our permutation mechanism designed for

eight frames can be extended as follows. Firstly, the sam-

pled frames are divided into eight sets

Fi = {FiE , FiE+1, ..., F(i+1)E−1}, i = 0, 1, ..., 7. (5)

Then, we shuffle the input frames at frame-set granularity

[I0, I1, ..., IN ] = [F0,F3,F5,F6,F1,F2,F4,F7]. (6)

The shuffled frame sets are also divided into two groups.

Correspondingly, each block of the computation graph is

extended to E copies for processing E frames in a set Fi.

3.2.2 Online Temporal Shift

To tackle the problem of missing temporal relation when

only 2D convolutions are applied on input frames, we adopt

a temporal shift module for efficient temporal modeling.

The original temporal shift module [20] shifts part of the

channels from feature maps of each input frame forward

and backward to that of its adjacent input frames, which fa-

cilitates information exchange among neighbouring frames

with zero FLOPs cost and negligible time cost. Under dy-

namic inference circumstance, we tailor original TSM ap-

proach by only applying forward shift, which makes it pos-

sible for progressive computation. Specifically, we add an

online temporal shift module between InBm and In+1Bm

for arbitrary n and m to fully take advantage of multi-stride

input brought by the frame permutation. The overall unified

framework is shown in Fig.2(d). It is worthy of noting that,

our method is a general design, when the K checkpoints are

located in the last row or last column, it is specialized to be

input-wise or depth-wise dynamic inference framework.

4. Experiments

To validate effectiveness of our idea and provide com-

prehensive understanding on dynamic inference, we im-

plemented three frameworks based on state-of-the-art 2D

CNN MSDNet-38, ResNet-50 and ResNet-101, respec-

tively. More deeper and powerful backbones could be lever-

aged, but here we do not show such experiments because 1)

we focus on efficient action recognition and heavy network

is not suitable; 2) the three instances are able to achieve

proof of concept purpose. MSDNet-38 contains five blocks

(M=5) and four scales (S=4) are used in each block. Note

that the online temporal shift module is only adopted on

feature maps at the coarsest scale for all layers except the

first layer. Fig. 3 illustrated the framework using only three

scales for convenience. K is 6 for MSDNet and each pre-

diction head is composed of an average pooling and a linear

layer. For ResNet, online temporal shift model is added at
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Figure 3. Illustration of the first four layers of our network with

three scales. The depth-axis corresponds to the depth of the net-

work, the scale-axis corresponds to the scale of the feature maps,

and the input-axis corresponds to the frame of video.

each residual block and we only append early-exit classi-

fiers to the Res3, Res4 and Res5 and K is set to 4 (the last

4 checkpoints in Fig. 2(d)). Each classifier has two down-

sampling convolution layers with 3×3 filters, followed by a

average pooling and a linear layer. For Tk, we use the same

implementation details as in [14].

4.1. Datasets and Evaluation Metrics

To comprehensively evaluate our proposed method, we

perform extensive experiments on the recent large scale

dataset named Kinetics-400 [17]. We also conduct experi-

ments on heavy temporal relation sensitive datasets, includ-

ing Something-Something v1 & v2 [9]. For these datasets,

the actions therein mainly include object-object and human-

object interactions, which require strong temporal relation

to well categorizing them. Moreover, transfer learning ex-

periments on the UCF-101[24] and HMDB-51[18], which

are much smaller than Kinetics-400, is carried out to show

the transfer capability of our solution. The evaluation

metric is top-1 precision for Kinetics-400 and Something-

Something. We also report average FLOPs/Video in the

testing phase as well as the number of model parameters

to depict model complexity. In this paper, we only use the

RGB frames of these datasets for experiments.

4.2. Implementation Details

Training Data augmentation and preprocessing strat-

egy is the same as TSN [30]. In our experiments, l is set

to 16. To evaluate the proposed network on several action

recognition datasets, we pre-trained MSDNet-38, ResNet-

50, ResNet-101 on the ImageNet-1k [3] for initialization.

The loss is the sum of cross-entropy at each checkpoint.

For Kinetics-400, Something-Something v1 & v2, we start

training with a learning rate of 0.01 and reduce it by a factor
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Figure 4. MSDNet-38 vs. ResNet-50 on two types of datasets.

of 10 at 25, 35, 45 epochs and stop at 50 epochs. Dropout

ratio is 0.5. Since UCF-101 and HMDB-51 are not large

enough and are prone to over-fitting, we followed the com-

mon practice to use Kinetics pre-trained model as initializa-

tion and in total 25 epochs are trained, with an initial learn-

ing rate of 0.01 and it is decayed by 10x every ten epochs.

Higher dropout ratio of 0.8 is used. Stochastic gradient de-

scent (SGD) with a mini-batch size of 128 is utilized as an

optimizer, and its momentum and weight decay value is set

to 0.9 and 5e-4, respectively. BatchNorm layers [16] are all

finetuned during training.

Inference We apply single centre 224x224 cropping to

predict the class labels and the 16 frames are evenly sam-

pled from videos. To get the accuracy-FLOPs curves in the

paper, we traverse different budget Q to determine Tk on

the train set and measure the actual accuracy and FLOPs.

As for validation set, we use the critical point of Q∗, where

accuracy drops little and FLOPs are smaller than full infer-

ence, obtained from the accuracy-FLOPs curve on the vali-

dation set to determine T ∗

k for testing and then accuracy and

average #FLOPs per video is calculated.

4.3. Empirical Analysis

MSDNet v.s. ResNet First of all, we would like to know

how backbone makes a difference. Both Kinetics-400 and

Something-Something v2 is used to evaluate the dynamic

inference mechanisms proposed in Section 3 using the RGB

modality. As shown in Fig. 4(a), MSDNet-38 performs bet-

ter than ResNet-50 in depth-wise dynamic inference owing

to the multi-scale feature maps and dense connectivity. In-

fluenced by the limited performance of depth-wise dynaimc

inference, joint depth-wise and network depth-wise solu-

tion performed worse than input-wise dynamic inference for

ResNet-50. On Something-Something v2, similar observa-

tions can be found.

Ablation studies Fig. 5 and Fig. 6 show the results

based on MSDNet under different dynamic inference set-

tings. Accordingly, the effectiveness of each component in

our framework is analyzed as follows.

Depth-wise dynamic inference As shown in Fig. 5 and

Fig. 6, it can be concluded from the results that depth-wise
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Figure 5. Ablation experimental results with MSDNet backbone

on Kinetics-400. “Full Inference” means that, for each video, only

the prediction head of the last checkpoint is used.
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Figure 6. Ablation study on Something-Something v2.

dynamic inference is effective on both datasets no mat-

ter whether the online temporal shift is enabled or not. It

is a very interesting observation from the results of Fig.

6(b) that depth-wise dynamic inference with online tempo-

ral shift on Something-Something v2 performs even slightly

better the joint input-wise and depth-wise adaptation. This

is reasonable because temporal relation is crucial for this

dataset, input adaptation brings very little gain such that net-

work trained with pure depth-wise adaptation can be more

competitive than its joint depth-wise and input-wise ver-

sion. We can see that on Something-Something v2, with-

out and with the online temporal shift, depth-wise adapta-

tion achieves top-1 accuracy of 31.75% and 60.02%, and the

#FLOPs can be reduced to 44.6G and 35.4G, respectively.

Input-wise dynamic inference and frame permuta-

tion We find that on Something-Something v2, input-

wise adaptation brings negligible FLOPs saving, while on

Kinetics-400 it can save FLOPs to some extent. In Fig. 5

and Fig. 6, on both datasets, it is clear that frame permuta-

tion improves input-wise adaptation, regardless of whether

online temporal shift module is used or not. Even though

temporal relation is not so crucial on Kinetics-400 com-

pared to Something-Something v2, frame permutation still

gains a lot, and we can infer that temporal coverage of the

input sequence is essential to video classification. Naturally,

other architectures such as TSM, can also benefit from the

frame permutation mechanism for dynamic inference.

Online temporal shift Temporal modeling by online

temporal shift is also essential for the final performance.

It is seen from the figures, the online temporal shift im-

proves the top-1 accuracy upper bound of our framework

from 69.32% to 71.17% and 31.64% to 59.80% on Kinetics-

400 in Fig. 5 and Something-Something v2 in Fig. 6, re-

spectively.

Joint input-wise and depth-wise dynamic inference

On Kinetics, the proposed joint solution benefits from an

adaption of both dimensions in Fig. 5. The #FLOPs is re-

duced to 24.3G and 26.5G from 52G without or with the

online temporal shift, respectively. However, in Fig. 6, on

Something-Something v2, it performs comparably with or

even slightly worse than depth-wise adaption owing to the

heavy temporal dependency characteristic of the dataset and

input-wise adaptation can hardly bring any gain.

4.4. Comparison with State­of­the­arts

Results on Kinetics-400 We evaluate the pro-

posed framework against the recent state-of-the-art 2D/3D

convolution-based solutions. Extensive experiments are

conducted on the Kinetics-400 to compare all models in

terms of their effectiveness (i.e., top-1 accuracy) and effi-

ciency (reflected by the total number of model parameters

and FLOPs needed in the inference phase). Results are sum-

marized in Table 1. To be noted, the latest camera ready ver-

sion of TSM reported results of these datasets using dense

sampling for higher performance. Hence, in this paper we

cited the results of these datasets using uniform sampling

reported in its arXiv version 1.

The results show that our proposed dynamic inference

with MSDNet-38 backbone achieves top-1 precision of

71.20% with single RGB modality, and it requires only

26.5G FLOPs per video on average. When large back-

bone models are used, our method still still strike good

performance-FLOPs trade-off. Compared to StNet-Res101,

our method with ResNet-50 exhibits better recognition per-

formance (72.57% vs. 71.38%), but the #FLOPs are signif-

icantly reduced by over 10× (from 310G to 35G). When

compared to the recent state-of-the-art ECO and TSM-

Res50, our model improves the accuracy from 69% and

72.5% to 72.57%, meanwhile the #FLOPs is reduced from

64G and 64G to 35G, respectively. Other methods, such

as MF-Net, S3D, and R(2+1)D, though their marginal per-

formance gains are obtained at the price of at least 10

times of computation cost, our method with ResNet-101

still achieve better recognition performance than them while

#FLOPs is only 66G. In brief, our model achieves excellent

performance-cost trade-off with different backbones.

We also show the distribution of videos predicted at each

checkpoint in Table 2. More results and visualizations are

1https://arxiv.org/abs/1811.08383v1



Framework Backbone Input × # Clips Prec@1 # Params FLOPs/Video

I3D [1] 3D BN-Inception [All×3×256×256]×1 70.24 12.7M 544.44G

S3D [34] 3D BN-Inception [All×3×224×224]×1 72.20 8.8M 518.6G

ARTNet with TSN [28] 3D ResNet-18 [16×3×112×112]×250 69.2 35.2M 5925G

MF-Net [2] -
[16×3×224×224]×1 65.00

8.0M
11.1G

[16×3×224×224]×50 72.80 555G

ECO [35] BN-Inception+3D ResNet-18 [16×3×224×224]×1 69.00 47.5M 64G

R(2+1)D RGB [27] ResNet-34 [32×3×112×112]×10 72.00 63.8M 1524G

Nonlocal-I3d [31] ResNet-50
[128×3×224×224]×1 67.30

35.33M
145.7G

[128×3×224×224]×30 76.50 4371G

TSN RGB [30]

BN-Inception [25×3×112×112]×10 69.1 10.7M 500G

ResNet-50 [8×3×224×224]×1 66.80 24.3M 33G

ResNet-50 [16×3×224×224]×1 67.80 24.3M 64G

TSM [20] ResNet-50
[8×3×224×224]×1 70.60 24.3M 33G

[16×3×224×224]×1 72.50 24.3M 64G

StNet [12]
ResNet-50 [25×15×256×256]×1 69.85 33.16M 189.29G

ResNet-101 [25×15×256×256]×1 71.38 52.15M 310.50G

Proposed

MSDNet-38 (Full) [16×3×224×224]×1 71.17 62.31M 52G

MSDNet-38 [16×3×224×224]×1 71.20 62.31M 26.5G

ResNet-50 [16×3×224×224]×1 72.57 29.12M 35G

ResNet-101 [16×3×224×224]×1 74.70 48.12M 66G

Table 1. Comparison of our method with several state-of-the-art 2D/3D convolution-based solutions. The results are reported on the

validation set of Kinetics-400, with RGB modality only. We investigate both Prec@1 and model efficiency w.r.t. the total number of model

parameters and FLOPs needed in inference. Here, “All” denotes using all frames in a video.

Checkpoint 1 2 3 4 5 6 Total

#Videos 1993 2392 2871 3445 4134 4961 19796

Table 2. Number of videos which stop at each checkpoint on

Kinetics-400 validation set.

in supplementary material.

Results on Something-Something v1 & v2 The

Something-Something datasets are more complicated than

Kinetics, the comparison of our solution against existing

state-of-the-arts are list in Table 3. It is observed that,

with 16 frames as input, our solution achieves state-of-

the-art top-1 accuracy of 46.5% on Something-Something

v1 validation set and 60.02% on v2. The #FLOPs of our

model is 38.4G/35.4G on v1 and v2 respectively, which is

much smaller than ECOEN lite, Non-local I3D+GCN and

TSM16F . Compared to TSM on both datasets, our method

achieves better recognition performance than TSM16F

while the #FLOPs is comparable with TSM8F . We have

also submitted the testing results of Something-Something

v2 and results show that the testing performance of our so-

lution is as high as 60.16% in terms of top-1 accuracy.

4.5. Transfer Learning on UCF­101 & HMDB­51

We transfer the proposed models pre-trained on

Kinetics-400 to the much smaller datasets of UCF-101 and

HMDB-51 to show that our method can be well generalized
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Figure 7. The Accuracy-FLOPs curves achieved on the first split

of UCF101 and HMDB51. RGB modality is used and the models

are pretrained on Kinetics-400.

to other datasets. Fig. 7 show the Mean Class Accuracy

vs. Average FLOPs/Video curve on the split1 of UCF-101

and HMDB-51, respectively. For UCF-101 split1, the av-

erage FLOPs can be reduced by 70% while remaining the

same performance with full inference. It is also be observed

with 1% accuracy degradation, around 80% reduction in av-

erage FLOPs is achieved. For HMDB-51, our dynamic in-

ference scheme keep classification accuracy while reducing

up to 45% average FLOPs. Besides, the accuracy on UCF-

101 is much higher than HMDB-51, and we believe that our

method can reduce more average FLOPs on easier dataset.

We also observe that the curve of HMDB-51 is similar to

that of Kinetics-400 because the accuracy of our model is



Method Backbone Pretrain FLOPs/Video
Something-Something v1 Something-Something v2

top-1 val top-5 val top-1 val top-5 val top-1 test top-5 test

ECO16F BNInception+
Kinetics

64G 41.4 - - - - -

ECOENLite 3D ResNet-18 267G 46.4 - - - - -

I3D
3D ResNet-50 Kinetics

306G 41.6 72.2 - - - -

Non-local I3D+GCN 606G 46.1 76.8 - - - -

TSN8F ResNet-50 Kinetics
33G 19.7 46.6 27.8 57.6 - -

TSN16F 65G 19.9 47.3 30.0 60.5 - -

TRN Multiscale
BNInception ImageNet

33G 34.4 - 48.8 77.6 50.9 79.3

TRN Two-Stream - 42.0 - 55.5 83.1 56.2 83.2

TSM8F ResNet-50 Kinetics
33G 43.4 73.2 58.2 84.8 - -

TSM16F 65G 44.8 74.5 58.7 84.8 59.9 85.9

Proposed
ResNet-50

ImageNet
52.8(v1)/48.0G(v2) 45.2 75.2 58.2 85.2 - -

MSDNet-38 38.4G(v1)/35.4G(v2) 46.5 75.6 60.0 86.2 60.1 86.6

Table 3. Performance and FLOPs consumptions of our method on the Something-Something v1 and v2 datasets compared with the state-

of-the-art methods. FLOPs/Video are averaged over all the videos from the validation set.

Method Backbone FLOPs UCF-101 HMDB-51

ARTNet with TSN 3D ResNet-18 5925G 94.3 70.9

ECO
BNInception+

64G 92.8 68.5
3D ResNet-18

I3D RGB 3D Inception-v1 544G 95.1 74.3

TSN RGB BNInception 500G 91.1 -

TSN8F ResNet-50
33G 91.5 63.2

TSN16F 64G 91.4 63.6

TSM8F ResNet-50
33G 94.0 70.3

TSM16F 64G 94.5 70.7

StNet ResNet-50 53G 93.5 -

Proposed

MSDNet-38
15.8G 94.2 -

29.2G - 70.1

ResNet-50
18.5G 94.7 -

34.4G - 72.34

ResNet-101
34.6G 95.3 -

69.1G - 73.48

Table 4. Transfer leanring performances with RGB modality. Note

that the #FLOPs herein takes into account the testing strategies,

such as multi-crop testing, for different models.

very close on these two scene-based datasets.

When compared with other methods, our model is eval-

uated by following the common practice of averaging ac-

curacy/FLOPs over three training/testing splits of both

datasets. The evaluation results can be found in Table 4.

From this table, we can see that our model shows a pretty

transfer capability. It obtains pretty good accuracy on UCF-

101 and HMDB-51, and the mean class accuracy is 94.2%

and 70.1%, respectively, which is comparable to or even

better than performances of many state-of-the-art solutions.

Besides, our model achieves great efficiency improvement,

and the average FLOPs/Video can be significantly reduced

to 15.8G and 29.2G on UCF-101 and HMDB-51. The re-

sults of ResNet based models can be analyzed similarly.

5. Discussion

Parallelism Dynamic inference, compared with fixed

inference, could degrade the parallelism capability to some

extent, but it can be paralleled. The depth-wise dynamic in-

ference can be paralleled in the input dimension, meanwhile

input-wise dynamic inference can be paralleled in the input

dimension when the computation process is going from one

checkpoint to the next one and more than one frames are

fed. As for the joint input-wise and depth-wise scheme,

it’s parallelism capability is further limited, take Fig.2(d)

for illustration, if the computation process goes from the

4th checkpoint to the 5th one, the last block outputs of

[F0, F3, F5, F6] can be calculated in parallel. When it trav-

els from the 5th checkpoint to the last one, the whole feature

extraction process of [F1, F2, F4, F7] can be paralleled.

Optimality Our key insight is dynamic inference and we

formally summarize its general idea and provide instantiat-

ing strategies to prove its feasibility. These framework in-

stances are designed to thoroughly analyze effectiveness of

our idea. However, the optimality of these frameworks are

not necessarily guaranteed. For example, how these thresh-

olds Tk can be adaptively determined for different videos at

different checkpoints; how the checkpoints can be dynami-

cally located from video to video and so on. We believe that

all of these problems deserve future research effort.

6. Conclusion

In this paper, we focus on improving action recogni-

tion efficiency in videos by dynamic inference, which takes

advantage of distinguishability variation among different

videos. By exploiting dynamic inference, our models are

verified on multiple well-known datasets being able to sig-

nificantly save FLOPs consumption while remaining recog-

nition performance unaffected. To our best knowledge, we

are the first to propose dynamic inference for efficient video

recognition, and it is proven to be a promising direction.
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