
Fast Hardware-Aware Neural Architecture Search

Li Lyna Zhang1 Yuqing Yang1 Yuhang Jiang2 Wenwu Zhu2 Yunxin Liu1

1Microsoft Research 2Tsinghua University

{lzhani, yuqing.yang, yunxin.liu}@microsoft.com
jhy17@mails.tsinghua.edu.cn, wwzhu@tsinghua.edu.cn

Abstract

Designing accurate and efficient convolutional neural

architectures for vast amount of hardware is challenging

because hardware designs are complex and diverse. This

paper addresses the hardware diversity challenge in Neural

Architecture Search (NAS). Unlike previous approaches that

apply search algorithms on a small, human-designed search

space without considering hardware diversity, we propose

HURRICANEthat explores the automatic hardware-aware

search over a much larger search space and a two-stage

search algorithm, to efficiently generate tailored models for

different types of hardware. Extensive experiments on Im-

ageNet demonstrate that our algorithm outperforms state-

of-the-art hardware-aware NAS methods under the same

latency constraint on three types of hardware. Moreover,

the discovered architectures achieve much lower latency

and higher accuracy than current state-of-the-art efficient

models. Remarkably, HURRICANE achieves a 76.67% top-

1 accuracy on ImageNet with a inference latency of only

16.5 ms for DSP, which is a 3.47% higher accuracy and

a 6.35× inference speedup than FBNet-iPhoneX, respec-

tively. For VPU, we achieve a 0.53% higher top-1 accu-

racy than Proxyless-mobile with a 1.49× speedup. Even for

well-studied mobile CPU, we achieve a 1.63% higher top-

1 accuracy than FBNet-iPhoneX with a comparable infer-

ence latency. HURRICANE also reduces the training time

by 30.4% compared to SPOS.

1. Introduction

Neural Architecture Search (NAS) is a powerful mecha-

nism to automatically generate efficient Convolutional Neu-

ral Networks (CNN) without requiring huge manual efforts

of human experts to design good CNN models [10, 29, 30,

24, 9, 1]. However, searching accurate and fast CNN for

the massive smart devices is difficult by current NAS ap-

proaches due to the emergence of massive types of hardware

devices and the intrinsic huge search cost.

Unaware of Hardware Diversity. Most of previous

NAS methods focus on searching for the most accurate

models. The common effort to guarantee the inference ef-

ficiency (e.g., model inference latency on real hardware)

is to limit the model’s FLOPs 1. Some recent hardware

aware NAS methods [9, 24, 5, 25] consider model-inference

performance but they only aim at the same type of hard-

ware, smart phones from different manufacturers but all

based on ARM processors. Also, such hardware-aware

approaches [4, 25, 23] use an identical manually elabo-

rated search space for different types of hardware platforms.

However, the emerging massive smart devices (e.g., IoT de-

vices) are equipped with very diverse processors, such as

GPU, DSP, FPGA, and various AI accelerators that have

fundamentally different hardware designs. Such a big hard-

ware diversity makes FLOPs an improper metric to predict

model-inference performance and manual-designed search

space not ideal for searching efficient models. As a re-

sult, it calls for new methods to automatically generate the

hardware-aware search spaces that leverage the character-

istics of every hardware platform and relax the reliance on

human design effort.

To demonstrate it, we conduct an experiment to mea-

sure the performance of a set of widely used neural net-

work operators (a.k.a. operations) on three types of mobile

processors: HexagonTM 685 DSP, Snapdragon 845 ARM

CPU, and MovidiusTM MyriadTM X Vision Processing Unit

(VPU). Figure 1 shows the results and we make the follow-

ing key observations. First, from Figure 1(a), we can see

that even the operators have similar FLOPs, the same oper-

ator may have very different inference latency on different

processors. For example, the latency of operator Choice 3

is almost the same as Choice 3 SE on the DSP, but the dif-

ference on the VPU is more than 24×. Therefore, FLOPs is

not the right metric to decide the inference latency on differ-

1In this paper, the definition of FLOPs follows [28], i.e., the number

of multiply-adds.

(a) Latency and FLOPs on different hardware (b) Latency in different feature map sizes on VPU

Figure 1. Performance of widely used operators in NAS (c.f. Table 1). (a): Latency and FLOPs on three types of hardware: (1) DSP

(HexagonTM 685 DSP), (2) CPU (Snapdragon 845 ARM CPU), (3) VPU (MovidiusTM MyriadTM X Vision Processing Unit). The in-

put/output feature maps are all the same, equal to 562 × 64. (b): Latency in different input feature map sizes on VPU.

ent hardware. Second, the relative effectiveness of different

operators on different processors is also different. For ex-

ample, operator Choice 3 has the smallest latency on the

ARM CPU, but operator SEP 3 has the smallest latency on

the DSP. Thus, different processors should choose different

operators for the best trade-off between model accuracy and

inference latency. Furthermore, as shown in Figure 1(b),

the computational complexity and latency of the same oper-

ator are also affected by the execution context, such as input

feature map shapes, number of channels, etc. Such a con-

text is determined by which layer the operator is placed on.

That is, even for the same type of hardware, optimal oper-

ators may change at different layers of the network. Thus,

it is difficult to cover hardware diversity using manually-

designed search space.

Motivated by these observations, we argue that there is

no one-size-fits-all model for different hardware platforms,

and thus propose HURRICANE (shown in Figure 2) to gen-

erate different models tailored for different types of hard-

ware. To cover the diversity of hardware platforms, we

construct a much larger candidate operators pool (32 in

our implementation) and propose a search space generation

approach to automatically generate a hardware-specialized

search space for each type of hardware. The key point here

is to include much more hardware-efficient and accurate

candidate architectures in search space without increasing

the search cost. Our mechanism is based on profiled real

performance on the target hardware as shown in Sec 3.1.

Moreover, we propose a two-stage search algorithm for

the one-shot NAS2 to further reduce the intensive search

cost. Unlike previous works that search operators for all

layers at one time, we search the complete architecture

by a sequence of simpler searching of sub-networks. The

method is inspired by the layer diversity (different layers

have different impacts on inference latency [10] and model

2In this paper we adopt one-shot NAS because of its simplicity, how-

ever, our acceleration could also be combined with other NAS methods.

accuracy [27, 13]), we demonstrate that exploring more ar-

chitecture selections in the layers close to classification out-

put may help find better architectures with the limited sam-

pling budget, and limiting the latency in the layers close to

data input is critical to search for low-latency models.

In summary, we propose a novel approach that enables

NAS to quickly search the accurate and fast architectures

for different type of hardware platforms (not only the ARM

CPU). The key technical innovations are: (i) automatically

generate more effective search space for target hardware

with minimal human design, (ii) explore more architectures

in deeper layers and reduce search space size. We conduct

comprehensive experiments on ImageNet 2012 and OUI-

Adience-Age datasets over three hardware platforms (Fig-

ure 1(a)). Under all the three platforms, HURRICANE con-

sistently achieves the better accuracy than state-of-the-art

hardware-aware NAS methods with the same latency con-

straints. Specifically, HURRICANE improves the top-1 Im-

ageNet accuracy by an average of 1.83% than Proxyless [4],

and 1.35% than SPOS [9]. In addition, the searched archi-

tectures also outperform the current state-of-the-art efficient

models. Remarkably, HURRICANE reduces the latency by

6.35× on DSP compared to FBNet-iPhoneX and 1.49× on

VPU compared to Proxyless-mobile, respectively. Finally,

HURRICANE reduces the training time by 30.4% on Ima-

geNet comparing to SPOS.

2. Related Work

Hardware aware NAS. Recent methods [24, 25, 4, 9, 1]

adopt a layer-level hierarchical search space with a fixed

macro-structure allowing different layer structures at dif-

ferent resolution blocks of a network. The goal becomes

searching operators for each layer so that the architecture

achieves competitive accuracy under given constraints. To

search hardware-efficient architectures, the search spaces

have been built on increasingly more efficient building

Figure 2. HURRICANE constructs hardware-specialized search

space (by latency constraints) that contains more efficient archi-

tectures than previous NAS, and employs a two-stage search algo-

rithm to reduce the search cost.

blocks. [24, 4, 23] built upon the MobileNetV2 [20]

structure (MB k e). [25, 9] built search space by Shuf-

fleNetV1 [28] and ShuffleNetV2 [15] (Choice k). As these

structures are primarily designed for mobile CPU, the effi-

ciency of such manually-designed search space is unknown

for other hardware.

To measure the model efficiency, many NAS meth-

ods [29, 30] adopt the hardware-agnostic metric FLOPs.

However, architecture with lower FLOPs is not necessar-

ily faster [22]. Recently, gradient-based methods [4, 23, 25]

adopt direct metrics such as measured latency but only for

mobile CPUs. They profile every operator’s latency and

build prediction model. The latency is then viewed as

a differentiable regularization loss. However, the multi-

objective loss is not optimal because accuracy changes

much more dramatically with latency for small models, as

[10] pointed out. Instead, we follow One-Shot NAS [9, 5]

and apply the latency constraints directly.

One-Shot NAS. Starting from ENAS [16], weight shar-

ing became popular as it accelerates the search process and

makes search cost feasible. Recent one-shot methods en-

code the search space into an over-parameterized supernet,

where each path is a stand-alone model. During the super-

net training, architectures are sampled by different proxies

(e.g., reinforcement learning) with weights updated. How-

ever, SPOS [9] and FairNAS [5] observe that such coupled

architecture search and weight sharing could be problem-

atic to fairly evaluate the performance of candidate archi-

tectures. SPOS [9] trains the supernet by an uniform path

sampling method, and applies an evolutionary algorithm to

efficiently search architectures directly without any fine tun-

ing. As it’s easy to train and fast to search, our work is

built upon SPOS [9] with their officially open-sourced im-

plementation [19].

3. Methodology

In this paper, HURRICANE aims to search the following

architectures for a given hardware platform h (any of CPU,

DSP, NPU, VPU, etc.) and the latency constant τ
(h)
c :

max ACCval(a)

s.t. τ(a, h) ≤ τ (h)c

(1)

We seek to find an architecture a that achieves the max-

imum accuracy ACCval(a) on the validation set while the

inference latency τ(a, h) is under the constraint τ
(h)
c .

3.1. Hardware­aware Search Space

We follow the design of layer-level hierarchical search

space in recent hardware-aware NAS [25, 24]. Besides first

and last three fixed layers, each learnable layer can choose

an operator from a candidate pool. For each target hard-

ware, we encode the specialized search space into a over-

parameterized supernet for one-shot NAS.

Diverse Candidate Operators Pool. Compared with

the small operator pool in previous works, we employ a

much bigger pool of candidate operators from the primary

building blocks of off-the-shelf networks. In our experi-

ment, FLOPs and memory access cost of an operator lever-

age different impacts to the latency on three hardware plat-

forms. As a result, our pool contains up to 32 operators

(detailed in Table 2) with different levels of computation

and memory complexity. They are built upon the following

4 basic structures from current efficient models:

• SEP: depthwise-separable convolution. Following

DARTS [14], we applied the depthwise-separable con-

volution twice. SEP has a larger FLOP count than oth-

ers, but less memory access complexity.

• MB: mobile inverted bottleneck convolution in Mo-

bileNetV2 [20]. MB has a medium memory access

cost due to its shortcut and add operation. Its com-

putation complexity is decided by the kernel size k and

expansion rate e.

• Choice: basic building block in ShuffleNetV2 [15].

Following [9], we add a similar operator ChoiceX.

Choice and ChoiceX have much smaller FLOPs than

the others, but the memory complexity is high due to

the channel split and concat operation.

• SE: squeeze-and-excitation network [11]. To balance

the impacts in latency and accuracy, we follow the set-

tings in MobileNetV3 [10]. We set the reduction ratio

r to 4, and replace the original sigmoid function with a

hard version of swish hswish[x] = x
ReLU6(x+3)

6 . We

apply SE module to the above operators and generate

new operators. The computation complexity of SE is

decided by its insert position, while the memory access

cost is relatively lower.

Hardware Aware Search Space Generation. The en-

richment of candidate operators covers the diversity of hard-

ware platforms. However, doing so increases the search

Output shape Layer DSP CPU VPU

562 × 64 1-4
SEP 3, Choice 3 Choice 3, Choice 3 SE Choice 3, Choice 5

MB 3 1, ChoiceX MB 3 1, ChoiceX Choice 7, SEP 3

282 × 160 5-8
Choice 3, ChoiceX Choice 3, ChoiceX Choice 3, Choice 5

MB 3 1, Choice 3 SE Choice 5, MB 3 1 Choice 7, ChoiceX

142 × 320 9-16
Choice 3, Choice 3 SE Choice 3, Choice 3 SE Choice 3, Choice 5

ChoiceX, MB 3 1 Choice 5 ,Choice 5 SE Choice 7, ChoiceX

72 × 640 17-20
Choice 3, Choice 3 SE Choice 3, Choice 5 Choice 3, Choice 5

ChoiceX ,MB 3 1, MB 3 3 Choice 3 SE, Choice 7, MB 5 1 Choice 7, MB 3 1, MB 7 1

Table 1. Hardware-aware search space for each mobile hardware. For layer at 1-16, it contains 4 operators for selection, for layer 17-20,

each layer has 5 operators. The input/output channel and stride settings for each layer are the same with SPOS [9].

Operator

Variable range

NumberKernel (k) Expansion (e)

SEP k 3,5,7 - 3

SEP k SE 3,5,7 - 3

MB k e 3,5,7 1,3,6 9

MB k e SE 3,5,7 1,3,6 9

Choice k 3,5,7 - 3

Choice k SE 3,5,7 - 3

ChoiceX 3 - 1

ChoiceX SE 3 - 1

Table 2. Candidate operators. For depthwise convolution in each

operator, we allow choosing k of 3 , 5, 7. For the expansion ratio

e in MB, we allow it choosing of 1, 3, 6.

space by many orders of magnitude (e.g., the original large

search space size is 1018 larger than SPOS), and thus leads

to unacceptable search and training cost and may even cause

non-convergence problem in one-shot NAS methods.

To reduce the cost while improving the search space ef-

ficiency, we propose a layer wise hardware aware search

space generation approach to generate specialized search

space for every target hardware platform. Unlike the previ-

ous methods that apply same operators for all layers, we se-

lect the most efficient operators for every layer by real hard-

ware deployment score. We benchmark all the 32 operators

layer-by-layer and sort each layers’ candidate operators in

non-increasing order of their scores in Equation 2:

score(i)op = (Fop × Pop)
α(τℓi(a)=op(a, h))

−1 (2)

where Fop and Pop are the FLOPs count and number of

parameters of operator op respectively, ℓi(a) = op means

architecture a whose i-th learnable layer is op. Parameter

α is non-negative constant. The score of candidate opera-

tor op at the i-th learnable layer (score
(i)
op) considers both

representation capacity (approximately) and real hardware

performance.

The operators listed upfront will be selected to construct

the reduced search space. For each layer, we filter out the

first p operators with highest score, and the size of search

space would be np (n is the number of learnable layers). In

our experiment, we choose the top p = 4 operators for each

layer to keep the similar size with other NAS search space.

Exploring Operator. Inspired by the observations of

layer diversity, some layers (commonly in the layers close

to output) contribute small to the latency (due to the small

feature map size) but impact largely on the accuracy. For

these learnable layers, we add an extra exploring operator

besides the first p operators. Since exploring operator is

mainly for better accuracy, its score could be not so top

ranked. For our backbone network (shown in Table 1), it

is natural to add the exploring operator to the last 4 layers

because of their smallest feature map size.

In summary, we construct three different search spaces

for our hardware platforms as shown in Table 1. For ev-

ery specialized search space, it contains n = 20 learnable

layers, and each layer can choose from 4 or 5 candidate

operators from the Table 1. Each search space contains

416 × 54 ≈ 2 × 1013 possible architectures, which is ap-

proximately twice the size of SPOS’s search space.

3.2. Two­Stage NAS Acceleration

To search an architecture of n learnable layers, early

NAS methods search for one cell structure and repeat it for

all layers [29, 18], while the recent NAS methods search op-

erators for the complete architecture [25, 4, 9, 24]. We adopt

a different two-stage approach that each stage searches op-

erators for part of the whole architecture. This strategy

leverages the layer diversity in accuracy and latency, and

further to reduce the one-shot search cost.

Layer Grouping. The phenomenon that different CNN

layers reveal different sensitivity to accuracy has been ob-

served in other domains [6, 13, 27]. NAS should take more

efforts in searching the ideal operators for the critical lay-

ers as the operator selection for non-critical layers impacts

less to the final accuracy. However, it’s difficult to do the

accuracy sensitivity analysis for individual layer in NAS

scenario. Fortunately, some previous works [6, 8] have re-

vealed different behaviors between the earlier layers (close

to data input) and the later layers (close to classification out-

put) in CNN models. The earlier layers extract low-level

features from inputs (e.g., edges and colors), are computa-

tion intensive and demand more data to converge, while the

later layers capture high-level class-specific features but are

less computation intensive. Inspired by this, our intuition is

that operator search for later layers is more critical than ear-

lier layers. To this end, we group the n layers of the CNN

model into two groups: the earlier t layers (less critical) and

the later n− t layers (more critical).

Two-Stage Search Algorithm. Algorithm 1 illustrates

the main procedures of hardware-aware NAS with two-

stage search acceleration. Each stage starts with a different

winning architecture and runs a one-shot NAS to search the

target group of learnable layers. We treat the rest group as

the non-active fixed layers and use the corresponding lay-

ers’ operator of the winning architecture. In the beginning,

we set up the initial winning architecture awin0 with the op-

erators of the highest scores in every layer (line 4-6).

First, Stage1 searches the later n−t layers for awin0. We

mark the later n − t layers as active and the earlier t layers

as non-active. The non-active layers are fixed to the cor-

responding layer structures of architecture awin0 (line 9),

while the active layers will be searched from the generated

operator list li(A) (line 10-12). The one-shot NAS method

itself is similar to the work [9], except that we constraint

the search space with a hardware latency other than FLOPs

(line 14). After a complete process of one-shot search, a

new winning architecture awin1 would be generated.

Second, Stage2 starts with the new winning architecture

awin1 and searches for earlier t layers. The later n−t layers

are fixed to the corresponding layer operator of awin1 and

the earlier t layers are active for another one-shot search.

Stage2 returns the final architecture awin2.

Hyper-Parameter t. The layer grouping boundary t in

Algorithm 1 impacts the effectiveness and efficiency of two-

stage acceleration. Specifically, two-stage acceleration rolls

back to the original one-shot NAS and searches for the com-

plete n learnable layers when t = 0, and thus no search cost

reduction is achieved. While larger t reduces the supernet

training time a lot, it can harm the search for the optimal ar-

chitectures. In this paper, we set t = 8 (only learnable lay-

ers counted) according to the natural resolution changes of

the supernet. The search space size is reduced by ≈65,000

×. According to our empirical results, two-stage search al-

gorithm achieves better accuracy and promising search time

reduction on two datasets when t = 8 (c.f. Table 5). We will

study more about how to choose t in future works.

4. Evaluation

4.1. Experiment Setup

Hardware Platforms and Measurements. We target

three representative mobile hardware that is widely used

for CNN deployment: (1) DSP (Qualcomm’s HexagonTM

685 DSP), (2): CPU (Qualcomm’s Snapdragon 845 ARM

Algorithm 1 Hardware-aware NAS with acceleration

Input: hardware h, latency constraint τ
(h)
c , hyper-parameter t

1: function TWOSTAGECONSTRAINEDNAS(A, t)

2: ⊲ ℓi(a) denotes the i-th layer of architecture a

3: ⊲ ℓi(A) denotes all the candidate operators in the i-th layer

of search space A, sorted in non-increasing order of score

4: for i← 1 to n do

5: ℓi(awin)← ℓi(A)[0] ⊲ Init with top-1 ranked operator

6: end for

7: ⊲ Each stage searches 1 group layers by one-shot NAS.

8: for iter ← 1 to 2 do ⊲ Stage1: iter=1, Stage2: iter=2

9: Fixed← [1, t] if iter = 1, else: [t+ 1, n]
10: for i← 1 to n do

11: φi ← {ℓi(awin)} if i ∈ Fixed, else: ℓi(A)
12: end for

13: Aiter ← {a | ℓi(a) ∈ φi, 1 ≤ i ≤ n}

14: awin ← CONSTRAINEDONESHOTNAS(Aiter , τ
(h)
c)

15: end for

16: return awin

17: end function

18: Ah ← HWAWARESEARCHSPACE(h, τ
(h)
c) ⊲ c.f. Sec 3.1

19: awin ← TWOSTAGECONSTRAINEDNAS(Ah, t)

20: retrain awin

CPU), (3): VPU (Intel’s MovidiusTM MyriadTM X Vision

Processing Unit). To make full utilization of these hard-

ware at inference, we use the particular inference engine

provided by the hardware vendor. Specifically, DSP and

CPU latency are measured by Snapdragon Neural Process-

ing Engine SDK [17] with int8 and float32 precision, re-

spectively. VPU latency is measured by Intel OpenVINOTM

Toolkit [12] with float16 implementation.

Latency Constraints. For better comparison with other

works, we set the latency constraints to be smaller than the

best latency of models from other works [24, 10, 25, 4],

which are 310 ms (CPU), 17 ms (DSP) and 36 ms (VPU).

Hardware-aware One-Shot Search. As shown in Ta-

ble 1, the hardware aware search space is generated ac-

cording to the different characteristics of every hardware.

The search space is then encoded into a over-parameterized

supernet for two-stage acceleration search. Our two-stage

search acceleration is built on top of SPOS [9, 19]. Once

the supernet training finishes, we perform a 20-iterations

evolution search for total 1,000 architectures as SPOS. To

avoid measuring the latency of every candidate architecture

during search, we build a latency-prediction model 3 with

high accuracy: the average estimated error for DSP, CPU,

VPU is 4.7%, 4.2%, and 0.08%, respectively.

3The prediction model is built with Bayesian Ridge Regression [2]

Model
Search Target FLOPs DSP CPU ‡ VPU Top-1 Acc

Method Hardware (#) (ms) (ms) (ms) (%)
E

x
is

ti
n
g

S
T

O
A

M
o
d
el

s MobileNetV2 [20] Manual CPU 300M 10.1 432.4 45.2 72.00

MobileNetV3-Large1.0 [10] RL+NetAdapt [26] CPU 219M 141.6 411.4 72.3 75.20

MnasNet-A1 [24] RL CPU 312M 149.0 1056.1 52.4 75.20

FBNet-iPhoneX [25] Gradient CPU 322M 105.0 313.0 45.6 73.20

FBNet-S8 [25] Gradient CPU 293M 293.0 369.6 45.1 73.27

Proxyless-R (mobile) [4] Gradient CPU 333M 534.6 616.5 53.1 74.60

SPOS (block search) [9] Oneshot - 319M 270.6 455.8 38.7 74.30

S
ea

rc
h

fo
r

O
u
r

H
ar

d
w

ar
e

Proxyless-R∗ Gradient DSP 421M 43.9 662.0 46.3 74.20

SPOS∗ Oneshot DSP 366M 17.3 538.2 46.1 74.56

HURRICANE-DSP (Ours) Oneshot DSP 709M 16.5 576.7 45.4 76.67

Proxyless-R∗ Gradient CPU ‡ 279M 182.8 392.3 37.8 73.40

SPOS∗ Oneshot CPU ‡ 302M 106.0 345.5 36.3 73.76

HURRICANE-CPU (Ours) Oneshot CPU ‡ 327M 80.1 301.3 38.9 74.59

Proxyless-R∗ Gradient VPU 275M 264.7 464.9 35.6 73.30

SPOS∗ Oneshot VPU 323M 372.9 693.1 36.1 74.02

HURRICANE-VPU (Ours) Oneshot VPU 409M 390.8 645.3 35.6 75.13

Table 3. Compared with state-of-the-art hardware-aware NAS methods on ImageNet, HURRICANE is the only NAS method that consis-

tently achieves high accuracy and low latency on all the target hardware. Latency numbers are measured on our hardware platforms. ⋆:

We run Proxyless-R and SPOS with their officially open-sourced implementations to search models on our hardware platforms . ‡: CPU

latency is measured on a single CPU core with float32 precision.

Group NAS Acc CPU

(%) (ms)

Similar latency

FBNet-iPhoneX 73.20 313.0

FBNet-S8 73.27 369.6

HURRICANE-CPU 74.59 301.3

Similar accuracy

Proxyless-mobile 74.60 616.5

FBNet-C 74.90 688.6

MnasNet-A1 75.20 1056.1

HURRICANE-CPU1 74.98 381.2

Table 4. Compared with models of same-level CPU inference

latency, HURRICANE-CPU improves the top-1 accuracy from

73.27% to 74.59% on ImageNet. Compared with models of same-

level top-1 accuracy, HURRICANE-CPU1 accelerates the CPU

inference time by 1.62× - 2.77×.

4.2. Searching on ImageNet Dataset

Our comparisons are two-folds: (1) we compare HUR-

RICANE searched models with various existing state-of-

the-art efficient models that are primarily designed or

searched for ARM CPU, to demonstrate that HURRICANE

is able to generate different models suitable for different

types of hardware; (2) we compare HURRICANE with two

representative NAS methods, Proxyless-R [4] and SPOS [9]
4, to show that HURRICANE is able to search for better

models at a lower cost, benefiting from the two-stage search

algorithm. The primary metrics we care about are top-1 ac-

curacy on the ImageNet dataset and inference latency on

4Considering the reproducibility issue, we didn’t test other hardware-

aware NAS methods due to the lack of officially open-sourced code.

the three hardware.

Dataset and Training Details. Following [4], we ran-

domly split the original training set into two parts: 50,000

images for validation (50 images for each class exactly)

and the rest as the training set. The original validation

set is used for testing, on which all the evaluation results

are reported. We follow most of the training settings and

hyper-parameters used in SPOS [9], with two exceptions:

(i) For supernet training, the epochs change with different

hardware-aware search spaces (listed in Table 1), and we

stop at the same level training loss as SPOS. (ii) For archi-

tecture retraining, we change linear learning rate decay to

cosine decay from 0.4 to 0. The batch size is 1,024. Train-

ing uses 4 NVIDIA V100 GPUs. We implement Proxyless-

R [3] and SPOS [19] on our hardware platforms to search

for the models within the same latency constraints.

Results and Analysis. Table 3 and Table 4 summa-

rize our experiment results on ImageNet. It demonstrates

that it’s essential to leverage hardware diversity in NAS to

consistently achieve the high accuracy and low latency on

different hardware platforms.

Firstly, HURRICANE surpasses existing state-of-the-art

efficient models. Compared to MobileNetV2 (top-1 ac-

curacy 72.0%), HURRICANE improves the accuracy by

2.59% to 4.03% on all target hardware platforms. Com-

pared to state-of-the-art models searched by NAS, HURRI-

CANE achieves the lowest inference latency on DSP, CPU,

VPU, with better or comparable accuracy. Remarkably,

HURRICANE-DSP achieves 76.67% accuracy, better than

MnasNet-A1 (+1.47%), FBNet-iPhoneX (+3.47%), FBNet-

S8 (+3.4%), Proxyless-R (+2.07%), and SPOS (+2.37%).

Regarding latency, HURRICANE-DSP is 16.5ms on DSP,

that reaches a a 6.35× inference speedup than FBNet-

iPhoneX. Interestingly, HURRICANE-DSP is faster than

other NAS models but with a much larger FLOPs count.

This is against the widely accepted belief that smaller

FLOPs count results in lower latency. Our study for DSP

indicates that small-kernel-sized complicated operators are

most suitable for this platform, and the hardware aware

search space fully takes advantage of this and benefits from

such operators (c.f. Sec 3.1).

Secondly, HURRICANE outperforms the state-of-the-

art NAS methods for the same target hardware platforms.

Compared to SPOS, HURRICANE improves the accuracy

by 2.11% (DSP), 0.83% (CPU), 1.11% (VPU) with slightly

lower inference latency (DSP: -0.8ms, CPU: -44.2ms, VPU:

-0.5ms). When compared with Proxyless-R, our method

achieves higher accuracy of 2.47% (DSP), 1.49% (CPU),

1.83% (VPU) with less inference latency (DSP: -27.4ms,

CPU: -91ms). We noted that the models searched by

Proxyless-R are with lower accuracy and larger latency than

SPOS and ours. One hypothesis is that the default hyper-

parameter w in Proxyless-R that controls the trade-off be-

tween accuracy and latency might be not optimal for other

hardware platforms. For instance, Proxyless-R searched

many zero operators for the earlier layers on CPU and VPU.

Finally, HURRICANE also achieves competitive perfor-

mance on the well-studied ARM CPU. To further compare

the efficiency on CPU, we group related NAS models into

same-level latency group and same-level accuracy group in

Table 4. For fairness, we didn’t compare MobileNetV3-

Large1.0 as it adopts a second fine-grained search by Ne-

tAdapt on MnasNet-A1. Results in Table 4 suggests HUR-

RICANE (CPU) achieves the highest accuracy in same-

level CPU inference time group, and achieves 1.62× -

2.77× lower inference time in same-level accuracy group.

Search Cost Analysis. To compare the search cost,

we report supernet training time reduction compared with

SPOS instead of exact GPU search days as [4, 25] for

two reasons: (i): the GPU search days are highly rele-

vant with the experiment environments (e.g., different GPU

hardware) and the code implementation (e.g., ImageNet dis-

tributed training). (ii): The primary time cost comes from

supernet training in SPOS, as the evolution search is fast

that architectures only perform inference.

Compared with SPOS, HURRICANE (Stage1 + Stage2)

reduces 30.4% supernet training time and finds models

with better performance. Furthermore, HURRICANE

(Stage1) already achieves better classification accuracy than

other NAS methods (DSP: 76.57%, CPU: 74.59%, VPU:

74.63%) while reducing an average of 54.7% time, which

is almost a 2× training time speedup (More analysis are in

Sec 4.3.2). It demonstrates the effectiveness of exploring

Figure 3. Architectures sampled in hardware specialized search

spaces achieve lower latency than manually-designed and original-

large search spaces. The y-axis is log-scaled for better comparison.

Figure 4. Compared to manually-designed search space, our

hardware-aware search spaces achieve higher accuracy by SPOS.

more architecture in the deeper CNN layers.

4.3. Ablation Study and Analysis

We now further evaluate the efficiency of the proposed

hardware-aware search space and two-stage acceleration al-

gorithm. For simplicity, we run the experiments on the

OUI-Adience-Age (OUI) dataset. OUI [7] is a small 8-class

dataset consisting of 17,000 face images. We split OUI into

train and test sets by 8:2. The settings for supernet training

parameters are the same as ImageNet experiments except

that we reduce the initial learning rate from 0.5 to 0.1, and

the batch size reduced from 1024 to 64. Supernet trains un-

til converge. For the architecture retraining, we train for 400

epochs and change the linear learning rate decay to Cyclic

decay [21] with a [0, 1] bound. We use 1 NVIDIA Telsa

P100 for training.

4.3.1 Effectiveness of Hardware-aware Search Space

Ideal search spaces contain many high accuracy architec-

tures within the latency constraint so that the optimal ones

are easily sampled by the search algorithm. We first inves-

tigate the latency distribution of architectures in a search

space. We random sample 10 million architectures from

three different search spaces: (i): our hardware-aware

search spaces (c.f. Table 1), (ii) Manually-designed: the

search space used in SPOS [9] that designed by domain ex-

perts, (iii) Original-large: the search space generated by

our large operator pool (c.f. Table 2) , and benchmark

Search Space Hardware

SPOS HURRICANE HURRICANE

(20 layers) (Stage1: 12 layers) (Stage1 + Stage2: 20 layers)

Acc Train Acc Train Acc Train

(%) iters (#) (%) iters (#) (%) iters (#)

Manually-designed

DSP 86.35 393,000 86.29 157,200 86.69 184,710

CPU 86.52 393,000 86.32 157,200 86.75 183,400

VPU 86.68 393,000 86.49 157,200 86.90 192,000

Hardware-aware

DSP 87.22 569,850 86.56 128,380 87.62 150,650

CPU 87.02 476,840 86.75 144,100 87.33 168,990

VPU 86.99 524,000 86.93 133,620 87.07 157,200

Table 5. Compared to SPOS [9], our two-stage search method achieves higher accuracy with much less search cost (51.1%-70%) on both

manually-designed and hardware-aware search spaces. We list out the training iterations OUI (batchsize=64) for search cost comparison.

their inference latency on hardware. As Figure 3 shows,

architectures in our hardware specialized search spaces are

with much lower latency than the manually-designed and

the original large search spaces. This indicates our search

space is more compact and easier for constrained sampling.

To evaluate the accuracy gains by search space, we run

the SPOS on both manually-designed and hardware-aware

search spaces. We did not compare with the original-large

search space here due to the unacceptable cost and non-

convergence problem in supernet training. Figure 4 shows

our hardware-aware search space consistently achieves

higher accuracy than the manually-designed search space

(+0.87% on DSP, +0.5% on CPU, +0.31% on VPU).

Hardware Insights. We share several important insights

from search space generation.

• HexagonTM 685 DSP. Small kernel convolutions (k ≤
3) are well optimized on this platform. As a result,

all the operators are of k=3 in search space. It also

allows the search space to contain complicated opera-

tors (of large FLOPs) with small kernels, because their

efficiency on this platform is better than those less-

complicated operators but with bigger kernels. That’s

why HURRICANE (DSP) is faster than other NAS

models but with a much larger FLOPs. On the con-

trary, the search spaces of Proxyless and SPOS contain

many large kernel operators (i.e., k=5/7).

• MyriadTM X VPU. The efficiency is strongly impacted

by whether the operator is natively supported by the

AI accelerator. For example, SE module is of low ef-

ficiency in this platform, because it has to roll back to

relatively slow CPU execution. On the contrary, con-

volutions with bigger kernels (k = 7) are much more

efficiently executed than on other platforms. This ex-

plains why the search space for this platform selects no

SE operators but much more bigger kernel operators

(especially in the earlier layers). We also observe that

the operators applied in Proxyless and SPOS are all

supported by the AI accelerator. Therefore, the VPU

latency of searched models by Proxyless-R and SPOS

are relatively low as shown in Table 3.

• Snapdragon 845 ARM CPU. Even with complex mem-

ory operator, Choice 3 (i.e., ShuffleNetV2 unit) is the

most efficient operator on this platform.

4.3.2 Effectiveness of Two-Stage Search Algorithm

Different with previous NAS methods that globally search

over all the learnable layers (e.g., SPOS searches n = 20
layers), our two-stage search algorithm groups CNN layers

into 12 later and 8 earlier layers: Stage1 searches the later

layers first, Stage2 searches the earlier layers for the win-

ning architectures in Stage1. To demonstrate the effective-

ness, we compare it with SPOS on both manually-designed

and our hardware-aware search spaces.

Table 5 summarizes experiment results. On all search

spaces, our proposed method could achieve not only higher

accuracy but also less search cost for the target hardware un-

der the latency constraint. In addition, only one step search

(Stage1) of HURRICANE could achieve a comparable top-

1 accuracy (with an average of 0.23% loss), but the number

of training iterations is significantly reduced (60%-77.5%).

This indicates that operators in later CNN layers are more

critical for final accuracy.

If the computation budget (e.g., training time) allows,

HURRICANE can further benefit from the second step

search (Stage2). The accuracy is improved by 0.14%-1.06%

with an additional cost of only 4.0%-8.8% of training it-

erations. Our gains mainly come from the reduced search

space size by the two-stage search algorithm.

5. Conclusion

In this paper, we propose HURRICANE to address

the challenge of hardware diversity in NAS. By exploring

hardware-aware search space and two-stage search algo-

rithm, we demonstrate that HURRICANE is able to search

for better models specialized for different hardware plat-

forms and outperforms the previous NAS methods by both

accuracy and significant training time reduction.

References

[1] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc V. Le. Understanding and Simplifying

One-Shot Architecture Search. In ICML, 2017.

[2] Christopher M. Bishop. Pattern Recognition and Machine

Learning, 2006.

[3] Han Cai, Ligeng Zhu, and Song Han. Github code: Proxy-

lessnas: Direct neural architecture search on target task and

hardware. In ICLR. 2019.

[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. In

ICLR. 2019.

[5] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-

nas: Rethinking evaluation fairness of weight sharing neu-

ral architecture search. arXiv preprint, arXiv:1907.01845,

2019.

[6] Matthew D.Zeiler and Rob Fergus. Visualizing and under-

standing convolutional networks. ECCV, 2014.

[7] Eran Eldinger, Roee Enbar, and Tal Hassner. Age and Gen-

der Estimation of Unfiltered Faces. In TIFS, 2014.

[8] Deeptha Girish, Vineeta Singh, and Anca Ralescu. Unsu-

pervised clustering based understanding of cnn. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 9–11, 2019.

[9] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path

one-shot neural architecture search with uniform sampling.

arXiv:1904.00420, 2019.

[10] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun

Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and

Hartwig Adam. Searching for mobilenetv3. arXiv preprint,

arXiv:1905.02244, 2019.

[11] Jie Hu, Li Shen, and Samuel Albanie. Squeeze-and-

excitation networks. In arXiv preprint, arXiv:1709.01507,

2017.

[12] Intel. Intel distribution of openvino toolkit, 2018 r5

build. https://software.intel.com/en-us/

openvino-toolkit, 2018.

[13] Hao Li, Asim Kadav, Igor Durdanovic, Hannan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In

ICLR. 2017.

[14] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable Architecture Search. ICLR, 2019.

[15] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. ECCV, 2018.

[16] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and

Jeff Dean. Efficient Neural Architecture Search via Parame-

ter Sharing. In ICML, 2018.

[17] Qualcomm. Snapdragon neural processing engine sdk, ver-

sion: 1.25.1. https://developer.qualcomm.com/

docs/snpe/setup.html, 2019.

[18] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,

Yutaka Leon Suematsu, Jie Tan, Quoc V. Le, and Alexey Ku-

rakin. Large-Scale Evolution of Image Classifiers. In ICML,

2017.

[19] Megvii Research. Shufflenet series.

urlhttps://github.com/megvii-model/ShuffleNet-Series,,

2019.

[20] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. CVPR, 2018.

[21] Leslie N. Smith. Cyclical learning rates for training neural

networks. In WACV, 2017.

[22] Dimitrios Stamoulis, Ermao Cai, Da-Cheng Juan, and Diana

Marculescu. Hyperpower: Power- and memory-constrained

hyper-parameter optimization for neural networks. The Jour-

nal of Machine Learning Research, 2018.

[23] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios

Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Mar-

culescu. Single-path nas: Designing hardware-efficient con-

vnets in less than 4 hours. CVPR, 2018.

[24] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V.Le. Mnasnet:

Platform-aware neural architecture search for mobile. In

CVPR, 2019.

[25] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Yajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

CVPR. 2019.

[26] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec

Go, Mark Sandler, Vivienne Sze, and Hartwig Adam. Ne-

tadapt: Platform-aware neural network adaptation for mobile

applications. ECCV, 2018.

[27] Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all

layers created equal? In arXiv preprint arXiv:1902.01996v3.

2019.

[28] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. CVPR, 2018.

[29] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning. arXiv preprint, arXiv:1611.01578,

2016.

[30] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.

Le. Learning transferable architectures for scalable image

recognition. In CVPR, 2018.

