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Abstract

Data-driven models are now deployed in a plethora of

real-world applications — including automated diagnosis

— but models learned from data risk learning biases from

that same data. When models learn spurious correlations

not found in real-world situations, their deployment for crit-

ical tasks, such as medical decisions, can be catastrophic.

In this work we address this issue for skin-lesion classifica-

tion models, with two objectives: finding out what are the

spurious correlations exploited by biased networks, and de-

biasing the models by removing such spurious correlations

from them. We perform a systematic integrated analysis of

7 visual artifacts (which are possible sources of biases ex-

ploitable by networks), employ a state-of-the-art technique

to prevent the models from learning spurious correlations,

and propose datasets to test models for the presence of bias.

We find out that, despite interesting results that point to

promising future research, current debiasing methods are

not ready to solve the bias issue for skin-lesion models.

1. Introduction

Models learned from data risk learning biases from that

same data. When models learn the correct features, they are

robust, generalizing for uncontrolled situations in the real

world. Biases in the training set destroy that robustness,

because models learn spurious correlations that will not be

found (at least not reliably) in real-world situations. The de-

ployment of such models for critical tasks, such as medical

decisions, can be catastrophic.

As data-driven models get better and are deployed in a

plethora of real-world applications — including automated

diagnosis — we must understand that issue in order to trust

them with those critical decisions.

For critical contexts, such as medical applications, the

involved agents must be able to explain their decision pro-

cess. Machine learning models deployed in those scenarios

respond to those same rules — including, in several juris-

dictions, legally. However — despite the surge in methods

for model interpretability — we are far from explaining the

predictions made by them.

Bissoto et al. [7] investigated bias for skin-lesion datasets

and found troubling signs, showing shockingly high per-

formances for deep neural networks trained with images

where the lesions appear occluded by large black bounding

boxes. The performances were comparable to those of net-

works trained with additional dermoscopic attributes. The

networks were unable to exploit clinically-meaningful in-

formation in the form of dermoscopic features, neglecting

those in their decision process.

Those results motivated this work, whose objective is

twofold: on the one hand, we attempt to finding out what

are the extraneous, spurious correlations exploited by bi-

ased networks, on the other hand, we attempt to apply tech-

niques to debias the models, removing such spurious corre-

lations from them.

To attain our first objective we analyze of the possible

influence of seven artifacts present in skin-lesion images:

dark corners (vignetting), hair, gel borders, gel bubbles,

rulers, ink markings/staining, and patches. Previous works

have noticed the presence of those artifacts in skin-lesion

datasets and their possible effect on classification perfor-

mance [6,21,28]. The novelty of this work, is an integrated

and systematic study of those effects, in which we employed

manual annotation of the presence of the artifacts to confirm

our hypotheses. We annotate by hand two of the most em-

ployed skin lesion datasets: ISIC 2018 Task 1 & 2 [13], and

the Interactive Atlas of Dermoscopy [4]. As far as we know,

this level of analysis has not been attempted before.

To attain our second objective, we employ a state-of-

the-art technique to prevent the models from learning spu-

rious correlations. Correctly assessing the performance of

such techniques is not obvious: they usually lead to lower

accuracies, since the resulting models will not have the

“unfair advantage” of the spurious correlation (advantage,

of course, that is illusory, and that would disappear if the

models were to be used in actual clinical practice). One

of our contributions is proposing protocols for this delicate

assessment. We have made the annotations created, the em-

ployed sets of data, and source code available1.

1https://github.com/alceubissoto/debiasing-skin



Summarizing, the main contributions in this work are:

• We annotate two of the most popular datasets for skin

lesion analysis with the presence of 7 visual artifacts

that can lead to dataset biases.

• We evaluate how those artifacts affect classification

models in different experiments that focus the atten-

tion of the network in different aspects of the image.

• We assess the capability of a state-of-the-art solution

for bias removal in the skin lesion context, proposing

protocols to evaluate the models in that scenario.

• We discuss the importance of studying bias in skin le-

sion analysis, and provide directions for future works

to solve this key problem with our data.

2. Related Work

Bias Detection: Bias in classification attracted much

attention from researchers, who addressed the issue for

datasets of different sizes and specialization levels.

ImageNet [15], arguably the most studied large-scale

dataset for image classification, present many biases despite

containing more than 1 million samples and 1, 000 classes.

In ObjectNet [5], the authors provide a test-only dataset

with 50, 000 images in 313 ImageNet classes, captured by

MTurkers in their own house, following special guidelines

to reduce biases, in particular, randomizing backgrounds,

rotations, and image viewpoints. Many state-of-the-art ar-

chitectures for ImageNet presented a drop of performance

of ∼ 40 p.p. on ObjectNet, showcasing the high impact of

dataset bias.

Bias is also a concern for the task of Visual Question

Answering (VQA), where models answer a textual ques-

tion based on the appearance of an image. The model must

make sense of the visual features to correctly answer the

question, but,in some cases, may (undesirably) exploit bi-

ases in the data that enable them to answer questions with-

out even considering the visual information. The classic

example is answering “yellow” to “Which color is the ba-

nana?” in a dataset where almost all bananas are yellow.

Goyal et al. [17] advanced the state of the art with pur-

posefully debiases, and much more difficult dataset they

called VQAv2 [3], balancing the number of answers for ev-

ery question.

Those examples of purposeful dataset debiasing provide

interesting precedents, that could be explored by medical

works, enabling the assessment of the actual generalization

capability of solutions. However, since in medical images

— and skin lesion analysis in particular — acquiring anno-

tated data is much more expensive and laborious, literature

resorts to other methods.

Bissoto et al. [7] presented concerning results for skin

lesion analysis, showing that even when deep neural net-

works are blinded from most of the relevant information,

by placing a black bounding box on top of the lesion hid-

ing at least 70% of the image, they still make predictions

much above random chance, in fact, even surpassing human

specialists benchmarks in the task. Winkler et al. [28] also

evaluated how bias affects performance, showing that ink

markings/staining influences the ability of models of recog-

nizing melanomas.

Bias Removal: If datasets cannot be unbiased a priori,

removing biases from models may help generalization.

Cadene et al. [9] proposed a solution to prevent VQA

models from making decisions based only on the text query,

without looking at the target image (as explained above).

They add a classification head connected to the query text

encoder that answers the question without using the image,

and whose loss influences negatively the overral model loss.

That way, the model is encouraged to look at the samples as

a whole.

Assessing biases for VQA was largely made possible due

to the existence of the VQAv2 dataset [17], which was es-

pecially designed to have balanced answers for each ques-

tion. For most applications, however, such datasets do not

exist, making assessment delicate. Biased models will have

better performance: the spurious correlations give them an

advantage, after all. But simply striving for models with

lower performance leads, of course, to trivial uninteresting

solutions.

Often, the proposed solution is creating artificially bi-

ased sets [2,19,24], with the training and test sets biased in

opposite directions. This creates what we call here a trap

set, since biased models, by learning spurious correlations,

“fall into the trap”, and have poor performances on test.

So far, the most successful strategy for bias removal

for classification tasks is employing auxiliary classification

heads that are trained to detect features causing bias, and

use them to influence the training of the main classification

task. That strategy, however, requires labeling the biasing

features. Alvi et al. [2] used domain confusion loss to un-

learn the biases, i.e., for each known domain that introduce

a bias (in their case, gender or age), there is a classifier that

is trained to detect the bias, and a domain confusion loss

that updates the feature representation to make the bias clas-

sifier perform worse. The state-of-the-art method Learn Not

To Learn (LNTL) [19] also works with a set of known, an-

notated biases (such as color, gender, and age). The authors

propose to use a feature extractor that feeds two classifiers:

one for the main problem, the other for bias. The main clas-

sifier and the feature extractor are pre-trained to solve the

target problem, and then go through an unlearning phase

where the bias classifier learns the biases and backpropa-

gates reversed gradients to the main classifier’s feature ex-

tractor, such that it unlearns the same biases. Another solu-

tion, following the same scheme, was proposed for debias-

ing action classification models in video [11].



3. Data Customization

In this section, we discuss the data employed in this

work. Deep learning models are very greedy for data, and

able to thoroughly exploit the available training samples.

Contrarily to classic machine-learning models, deep models

learn seamlessly feature extraction and decision layers. The

risk, on small datasets (such as the ones in medical tasks)

is the models learning not only all relevant information, but

also all spurious features present in the data, compromising

their generalization to actual real-world situations.

We start by presenting the datasets commonly used in

skin lesion analysis. Next, in Sec. 3.2, we propose a modi-

fied dataset to reduce the influence of bias. In Sec. 3.3, we

discuss our manual annotation of both the ISIC 2018 Task

1 & 2 [13] and the Interactive Atlas of Dermoscopy [4] for

artifacts that could lead to spurious correlations on the data,

and provide an analysis of the correlations we found among

those artifacts and the target labels. Finally, in Sec. 3.4, we

describe our trap sets, i.e., datasets whose training and test

splits present high and opposite correlations between the an-

notated artifacts and target label. Armed with those data, we

assess the bias removal procedures described in Sec. 4.

3.1. Traditional datasets

Research of skin lesion analysis relies heavily on two

public datasets: the ISIC Archive [1] and the Interactive

Atlas of Dermoscopy [4].

The ISIC Archive, associated with the ISIC Project and

the ISIC Challenge [12, 13, 20], is an ongoing cooperation,

with a growing number of samples, diversity of classes, and

metadata annotation. In this work, we used the ISIC 2018

Task 1 & 2 subset of the Archive, used in the lesion seg-

mentation (task 1) and dermoscopic attribute segmentation

(task 2) of the 2018 ISIC Challenge. That subset is helpful

for our bias study since every image has ground-truth seg-

mentation masks for the lesion and dermoscopic attributes.

The dataset is composed of 2, 594 dermoscopic images of

3 different classes: melanoma (malignant), nevus, and seb-

orrheic keratosis (both the latter benign).

The Interactive Atlas of Dermoscopy [4] (Atlas, for

short) is an educational resource used to train dermatolo-

gists. Because of the pedagogical purpose, the dataset has

several difficult-to-diagnose cases, exceptions to the typical

trends, hard to identify for both humans and machines. A

drawback of Atlas is the lack of lesion segmentation masks,

which we solve by using segmentation masks generated by

Bissoto et al. [7] using SegAN [29]. On the other hand,

the Atlas provides both dermoscopic and clinical images

for the case, and the latter allow a very challenging assess-

ment of the generalization abilities of models learned on

dermoscopic images. The Atlas has 872 dermoscopic im-

ages in the classes melanoma, nevus, and seborrheic ker-

atosis, a subset we call here Dermoscopic Atlas. In those

(a) Traditional (b) Skin Only (c) Bbox (d) Bbox70

Figure 1: Normalized-background images. The aim of this

dataset is to reduce the influence of the background, allow-

ing to measure how misleading visual patterns in the back-

ground influence the classification.

same three classes, the Atlas has 839 clinical images, a sub-

set we called Clinical Atlas. All cases present in Clinical

Atlas are present in Dermoscopic Atlas.

3.2. Normalized-background dataset

In this work, we consider as foreground in the lesion im-

ages the area occupied by the lesion itself (as delimited by a

ground-truth segmentation mask, or inferred by a segmen-

tation model), and as background everything else, which

may include zones of normal skin, hair, physical artifacts

like patches, and image artifacts like vignettes and shad-

ows. The background may influence the results of skin-

lesion classification, often in the form of undue learning of

spurious correlations.

In order to evaluate such effects, we propose modifying

the dataset by erasing the background. In order to minimize

the perturbations to the model, instead of simply using a

constant value, we first learn the average image in the train-

ing set, and replace each pixel in the background by the

corresponding pixel in that pixel-average training set im-

age. The foreground pixels are left untouched.

In test time, the same procedure is applied to the images,

always using the average computed on the training set. That

way, images from both train and test have the same non-

informative background, but only images from the training

set influenced the normalized background (see Fig. 1).

To measure the effect of this change in deep learning

models, we used an Inceptionv4, following the same hy-

perparameters, training procedures, and data splits as [7], to

allow the comparison between their results and ours. Those

results appear in Table 1. The image disturbances (Tradi-

tional, Skin Only, Bbox, Bbox70) are also the same as theirs.

When train and test are splits of the same dataset (ISIC),

Bbox70 and Bbox suffer considerably more (11.3% and

10.1%, respectively) than Traditional or Skin Only (4.8%

and 4.6%), indicating that for models learned with disturbed

images the background becomes much more important. The

network expects background features to be visible to help it

make sense of the label. These results showcase that the

models will take advantage of all and any available infor-

mation, including spurious correlations that may harm the



Dataset Traditional (%) Skin Only (%) Bbox (%) Bbox70 (%)

ISIC [7] 86.3± 1.6 77.3± 1.6 77.1± 1.8 71.1± 1.6

ISIC Normalized 81.5± 1.2 72.7± 1.6 67.0± 2.5 59.8± 2.1

Cross-dataset [7] 83.5± 0.9 72.3± 1.1 71.3± 1.8 71.5± 0.7

Cross-dataset Normalized 77.1± 1.3 69.0± 1.1 67.2± 3.9 64.1± 0.3

Table 1: Results (in AUC, Area Under the ROC Curve) for the experiments with the normalized background. All the images

of train and test have the same background. We run each experiment 10 times, using the same sets of images from [7] to

make the comparison fair. The Bbox70 and Bbox sets are the most affected, since the large foreground occlusions make those

models very dependent on the background.

model’s ability to generalize. To avoid that, we can (and

should) control the information fed to the network.

The cross-dataset design (training on ISIC and test-

ing on Dermoscopic Atlas) shows many of the same gen-

eral trends, with two main differences. First, the perfor-

mance, even for Traditional images with preserved back-

ground was already worse, showcasing the difficulty of

the model to generalize to this different, and challenging

dataset. Second, the performance drops on the normalized

background case were more spread between the progres-

sive steps, with Traditional images already facing a heavy

drop. The smoother drop on the other steps may come from

the imperfect, inferred segmentation masks, instead of the

ground-truth ones used on ISIC.

3.3. Artifacts annotation

For deployment in the real-world, medical tasks like pa-

tient screening or triage require not only accurate, but also

reliable models, robust to variability. However, the data

available to develop those models are often limited and

class-unbalanced, fostering the desire to exploit every sam-

ple as much as possible. Throwing away the background

— even if it results in less biases — goes against such de-

sire: there might still be cogent, legitimate information in

the skin around the lesion, providing actual context for the

diagnosis. If possible, we would like to have ways to isolate

bias without throwing away so much information.

To attempt just that, we selected 7 possible “culprit”

artifact for creating bias: dark corners (vignetting), hair,

gel borders, gel bubbles, rulers, ink markings/staining, and

patches applied to the patient skin (Fig. 2). We manually

annotated the 2, 594 images of ISIC 2018 Tasks 1 & 2, and

872 images of Dermoscopic Atlas.

However, when we attempt to correlate those annotated

artifacts to the target labels (malignant and benign), we find

that the correlations are modest. Fig. 3 shows the correla-

tion analysis, with the variables on the diagonal and Spear-

man correlations (ρ) in the lower triangle (black for posi-

tive, and red for negative correlations). The filled circles’

areas are proportional to ρ, and the dashed circles’s to the

95%-CI. If the CI contains zero, we omitted the circles. The

pictograms in the upper circle show the joint distribution of

(a) Dark Corners (b) Hair (c) Gel Border

(d) Ruler (e) Ink markings

and Gel bubbles

(f) Patches

Figure 2: The 7 possible “culprit” artifacts selected for an-

notation in our datasets.

the two variables, with the area of each small circle in the

cross proportional to the amount of samples in the dataset

in a given combination. The lack of strong individual cor-

relations suggests the possibility the models are able to ex-

tract and combine weak correlations from several sources

to arrive at a combined considerable bias — showcasing the

danger of cumulative small bias. Other possibility, which

we find more probable, is that bias in the data is an insidious

phenomenon, and that the actual “culprits” may be difficult

to find. Subtle differences in acquisition equipment or pro-

cedure, for example, may appear impossible for humans to

detect, but very easy for machines to exploit. Notice that

those two possibility are not mutually exclusive.

But can the network make sense of this information, if

we encourage it to? We have seen before, during the ISIC

2018 Challenge Task 2, that it can be very hard for net-

works to verify the presence of dermoscopic attributes, for

example, making semantic segmentation results for this task

very low (the best solution achieved ≈ 0.3 in the Jaccard

metric2). However, differently from the annotated artifacts,

dermoscopic artifacts can provide useful and correct corre-

lations to the network.

To measure the ability of neural network to learn those

2https://challenge2018.isic-archive.com/

leaderboards
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Figure 3: Correlogram of annotated artifacts and target la-

bels (benign and malign). The variables are shown on the

diagonal. Spearman correlations shown in lower triangle,

and actual data distribution shown in upper triangle (black

for positive, and red for negative correlations).

artifacts, we built binary classifiers for each one of them,

using the same model architecture and hyperparameters ex-

plained in Sec. 3.2. The results appear in Table 2, where the

high performance for all the artifacts highlight a concerning

ability of the network to correctly identify the artifacts even

on highly disturbed sets such as Bbox90, where 90% of the

pixels of the image are occluded.

Also, there is a noticeable difference between the arti-

facts distributions of ISIC and Atlas datasets. Not only At-

las does not present Gel borders nor Patches, but even

though the performances are still highly predictive, in the

cross-dataset experiment they are significantly lower. This

shows how important it is to report cross-dataset results,

and to make publicly available different and more diverse

datasets to test the robustness and quality of the solutions.

3.4. Trap sets

In this work, we have two objectives: 1) we want to un-

derstand the sources of bias, try to quantify and unravel their

connection to features and input data; 2) we want to remove

the identified bias from skin lesion datasets. The removal

of bias is a challenging problem partly because we need to

control features that are entangled inside our model, but also

because it is hard to quantitatively show the benefits of the

removal of this bias. It would not be unusual if an unbiased

network performed worse than a biased one in the same test

set. Of course, if a set of spurious correlations were ex-

ploited by the network, it is because they were helping the

loss to decrease, and to reach higher values in the metrics.

The model takes advantage of spurious correlations because

of its beneficial int the minimization problem point of view.

The problem is that it also harms generalization, which is a

lot harder to measure.

To try to tackle this problem, bias removal solutions usu-

ally resort to manipulated datasets where the bias is am-

plified enough so the networks are forced to exploit hand-

crafted high correlations between the target labels, and the

bias [19]. We followed this procedure and created a training

and test set where the correlations are amplified between our

artifacts and the malignancy of the skin lesion, at the same

time that correlations in train and test are opposite.

4. Bias Detection and Removal

In critical contexts, such as the medical one, it is very im-

portant to understand the decision path of its agents. Doc-

tors’ decisions are based on several studies, and experiences

of previous cases. For AI, it only has the experience of the

previous cases it has seen. We do not control what aspects

are more important, or provide a guideline for the algo-

rithm to follow to achieve the best performance. The pat-

terns found can be the same as used by human experts, or

they can be something completely different that only makes

sense in the high dimensions where the data are transformed

over and over.

The shocking results by Bissoto et al. [7] showed con-

volutional neural networks achieving expert-level perfor-

mance on skin lesions analysis without actually feeding the

lesion to the model. The authors placed a bounding box

on top of the lesion, covering at least 70% of the image,

and still the performance maintained. We extend the inves-

tigation of bias, trying to have a better understanding of the

classification models, while also investigating ways to cre-

ate more robust classifiers.

4.1. What features are being used by our models?

The first idea to understand the network, and make sense

of the features being extracted and used to make the pre-

dictions is to use a visualization technique. However, the

methods available in the literature failed because the archi-

tecture was complex (guided backpropagation [25]), or be-

cause the resultant saliency maps were too coarse (GRAD-

CAM [23]). Also, occlusion methods such as [16] may not

be appropriate for binary problems such as ours (benign or

malignant), where Gaussian perturbations (blur) can have

low to no effect in the network’s performance, and more ag-

gressive perturbations (such as changing the pixel value for

a solid color) can introduce some uncertainty or unknown

patterns that will confuse the network and will not highlight

the really important parts.

To overcome those challenges, we use a qualitative

method to start understanding what information can be im-

portant to the network. We extracted features for all the

images in the dataset, and ranked them with respect to



Dark Corner (%) Hair (%) Gel Border (%) Gel Bubble (%) Ruler (%) Ink (%) Patches (%)

ISIC

Traditional 95.6 94.0 93.4 85.3 98.2 97.8 98.2

Bbox90 80.7 79.3 79.6 71.3 88.1 81.4 97.9

Cross-dataset ISIC/Atlas

Traditional 86.0 87.0 - 79.5 70.3 75.7 -

Bbox90 92.7 71.4 - 63.3 62.3 50.1 -

Table 2: Results (in AUC) for separate classifiers trained to detect each of the 7 annotated artifacts. The classifiers are able

to achieve high performances even in the very disturbed image set Bbox90, and on the cross-dataset scenario.

(a) Traditional (b) Normalized Bbox (c) Bbox

Figure 4: Grid showing image similarity according to the features extracted by our classification model. The first column

of each grid is the query, and the remaining columns are ranked according to euclidean distance of the images’ features.

We selected queries carefully to show different artifacts. In sequence, dark corners, hair, gel border, ruler, ink markings and

patches. For clarity, we show the original images for all the cases, but the networks were trained and evaluated using their

respective image type (Traditional, Normalized Bbox, and Bbox).

Euclidean distance to a carefully selected query. The se-

lected queries present some suspect features that the net-

work should not take advantage of, such as dark corners,

hair, ink markings and patches (see Fig. 2). By comparing

the retrieved lowest distance images, we can identify some

of the features the network is learning (see Fig. 4).

By analyzing the grids, we see that the network trained

with traditional images is able to explore features that are

not directly related to artifacts. For example, instead of

learning the presence or absence of dark corners (1st row),

and ink markings (5th row), it learns to detect oval silhou-

ettes that can be made by dark corners, gel bubbles, ink

markings or even bigger lesions’ borders. Looking at the

overall features of the lesions shows that the network rank

images similarity based on diversified sources of correla-

tions, where each line usually contains lesions of different

sizes, placed in different positions in the image, and pre-

senting different artifacts.

The next two grids contain the ranking of images of net-

works trained with black bounding boxes on top of the le-

sions. For clarity, we display the original lesions in the

grids. Both grids share some similarities that are bound to

the bounding box training: the importance of lesion size and

positioning have increased drastically. In contrary to the

training with traditional images, there are no large lesions

among the small ones, and vice-versa. The positioning is

also important, especially for the normalized case. A clear

example is that even without seeing the patches, the network

grouped together images that contain them because they are

in the left portion of the image. The normalized images

also present diversified artifacts in most rows. Differently

from both Traditional and Bbox, we can see dark corners

and patches in the middle of the grid. The artifacts are also

much more important for the Bbox case, where dark corners

containing lesions of similar size are ranked first than other

cases. Also, the network identifies hair correctly, grouping

them, and the patches selected contain similar colors.

4.2. Bias removal

We want our models not to learn about the selected arti-

facts, once they can harm its generalization ability.

We employ Kim et al. [19] state-of-the-art method called

Learning Not To learn (LNTL) for removing bias, and apply

to our skin lesion analysis problems. The proposed frame-

work is composed of three main components:

• A feature extractor, responsible for providing useful



features to all classification heads.

• The main task classification head, responsible to make

sense of the extracted features to solve the target prob-

lem. In our case, this problem is skin lesion classifica-

tion into benign or malignant.

• The bias classification heads. Each classification head

is focused on a component responsible for injecting

spurious correlations in the data. In our case, we have

one classification head for each of the annotated ar-

tifacts: dark corners, hair, gel borders, gel bubbles,

rulers, ink markings, and patches.

The training of the solution has two phases: First, there

is a pretraining phase where only the feature extractor and

the main task classification head are trained. Both are opti-

mized to solve the task of classifying skin lesions into be-

nign or malignant. Next, we load the best weights for both

according to the validation loss, and the bias classification

heads come into action. Now, the feature extractor, main

task classifier, and bias classification heads are trained. The

feedback received by the feature extractor from the bias

classification heads is reversed (negated). Thus, the fea-

ture extractor is getting worse at extracting bias informa-

tion, while the classification heads are getting better at de-

tecting the presence of the artifacts in the extracted features.

To highlight the method of bias removal, we use trap

datasets (see Sec. 3.4) where the correlations between the

artifacts (bias) and the labels are amplified, and also are op-

posite between training and test splits.

4.3. Implementation details

We follow the guidelines from Kim et al. [19], and use a

ResNet18 network [18] as our main network. Because it is

not as deep as other architectures used for skin lesion anal-

ysis [8,22,27], we also experiment with a ResNet152 archi-

tecture, which is capable of achieving performance close to

the state-of-the-art. By sticking with ResNet architectures,

we can follow the same procedures proposed by Kim et al.,

eliminating the uncertainty that comes when adapting the

original solution for a new family of architectures.

The first two major blocks from the ResNet architecture

are used as feature extractor. The classification head for

the main task of discriminating skin lesions into benign and

malignant, is composed of the reminiscent two blocks and

a Dense layer. Each classification head responsible for pre-

dicting the presence of the annotated artifacts is composed

of a single linear layer. All classification heads, both the ar-

tifacts’ and the main task’s heads, are fed with the same ex-

tracted features. To unlearn features on the extractor, we in-

verse the gradients and multiply it by a factor of 0.3. We use

SGD with a momentum of 0.9 and weight decay as 0.0005.

For all networks, we decrease the learning rate by a factor

of 10 after 40 epochs, and use the cross entropy loss.

The pretraining phase lasts for 100 epochs, and the best

validation model is selected to go through the bias removal

phase, which also lasts for 100 epochs. We report the re-

sult achieved by the end of the 100th epoch. We use data

augmentation for all training phases: we apply random hor-

izontal and vertical flips, random resized crops that contain

from 75% to 100% of the original image, random rotations

between −45 and 45 degrees, and random hue changes be-

tween −20% to 20%. We apply the same augmentations

on both train and test. For the evaluation, we average the

predictions over 50 augmented versions of each image. We

normalize the input using the computed ImageNet’s training

set mean and standard deviation.

4.4. Results and discussion

We want our networks to be less biased toward the de-

tected artifacts. In Table 3 we present the performance of

our bias removal experiments.

First, it is noticeable the diagnosis difficulty introduced

by the trap sets. With the correlations between the arti-

facts and diagnosis amplified, the network starts relying on

this information to make predictions. Because of this, even

though the models achieve very high performances on train-

ing and validation sets, the metrics collapse in the test set.

The results also show how difficult it is for the method to

diminish the influence of bias in our solution. We use LNTL

with different architectures to attempt to remove bias in our

solution. The low performance of LNTL, which is the cur-

rent state-of-the-art for bias removal, shows how entangled

the artifacts and the diagnostic label of the lesions can be.

The highest increase in performance happened for clinical

Atlas. We think that this higher improvement for clinical

images is due to the difference in the distribution between

clinical and dermoscopic images. For a solution trained

with dermoscopic images to also present high performance

with clinical images, it requires better generalization. This

way, the debiasing of our models may be necessary when

applying automated skin lesion analysis in the real world.

The low performance of the normalized dataset using the

trap dataset is one more evidence of how hard it is to deal

with bias in the pixel dimension. Artifacts like hair, gel bub-

bles, and even rulers can be very difficult to remove from

images since these artifacts are often displayed on top of

the lesions. This way, methods that modify the background

are not enough to fully remove their influence. We think

that bias needs to be dealt with in the feature space, disen-

tangling artifacts from the diagnostic label.

4.5. Failure attempts

Since we are considering a more difficult task than the

one attempted by the LNTL authors, we also considered

some modifications. All of the listed attempts in the follow-

ing have not resulted in any improvements in our results,



Experiment Architecture Trap Test (%) Atlas Dermoscopic (%) Atlas Clinical (%)

Unchanged Inceptionv4 52.6± 1.8 78.5± 1.6 63.4± 1.1

Normalized Inceptionv4 55.8± 2.4 72.4± 1.2 −

LNTL [19] ResNet152 54.5± 3.0 78.4± 0.8 70.1± 1.1

Unchanged ResNet18 44.7± 1.5 72.2± 2.1 65.8± 1.2

Normalized ResNet18 62.4± 3.3 70.5± 1.0 −

LNTL [19] ResNet18 51.4± 1.7 76.0± 0.9 68.2± 2.4

Table 3: Result (in AUC) of the bias removal solution. We use 5 splits of data, that are kept the same through all experiments.

Also, we use augmentation on test with 50 samples for more reliable predictions.

but we think it is valid to list them so future researchers can

continue investigating this problem.

• Experiments with the larger ISIC 2019 training

dataset [14,26]. Our intuition was that more data could

enable bias classification heads and feature extractors

to distill more relevant information, which would ben-

efit the debiasing procedure. In this case, we took ad-

vantage that the individual bias classifiers described in

Sec. 3.3 achieved very high performance, and we in-

ferred the present artifacts for all the 25, 331 images.

Since most of those images also do not have their anno-

tated segmentation masks, we inferred those too with a

state-of-the-art segmentation network [10] trained with

images from the ISIC Archive [1].

• The ResNet [18] architecture can be divided into four

major blocks, each containing ResNet blocks that con-

tain multiple convolution layers each. The original ar-

chitecture implemented by the LNTL authors is the

ResNet18, which contains two ResNet blocks inside

each of the four major blocks. The deeper ResNet152

network is not “symmetric” as ResNet18, so we tried

two configurations: after the second, and after the third

major block. This way, the weight updates caused by

the bias classification heads can change more complex

concepts located at the middle and end of the network.

• Deeper classification heads, expecting that if they are

better at finding correlations at the extracted features,

they can provide more meaningful gradients to the fea-

ture extractor and change more important weights.

5. Conclusion

Our work shows how models with traditional and dis-

turbed inputs use different features in order to learn un-

wanted biases. We show that state-of-the-art methods for

bias removal are not ready to cope with those bases — at

least when facing our challenging trap sets.

To understand the features used, we verified two differ-

ent behaviors. For traditional inputs, our networks exploit

complex and diversified correlations to map the pixels to

the diagnostic. For disturbed sets, the network is still able

to make sense of spurious correlations in the data, such as

lesion position and lesion size. Despite size is a valid char-

acteristic for dermatologists when analyzing skin lesion im-

ages, there are no guidelines followed by image acquisition

that keep the sizes comparable among different cases.

Our results showed how difficult it can be to under-

stand the features used by the network, and to make it in-

terpretable. Note that interpretability can be decisive for

the adoption of automated skin lesions, or enable it to aid

doctors in difficult cases. When attempting to remove bias,

the state-of-the-art method was only able to achieve an im-

provement over the very difficult, and out of the data distri-

bution, Atlas clinical dataset.

Future works should consider more diverse images from

different sources, dermoscopic and clinical, and with dif-

ferent diagnosis. Diversity in train and, especially, test sets

will lead to more robust and reliable solutions.

We must be careful about the information we feed to our

models, since data-driven models will exploit every correla-

tion available to minimize their loss functions, without any

concern about clinical plausibility. Further studies to in-

terpret those black boxes, and control the information used

are crucial. We believe that domain adaptation and repre-

sentation learning will contribute to those developments:

working with multiple and diversified data will lead us to

deal with dataset shifts, while the ability to map our images

to a controlled space, where the features are disentangled

and known, will allow us to select unbiased domains out of

biased ones, and learn how to extract unbiased features to

compose world-class diagnostic systems.
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