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Abstract

Computer-aided skin cancer detection systems built with

deep neural networks yield overconfident predictions on

out-of-distribution examples. Motivated by the importance

of out-of-distribution detection in these systems and the lack

of relevant benchmarks targeted for skin cancer classifica-

tion, we introduce a rich collection of out-of-distribution

datasets – designed to comprehensively evaluate state-of-

the-art out-of-distribution algorithms with skin cancer clas-

sifiers. In addition, we propose an adaptation in the Gram-

Matrix algorithm for out-of-distribution detection that gen-

erally performs better and faster than the original algo-

rithm for the considered skin cancer classification task. We

also include a detailed discussion comparing the various

state-of-the-art out-of-distribution detection algorithms and

identify avenues for future research.

1. Introduction

Skin cancer is one of the most common dysplasias

around the world [5]. The number of people diagnosed

with this disorder has been increasing at a fairly constant

rate over the past decades [28, 38]. Early detection is fun-

damental to increase patient prognostics, in particular for

melanoma, the most lethal type of skin cancer [2]. Accu-

rate diagnosis is challenging and requires proper training

and experience in dermoscopy [25, 40, 41], a non-invasive

method that allows evaluation of sub-surface structures on

the skin revealing lesion details in colors and textures [1].

The high incidence rate and the lack of experts and medical

devices, specifically in rural areas [14] and emerging coun-

tries [36], have increased the demand for computer-aided

diagnosis (CAD) systems for skin cancer.

Recently, deep neural networks (DNNs) have become vi-

able for skin cancer detection [30, 7]. Haenssle et al. [19]

and Brinker et al. [6] carried out studies to show that the

performance of deep learning models is competitive com-

pared to dermatologists. Noteworthy results were also re-

ported by Steva et al. [13], Codella et al. [9], Yu et al. [44],

among others [43, 17, 31]. Collecting annotated data to

train DNNs is quite challenging. In this sense, the ISIC

archive [8, 42, 10] plays an important role in the field by

providing the largest open skin lesion dataset that is used

by most DNNs reported in the literature.

In training DNNs, one usually assumes that the train

and test sets are identically distributed [18]. However, in

real-world applications, it is hard to control the testing data

distribution [27]. Even though DNNs generalize well for

unseen in-distribution examples (examples which are sim-

ilar to the train distribution), they are found to yield over-

confident and inaccurate predictions on out of distribution

examples – examples that are drawn from a distribution

that is significantly different from the training distribution

[21]. For example, a DNN trained to classify skin cancer

may predict with high confidence an image of a dog as a

melanoma. High-confidence predictions on these out-of-

distribution examples renders the computer aided diagnos-

tics system unreliable, even though it might be able to detect

skin cancers accurately [7]. This behavior might prompt a

user of the mentioned system to disregard its prediction on

in-distribution examples as a false positive, effectively nul-

lifying the possible benefits of using this system.

Out-of-Distribution (OOD) detection methods as ap-

plied to classifiers can be broadly categorized into pre-

training and post-training approaches. While pre-training

approaches aim to train DNNs to become inherently re-

silient to out-of-distribution examples, post-training ap-

proaches aim to make DNNs resilient with the use of ad-

ditional modules. We examine post-training approaches



in this work and include a brief overview: Hendrycks

and Gimpel [21] demonstrated the challenges in identify-

ing out-of-distribution examples by using the posterior soft-

max confidence as a baseline. Improving upon the Base-

line method, Liang et al. [27] introduce ODIN (Out-of-

DIstribution detector for Neural networks), wherein they

choose to use temperature-scaled softmax value as the con-

fidence value; in addition, they found that input perturba-

tion, i.e., adding a small noise to the input in order to en-

hance the softmax confidence, further improved the results.

In order to ensure optimal performance, the authors propose

to tune the hyperparameters – the temperature and scale of

input-perturbation – on a validation dataset chosen from the

OOD dataset.

Beyond just using the output feature-space for detect-

ing out-of-distribution examples, Lee et al. [26] propose

to examine the internal feature-space in conjunction with

the predicted class for improving the detection of out-of-

distribution examples; they compute the distance of a given

example from the train distribution by considering class-

conditional Mahalanobis distances layer-wise. To deter-

mine if the example is out-of-distribution, they use a logistic

regression that is trained on a subset of in-distribution exam-

ples and target out-of-distribution examples. As in ODIN,

they observe that input perturbations further improve the

detection rate. Summarily, they require the use of valida-

tion samples from the target out-of-distribution examples

for training the logistic regression classifier and tuning the

optimal perturbation magnitude. Note that tuned hyperpa-

rameters and the trained classifier on one in-distribution and

out-of-distribution pair does not always yield the optimal

performance for another pair.

Side-stepping the dependence on validation examples

from out-of-distribution examples for training classifiers

and tuning hyperparameters, Sastry and Oore [35] pro-

pose to detect out-of-distribution examples by identifying

anomalies in the Gram Matrices—including higher-order

Gram Matrices as described in detail in Section 2.2—

computed across various layers of the network. Despite

not requiring any additional information, the proposed al-

gorithm is competitive with Mahalanobis and ODIN algo-

rithm – even when those algorithms are fine-tuned with

OOD samples.

In this work, we examine the performance of the Out-of-

Distribution Detection Algorithms with skin cancer classi-

fiers. The key contributions include1:

• A diverse collection of out-of-distribution datasets of

varying complexity, designed to holistically evaluate

out-of-distribution detection algorithms. In order to

aid future research and reproducibility, these datasets

will be made publicly available.

1Code, datasets and supplemental materials are available on: https:

//github.com/paaatcha/gram-ood

Figure 1: A sample of melanoma (left) and a dog (right).

A DenseNet, MobileNet, ResNet, and VGGNet, trained on

ISIC 2019 dataset, classify both samples as melanoma with

confidences varying from 84.4% to 99.6%.

• Using these datasets, we study out-of-distribution de-

tection in skin-cancer classification by considering:

– State-of-the-art algorithms including: ODIN

[27], Mahalanobis [26], and Gram Matrix algo-

rithms [35].

– Competitive architectures: DenseNet [22], Mo-

bileNet [34], ResNet [20], and VGGNet [39].

• By introducing an additional normalization step, we

identify a particular instantiation of the Gram-Matrix

algorithm which generally performs better and faster

than the algorithm proposed in [35].

The rest of this work is organized as follows. In sec-

tion 2, we present an extension of the method [35] to detect

OOD for skin cancer. In section 3, we carried out experi-

ments to test the method. In section 4, we present a discus-

sion about the experiments. Lastly, in section 5, we draw

some conclusions.

2. Methods

In this section, we briefly describe the out-of-distribution

detection problem and present an approach to deal with this

issue.

2.1. Out­of­distribution detection problem

The out-of-distribution (OOD) detection problem con-

sists of distinguishing instances sampled from different data

distributions. Let us consider a deep neural network (DNN)

trained on data drawn from a distribution Din, which is

known as in-distribution. A different distribution Dout that

is not employed in the model’s training phase is known as

out-distribution.

As mentioned in previous section, distinguishing Din

from Dout is particularly important for deep neural net-

work classifiers since it may assign a high confidence to

OOD samples [21, 26, 27, 35]. In Figure 1, this behavior is



Figure 2: An illustration of the full feature map Fl construc-

tion for an arbitrary layer l.

exemplified for the context of skin cancer detection. Four

well-known deep models architectures trained on ISIC 2019

dataset correctly classify a melanoma sample with confi-

dence levels varying from 91.9% to 99.1%. On the other

hand, the same group of models classifies an image of a

dog as melanoma with confidence varying from 84.4% to

99.6%. Even though dogs are significantly different from

skin lesions, the models present overconfidence in their de-

cision.

2.2. Out­of­distribution detection based on Gram
Matrix

In this section, we will first review the Gram Matrix algo-

rithm proposed by Sastry and Oore [35] and later describe a

particular instantiation of the Gram Matrix algorithm with

an additional normalization step. As outlined in the intro-

duction, the Gram Matrix algorithm was proposed to over-

come the dependence on OOD examples for tuning hyper-

parameters and/or parameters.

Notation Consider a CNN consisting of L layers (convolu-

tion or activation features) in which the representation at the

lth layer consists of K feature maps, each of size m×n. We

store the representation of the lth layer in a two-dimensional

matrix Fl, as illustrated in Figure 2. As is standard, the

in-distribution dataset is partitioned into mutually exclusive

training (Tr), validation (Va), and testing (Te) sets.

Overview The main idea of the Gram Matrix algorithm in-

volves comparing the Gram Matrix entries obtained for an

unseen example x with those observed over train data. Inter-

estingly, it is sufficient to compare the Gram Matrix entries

with the minimum and maximum values encountered over

train data. The core steps of the Gram Matrix algorithm are

described below.

Compute Gram Matrices The first step involves comput-

ing Gram Matrices – also used by Gatys et al. [16] for Im-

age Style Transfer with CNNs– across L layers of a deep

model. Extending the usual Gram matrix definition, the au-

thors define Gram Matrix of order p to captures pairwise

correlations between the feature maps of the lth layer:

G
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where 〈·, ·〉 is the scalar dot product operator. Gram Matri-

ces of higher-orders capture correlations between the more

prominent activations of the feature maps. To achieve a

stronger detection performance, the authors propose to use

all possible orders (e.g. 1 to 10) of the Gram Matrix for

detecting out-of-distribution examples. Note this is compu-

tationally expensive since it requires computing ten sets of

feature correlations for each layer.

Extract Class-conditional Bounds In this step, the class-

conditional minimum and maximum values are computed

for each G
p
l over the training dataset. In other words, for

each class c ∈ {1, · · · , C}, for each order p ∈ {1, · · · , P}
and for each layer l ∈ {1, · · · , L}, one computes the mini-

mum (λ) and maximum (Λ) values of each of the entries in

the matrix:

λ
p
cl = min [Gp

l (xc)] , (3)

Λp
cl = max [Gp

l (xc)] , (4)

where xc is a sample that the model predicted as class c.

As computing the minimum and maximum values for

each of the Gram Matrix values can add to the computa-

tional overhead, we can even consider row-wise sums of

the G
p
l instead of the entire Gram Matrix:

ĝ
p
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Empirically, the results do not change significantly by this

operation [35].

Compute Deviation Given an unseen sample x̆, this step

involves computing the sum total deviation of the Gram Ma-

trices – computed for x̆ – from the Gram Matrices observed

for train examples. We proceed by first defining the devia-

tion for a single value g given the corresponding minimum

(λ) and maximum values (Λ):

δ(λ,Λ, g) =











0 if λ ≤ g ≤ Λ
λ−g

|λ| if g < λ
g−Λ

|Λ| if g > Λ

. (6)



Assuming that the classifier assigns the class c to x̆, the

deviation of Ĝ
p
l for this sample is computed as follows:

δl(x̆c) =

K
∑

k=1

δ(λp
cl[k],Λ

p
cl[k], Ĝ

p
l (x̆c)[k]). (7)

Finally, the total deviation is computed as follows by con-

sidering Gram Matrices all layers:

∆(x̆) =
L
∑

l=1

δl(x̆c)

EVa [δl]
. (8)

where EVa [δl] is the expected deviation at layer l computed

using the validation set. Computing the normalized sum

of layer-wise deviations helps account for variations in the

scale of layerwise deviations (δl), which depends on the

number of channels in the layer (K), number of pixels per

channel (m× n) and semantic information contained in the

layer.

Detecting OOD samples A threshold (τ ) is determined ac-

cording to the jth percentile of the total deviation obtained

for samples within the test portion of Din (Te). The stan-

dard percentile value is 95% [21, 27, 26, 35]. However,

it can be changed for more or less flexibility. An unseen

sample x̆ is identified as being out-of-distribution if its re-

spective deviation value exceeds the chosen threshold τ :

isOOD(x̆) =

{

True if ∆(x̆) > τ

False if ∆(x̆) ≤ τ
. (9)

2.3. Adaptation of Gram Matrix Algorithm

In this section, we describe our adaptation of the Gram

Matrix algorithm; experimentally, we find that this adap-

tation of the Gram Matrix algorithm yields detection rates

which are generally better than the original Gram Matrix

algorithm for the considered skin cancer classification task.

The important changes are described as follows:

Additional Normalization We note that it is important to

ensure that the Ĝ
p
l across various layers have the same scale.

Hence, we propose to map all values of Ĝ
p
l to [0,1] by:

G̃
p
l =

Ĝ
p
l −min(Ĝp

l )

max(Ĝp
l )−min(Ĝp

l )
. (10)

The normalization ensures that the minimum (λ) and max-

imum (Λ) values are computed from the same interval re-

gardless the layer.

Only activation function layers As a result of the nor-

malization, instead of considering both convolutional and

activation function layers, it is possible to consider only the

latter without losing performance. This is targeted towards

improving the computational complexity since only half of

the layers are assessed.

Only Order-1 Gram Matrices As a special case with skin

cancer classifiers, we choose to only consider order-1 Gram

Matrices as using higher-order Gram Matrices does not im-

prove the robustness for this adaptation. This helps in fur-

ther improving the computational complexity. We would

like to point out that this observation is not universally valid;

for example, higher-order Gram Matrices play an important

role in achieving better results for CIFAR-10 and CIFAR-

100 [35].

In Figure 3 is shown a schematic diagram summarizing

the ∆(x̆) computation considering the three changes we de-

scribe in this section.

3. Experiments

In this section, we evaluate the effectiveness of five algo-

rithms to detect out-of-distribution samples for skin cancer

classification. We perform the Baseline [21], ODIN [27],

Mahalanobis [26], Gram-Matrix (Gram-OOD) [35], and the

adapted Gram-Matrix (Gram-OOD*), which includes the

modifications we propose in this work.

3.1. Experimental setup

Architectures and training configurations We analyze

the out-of-distribution detection in skin cancer classification

on four competitive convolutional neural networks models:

DenseNet-121 [22], MobileNet-v2 [34], ResNet-50 [20],

and VGGNet-16 [39]. All models are trained on ISIC 2019

dataset [8, 42, 10]. We split the dataset in 90% for training

and validation, and 10% for testing. All images are resized

to 224×224 using bilinear interpolation algorithm and pre-

processed using the shades of gray as a color constancy al-

gorithm [15, 3]. We also applied basic data augmentation

operations such as horizontal flips, re-scale, adjustments on

brightness, contrast, saturation, and hue. The CNNs are pre-

trained on ImageNet and fine-tuned on ISIC 2019 for 150

epochs using Adam algorithm [24] with learning rate start-

ing at 0.0001, β1 = 0.9, β2 = 0.999, and batch size equal

to 40. The learning rate is scheduled to reduce by a factor

of 0.2 if the network fails to improve the validation loss for

15 consecutive epochs. Early stopping is applied also based

on a stagnant validation loss for 15 consecutive epochs. The

performance of each CNN architecture for the test partition

is presented in terms of balanced accuracy in Table 1.

Out-of-distribution datasets In our experiments, we con-

sider the eight skin diseases in the ISIC 2019 dataset as the

in-distribution set. For out-of-distributions, beyond the un-

known label in the official ISIC test, we create a collection

of six datasets of varying complexity, designed to holisti-

cally evaluate out-of-distribution detection algorithms for



Figure 3: A schematic diagram summarizing the total deviation computation considering the modifications we propose in the

original method. First, the pairwise correlations (G̃k) between feature maps from activation function layers are computed.

After normalization, the correlations are reduced to deviations (λl) that are used to compute the total deviation (∆) to the

given sample (x̆).

Architecture Balanced accuracy

DenseNet-121 0.823

MobileNet-v2 0.812

ResNet-50 0.820

VGGNet-16 0.825

Table 1: Balanced accuracy of each CNN architecture for

ISIC 2019.

skin cancer classification. We describe all of them in the

following:

• Derm-Skin: this dataset simulates dermoscopy im-

ages of healthy skins. This is obtained by cropping

small patches from the ISIC dataset and selecting those

ones that do not contain parts of the lesion. This same

idea was used by Pacheco et al. [29] and Federico et

al. [32] at the ISIC challenge 2019. There are 1,565

images in this set.

• Clin-Skin: the same idea previously described is used

to build a dataset of clinical images of healthy skin.

This set contains 723 images collected from social net-

works.

• ImageNet: this dataset contains 3,000 images ran-

domly selected from the ImageNet [12] test partition.

• B-box: in Bissoto et al. [4], the authors corrupted the

ISIC images by covering the lesion’ silhouette with a

black bounding box. Surprisingly, they show that the

deep models still classifying such an image much bet-

ter than chance. In this context, our goal is to verify if

OOD algorithms’ can identify these corrupted images.

Thereby, we applied a U-net trained on ISIC 2017 seg-

mentation dataset [33, 11] to obtain the masks for our

test partition. Lastly, we removed the samples that the

U-Net failed to find the mask and applied the bounding

box to 2,025 skin lesions.

• B-box-70: this is the same idea as B-box; however, in

this dataset, the bounding box covers at least 70% of

the lesion. This set contains 2,454 images and works

as a baseline check. If an OOD method does not work

for this set, it cannot be used for skin cancer.

• NCT: this is a set of 1,350 histology images of human

colorectal cancer (CRC) randomly selected (150 from

each label) from NCT-CRC-HE-7K [23].

In Figure 4 is depicted one example of each OOD dataset

previously described.

Evaluation metrics We adopt three standard evaluation

metrics [21, 27, 26, 35]:

• TNR @ 95% TPR: it can be interpreted as the proba-

bility that an OOD sample is correctly identified when

the true positive rate (TPR) is as high as 95%.

• AUROC: it is the area under the ROC curve obtained

by plotting TPR and FPR against each other.

• Detection accuracy: it measures the maximum possi-

ble detection accuracy considering all possible thresh-

olds. It can be computed as maxτ{0.5Pin(∆(x) ≤
τ) + 0.5Pood(∆(x) > τ)}.

Parameters and Hyperparameters As ODIN and Maha-

lanobis require knowledge of the target Out-of-distribution

datasets to tune their parameters and/or hyperparameters,

we conduct three sets of experiments:



(a) Derm-Skin (b) Clin-Skin (c) Imagenet (d) B-box (e) B-box-70 (f) NCT

Figure 4: Samples of each out-of-distribution dataset created in this work. As we can see, Derm-Skin and Cli-Skin are closer

to the in-distribution than the remaining ones.

Model OOD
TNR @ TPR 95% AUROC Detection Acc.

Baseline / ODIN / Mahalanobis / Gram-OOD / Gram-OOD*

DenseNet-121

Derm-Skin 22.8 / 46.2 / 81.4 / 78.0 / 76.1 74.4 / 86.8 / 96.2 / 96.5 / 95.8 67.3 / 78.3 / 89.7 / 90.9 / 89.3

Clin-Skin 18.5 / 25.2 / 81.7 / 82.8 / 83.1 72.5 / 69.5 / 96.1 / 96.6 / 96.6 67.3 / 65.8 / 90.1 / 91.1 / 90.9

ImageNet 9.30 / 50.0 / 99.9 / 80.7 / 88.4 59.1 / 83.8 / 99.9 / 97.0 / 97.7 56.6 / 78.1 / 99.1 / 92.0 / 97.9

B-box 27.9 / 68.8 / 94.8 / 88.0 / 88.1 77.3 / 90.6 / 98.3 / 98.1 / 97.5 69.8 / 83.7 / 95.3 / 94.5 / 94.0

B-box-70 36.6 / 99.3 / 100. / 99.9 / 100 89.4 / 99.8 / 100. / 99.7 / 99.9 84.9 / 98.1 / 99.9 / 99.0 / 99.2

NCT 1.44 / 32.5 / 98.7 / 98.9 / 99.9 36.7 / 82.0 / 98.9 / 99.4 / 99.7 50.1 / 75.0 / 98.7 / 97.1 / 98.5

MobileNet-v2

Derm-Skin 18.8 / 40.8 / 64.2 / 66.7 / 72.8 65.1 / 79.4 / 92.6 / 94.2 / 97.0 59.8 / 71.8 / 86.1 / 87.1 / 87.9

Clin-Skin 14.2 / 27.8 / 85.5 / 77.9 / 83.8 62.9 / 78.3 / 97.6 / 95.3 / 96.4 59.6 / 71.7 / 92.6 / 89.6 / 91.0

ImageNet 12.4 / 36.6 / 99.8 / 84.3 / 92.4 61.9 / 86.8 / 99.7 / 97.2 / 98.5 58.5 / 81.8 / 98.5 / 92.1 / 94.4

B-box 6.70 / 71.9 / 96.3 / 86.9 / 98.7 56.3 / 95.3 / 99.3 / 97.3 / 98.8 56.2 / 90.0 / 95.6 / 94.4 / 97.1

B-box-70 13.4 / 92.9 / 100. / 100. / 100. 72.6 / 97.9 / 99.9 / 99.8 / 99.9 68.1 / 96.0 / 99.8 / 99.0 / 99.5

NCT 25.4 / 33.3 / 100. / 99.3 / 100 75.7 / 72.2 / 99.9 / 99.4 / 99.7 68.2 / 69.9 / 99.3 / 97.4 / 98.9

ResNet-50

Derm-Skin 14.8 / 57.9 / 81.1 / 74.8 / 73.2 72.1 / 87.2 / 96.0 / 96.1 / 94.7 66.8 / 80.2 / 89.7 / 90.1 / 87.8

Clin-Skin 8.30 / 23.6 / 73.4 / 84.7 / 86.3 62.0 / 71.4 / 95.1 / 97.2 / 97.4 59.7 / 67.0 / 88.9 / 91.2 / 91.5

ImageNet 8.50 / 49.2 / 99.9 / 86.6 / 85.8 60.1 / 83.9 / 99.9 / 97.9 / 97.6 57.6 / 77.6 / 99.2 / 92.9 / 92.3

B-box 11.7 / 34.9 / 99.6 / 88.4 / 99.3 69.7 / 74.5 / 99.8 / 97.9 / 99.3 65.1 / 69.7 / 98.0 / 94.2 / 97.5

B-box-70 8.9 / 99.2 / 100. / 100. / 100. 71.6 / 99.7 / 99.9 / 99.9 / 99.9 72.2 / 97.9 / 99.9 / 99.5 / 99.7

NCT 8.4 / 70.2 / 100. / 99.9 / 100 67.4 / 93.3 / 99.9 / 99.8 / 99.9 64.6 / 86.0 / 99.6 / 98.4 / 99.1

VGGNet-16

Derm-Skin 21.1 / 78.6 / 65.8 / 79.8 / 77.5 67.1 / 93.1 / 91.4 / 96.0 / 91.9 61.4 / 87.1 / 83.6 / 89.8 / 88.0

Clin-Skin 15.0 / 31.3 / 84.3 / 80.7 / 80.6 66.3 / 72.4 / 97.2 / 95.7 / 94.5 62.1 / 68.3 / 91.6 / 89.8 / 89.0

ImageNet 5.90 / 25.1 / 99.3 / 77.6 / 81.7 46.6 / 82.9 / 99.4 / 96.3 / 95.9 50.6 / 79.0 / 98.0 / 90.2 / 90.5

B-box 30.3 / 64.6 / 99.8 / 86.5 / 94.6 74.9 / 86.9 / 99.9 / 97.9 / 98.2 67.4 / 81.3 / 98.6 / 94.0 / 95.3

B-box-70 5.4 / 99.8 / 100. / 100. / 100. 81.7 / 99.9 / 100. / 99.9 / 99.9 83.1 / 99.2 / 99.9 / 99.7 / 99.6

NCT 10.7 / 16.6 / 99.2 / 99.7 / 100 57.4 / 72.1 / 99.2 / 99.6 / 99.8 55.5 / 69.5 / 98.9 / 97.9 / 98.7

Table 2: Performance of OOD algorithms for all combinations of CNN architecture and OOD datasets. The parameters

and/or hyperparameters of ODIN and Mahalanobis algorithms are optimized for the target out-of-distribution dataset. All

values are the average of each metric in percentage.

• Biased Evaluation: The target out-of-distribution

dataset is known beforehand. For each OOD dataset,

10% of data is randomly selected for this purpose.

• Unbiased Evaluation: This simulates a realistic sce-

nario where the target out-of-distribution dataset is not

known beforehand. The exact evaluation details are

described later.

• ISIC 2019 official test: ISIC 2019 dataset contains an

unknown label that is not present in the training set.

We assume this label as OOD samples to evaluate our

method. More details are also described later.

The hyperparameters of the algorithms are described as

follows:

• ODIN: three temperature scales [10, 100, 1000] and

11 perturbation magnitudes [0, 0.0005, 0.001, 0.0014,

0.002, 0.0024, 0.005, 0.01, 0.05, 0.1, 0.2] are consid-

ered.

• Mahalanobis: seven perturbation magnitudes [0.0,

0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005] are con-

sidered. For ResNet and DenseNet, the outputs at the

end of each Residual and Dense blocks along with the

penultimate feature vector were considered. For Mo-

bileNet and VGG-16, the outputs at all Convolution

blocks were considered.

• OOD-Gram: no hyperparameter fine-tuning was done.

Outputs at both convolution and activation layers were

used and all 10 orders of Gram Matrix ({1, · · · , 10})



were considered.

• OOD-Gram*: no hyperparameter fine-tuning was

done. Outputs at activation layers were used and only

order-1 Gram Matrix was considered.

For both Gram-OOD and Gram-OOD*, 10% of the ISIC

test data is randomly selected for computing ∆(x) accord-

ing to equation 8. For all methods, we repeat the experiment

10 times to get a reliable estimate of the performance.

3.2. Experimental results

Biased Evaluation The results under this setting are shown

in Table 2. As we may see, Baseline and ODIN present

performance significantly lower compared to Mahalanobis

and both Gram Matrix based methods. As they are based

on the confidence measure obtained from softmax, these re-

sults suggest that this approach is not effective for complex

problems such as skin cancer classification. Comparing the

Mahalanobis and the Gram Matrix approaches, we observe

competitive performances. Considering the average TNR

@ TPR95, over a total of 24 combinations of models and

OOD datasets, the Mahalanobis algorithm outperforms the

Gram Matrix methods in 11, is on pair in 6, and underper-

forms in 7. However, it is important to note that the method

achieves this performance by fine tuning the parameters for

each OOD dataset, which is not feasible in real applications.

Unbiased Evaluation As the parameters and hyperparam-

eters of the Mahalanobis algorithm were tuned separately

for each in-distribution and out-of-distribution pair, it is

not easy to estimate the detection rates on unseen out-of-

distribution datasets; therefore, in order to estimate the de-

tection rate on OOD samples from an unseen distribution,

we conduct an unbiased evaluation of the Mahalanobis al-

gorithm following Shafaei et al. [37]. Specifically, we de-

termine the detection rate on a given (in-distribution, out-

of-distribution) pair by computing a mean over the detec-

tion rates yielded by detectors, whose parameters and hy-

perparameters are fine-tuned on other out-of-distribution

datasets; for example, the detection rate on ISIC-2019 vs

Derm-Skin is obtained by computing a mean over detection

rates yielded by five detectors, each individually optimized

for Clin-Skin, ImageNet, B-box, B-box-70, and NCT. The

results are presented in Table 3. Although, the Mahalanobis

algorithm is able to perform very well when optimized for

the target out-of-distribution examples, the unbiased detec-

tor does not yield consistent detection rates across all out-

of-distribution datasets. On the other hand, we find that the

Gram Matrix algorithm and its proposed adaptation is gen-

erally more robust. In this scenario, the Mahalanobis algo-

rithm outperforms the Gram Matrix methods in 1, is on pair

in 2, and underperforms in 21, which is significantly worse

than the performance presented in the previous scenario.

Model OOD
TNR @ TPR 95%

Mahalanobis

(Unbiased)
OOD-Gram OOD-Gram*

DenseNet-121

Derm-Skin 45.7 78.0 76.1

Clin-Skin 68.6 82.8 83.1

ImageNet 92.0 80.7 88.4

B-box 92.0 88.0 88.1

B-box-70 100. 99.9 100.

NCT 91.6 98.9 99.9

MobileNet-v2

Derm-Skin 32.4 66.7 72.8

Clin-Skin 79.8 77.9 83.8

ImageNet 85.8 84.3 92.4

B-box 88.4 86.9 98.7

B-box-70 98.4 100. 100.

NCT 84.7 99.3 100.

ResNet-50

Derm-Skin 36.9 74.8 73.2

Clin-Skin 65.9 84.7 86.3

ImageNet 95.7 86.6 85.8

B-box 97.6 88.4 99.3

B-box-70 100. 100. 100.

NCT 96.9 99.9 100.

VGGNet-16

Derm-Skin 31.7 79.8 77.5

Clin-Skin 66.3 80.7 80.6

ImageNet 72.8 77.6 81.7

B-box 85.9 86.5 94.6

B-box-70 93.1 100 100

NCT 85.2 99.7 100.

AVG 78.6 87.6 90.1

STD 21.3 9.9 9.8

Table 3: Comparing the performance of the unbiased Ma-

halanobis algorithm with the Gram Matrix approaches. All

values are the average of TNR @ TPR 95% in percentage.

ISIC 2019 official test ISIC 2019 official test set [8, 42, 10]

consists of out-of-distribution examples in addition to the

in-distribution examples and the classification task requires

the participants to correctly identify the out-of-distribution

examples. As the ground truth for this test set is not pub-

licly available, we evaluate the algorithms using the ISIC

live challenge platform2. We evaluate Mahalanobis, Gram-

OOD, and Gram-OOD* algorithms following the unbiased

evaluation method – in evaluating the Mahalanobis algo-

rithm, we computed the OOD scores as the average of the

predictions yielded by logistic classifiers constructed for

each (in-distribution,OOD) pair. In Table 4, the perfor-

mance is reported in terms of AUC, average precision, and

accuracy. As we observe, the Gram-OOD based methods

present higher performance than Mahalanobis for all met-

rics. Without using external data or hyperparameter tuning,

Gram-OOD* achieves AUC ranging from 69.3% to 70.2%.

This is competitive with the other submitted methods on the

platform that do use external data to train the OOD detector.

Gram-OOD vs Gram-ODD* From Tables 2 and 3, we

observe that the Gram-ODD* – the proposed adaptation

method – performs better than the original one. Considering

the average TNR @ TPR95 metric, over the 24 combina-

2https://challenge2019.isic-archive.com/



Model
AUC Average Precision

Mahalanobis / Gram-OOD / Gram-OOD*

DenseNet-121 52.3 / 67.3 / 69.3 20.1 / 28.9 / 31.1

MobileNet-v2 52.9 / 68.7 / 69.5 20.2 / 31.4 / 32.6

ResNet-50 56.1 / 70.4 / 70.2 21.6 / 33.2 / 33.7

VGGNet-16 54.1 / 66.9 / 69.5 20.9 / 30.2 / 32.6

Table 4: Comparing the performance of the unbiased Ma-

halanobis and the Gram-OOD based methods for the ISIC

2019 unknown label detection.

tions, the Gram-ODD* algorithm outperforms Gram-ODD

in 16, is on pair in 3, and underperforms in 5. In addition,

the average metric (AVG) is 2.5% higher than the original

method. Similar observations can be made for Table 4.

4. Discussion

Now that we have concluded that Gram Matrix-based al-

gorithms yield better detection rates without knowledge of

the target out-of-distribution dataset, we will now present an

analysis of the original Gram-Matrix method and describe

avenues to improve upon. In our analysis of the Gram Ma-

trix algorithm, we identify the following:

• Better Ensemble Method: Sastry et al. [35] propose

to build an ensemble of detectors, each constructed

with a single order of Gram Matrix, by just summing

across the deviations yielded by each of the detec-

tors. Our analysis shows that this kind of ensembling,

while simple, does not yield the best possible detec-

tion rate for Gram-OOD method – as shown in Figure

5. In order to achieve better detection rates, it is im-

portant to identify a novel ensembling method which

can take into account the information contained in all

the higher-order Gram Matrices and yield a detection

rate that is at least as good as the best detector in the

ensemble.

• Better Normalizing Method: In our experience, nor-

malization plays a key role in combining deviations

across layers and higher-order Gram Matrices. By in-

troducing a new normalization step for normalizing

scales across various layers, we improve upon [35].

A good normalizing scheme can yield significant im-

provements in detection rates and should be explored.

Our experiments demonstrate that higher-order Gram

Matrices have useful information for identifying out-of-

distribution samples. Promising future research might be

to train models that can implicitly detect out-of-distribution

samples by taking into account the information contained

in the various orders of gram matrices; this can effectively

side-step hand-engineering the OODness metric.

Figure 5: An ensemble of all powers yields lower detection

rate than the best possible detection rate. This experiment

was conducted with VGG-16. Similar observations hold for

the other networks investigated in this work.

5. Conclusion

In this work, we examine state-of-the-art out-of-

distribution algorithms applied to skin cancer classification

and create a collection of out-of-distribution datasets de-

signed to evaluate the OOD algorithms. By including an

additional normalization into the Gram-OOD algorithm, we

found a particular instantiation of the original method that

generally performs better and faster. The experiments show

that the Mahalanobis and the Gram Matrix based methods

have competitive performances. However, the Mahalanobis

strongly depends on OOD samples to finetune its param-

eters, while the Gram Matrix does not require access to

them. To conclude, the proposed adaptation of the Gram

Matrix method performed better than the original approach

for most of OOD datasets introduced in this work and for

ISIC 2019 unknown label detection. Nonetheless, it de-

mands more investigation in different classification prob-

lems other than skin cancer.
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