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Abstract

We propose to systematically identify potentially prob-

lematic patterns in skin disease classification models via

quantitative analysis of agreement between saliency maps

and human-labeled regions of interest. We further compute

summary statistics describing patterns in this agreement for

various stratifications of input examples. Through this anal-

ysis, we discover candidate spurious associations learned

by the classifier and suggest next steps to handle such asso-

ciations. Our approach can be used as a debugging tool to

systematically spot difficult examples and error categories.

Insights from this analysis could guide targeted data collec-

tion and improve model generalizability.

1. Introduction

A growing body of work [4,5,10,15,35,38] investigates

the use of deep learning to classify skin conditions from

medical images. Historically, the machine learning com-

munity has developed models that achieve high classifica-

tion accuracy on a test set, ostensibly drawn from the same

distribution that the model is trained on. However, in prac-

tice, the data that the model is trained on frequently differs

from the data on which the model is deployed [19]. Patient

populations between different sites vary in demographics

and disease presentation, and these characteristics shift in

time. Further, datasets are frequently sourced from a few

sites with specific image acquisition procedures that may

not generalize to other sites [34].

For this reason, beyond optimizing performance on a

pre-defined test set, it is useful to understand how a model

makes predictions. First, this offers intuition to practition-
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ers as to when the model will fail. Such intuition allows

further model improvement by targeting data collection to-

wards difficult out-of-distribution samples or by optimiz-

ing model architectures or losses to mitigate such failures.

Moreover, when deploying the model, one could use model

explanations to “gate” the use of the machine learning sys-

tem. For example, when the model makes a prediction for

an inappropriate reason, the system could refer patients to

clinicians instead of presenting the prediction.

Several model explanation methods have been intro-

duced in the literature to analyze how convolutional neural

networks (CNNs) use input features to make predictions.

We focus on saliency maps, a class of model explanations

which highlight pixels in an input image that the network

deems important. Saliency maps provide no information

about how pixels are used to arrive at a classification, so

appropriate image regions being highlighted does not prove

that the network used the right logic for that input. How-

ever, a saliency map that highlights regions that differ from

human intuition indicates either: (1) the model learned an

inappropriate strategy for classifying the image, (2) human

intuition regarding relative importance of features for clas-

sification is misguided, or (3) the saliency map was gener-

ated with an inappropriate technique. Given a saliency map

generated via an appropriate method, qualitative examina-

tion makes it easy to identify when either (1) or (2) are oc-

curring. However, it is difficult to extend this technique to

large datasets as one has to sift through and visually assess

many images to catch inputs of interest.

In this work, we propose that, in addition to assessing

model classification accuracy, model explanations should

be systematically evaluated to efficiently identify potential

spurious correlations learned by the model. To that end, we

quantitatively evaluate model-human explanation agree-

ment, the extent to which saliency maps agree with human-

labeled regions of interest in images. We use two metrics
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that can be easily applied to input examples and aggregated

across arbitrary stratifications of large datasets, making it

easy to both spot individually troublesome input examples

and analyze broad trends in network performance. This

strategy can be applied to saliency maps generated via any

technique, and thus is broadly applicable even as methods

for generating accurate saliency maps continue to improve.

We demonstrate our approach on a model trained to

make diagnoses on the dataset of dermatology images

in [15]. In particular, we answer three questions:

1. On which input examples is model-human expla-

nation agreement lowest? For many cases with low

model-human explanation agreement, the model ex-

planations frequently focus on lips, hair, and finger-

nails unrelated to the skin pathology present in the im-

age, as confirmed by a board-certified dermatologist.

This finding holds for both correctly and incorrectly

classified input images.

2. How does model-human explanation agreement

vary across different skin condition classes? Model-

human explanation agreement is lowest for different

conditions when considering incorrectly classified and

correctly classified images. Model-human explanation

agreement is low for incorrectly-classified seborrheic

keratosis and melanoma images and for correctly-

classified androgenetic alopecia and acne images.

3. How does model-human explanation agreement

vary across different demographic groups? Model-

human explanation agreement is consistent across age

and skin tone, but varies with sex.

These results suggest that further development of the

model in question may involve exposure to a larger, more

varied set of images that include normal anatomy such as

fingernails and lips or design of loss terms to account for

them, in order to encourage the model to learn from image

regions directly related to the disease being studied. This

is particularly true for seborrheic keratosis and melanoma,

two conditions where we found the current model to suffer

the most in this regard.

Though we perform this analysis on a specific dermatol-

ogy dataset, the techniques described in this paper are gen-

eral and could be applied to any CNN in order to identify

spurious correlations learned by the model.

2. Background

2.1. Dermatology Disease Classification Techniques

There has been significant prior work on detecting skin

conditions from images. Several groups [4, 35] developed

skin lesion classification and segmentation algorithms for

dermoscopic images. Recently, interest has increased in au-

tomated skin lesion classification from photographs taken

by consumer grade cameras [1, 18, 21]. These photographs

are easier to acquire by non-specialists and are used for a

wider range of dermatology conditions, but also typically

exhibit greater variability in composition.

In [10], the authors developed a CNN to distinguish can-

cerous and benign lesions from clinical photographs. [38]

developed a skin disease recognition system designed to

mimic a dermatologist’s decision-making process to diag-

nose roughly 200 different skin lesions. [15] uses a deep

network trained on a much larger and more diverse set of

clinical skin photographs to diagnose 26 common skin con-

ditions referred to a teledermatology service. [15] improves

on previous models by incorporating a variable number of

images and additional clinical metadata about each case,

providing a differential diagnosis instead of a single classi-

fication, and demonstrating comparable performance to der-

matologists. For those reasons, this paper analyzes model-

human explanation agreement for the model in [15].

2.2. Dermatology Dataset Diversity and Fairness

In [15], significant variation exists in the composition of

the photographs that the model was trained and evaluated

on. Besides the skin pathology, the image content often

contains background objects including furniture, clothing

and accessories, as well as body parts with no skin pathol-

ogy. Further, dermatology images may contain skin mark-

ings and scale references, which have been shown to signif-

icantly increase the false positive rate on a melanoma detec-

tion task [17, 36]. Thus, it is important to characterize the

impact of these photograph attributes on model behavior.

In addition to diversity in photo composition, the pa-

tient cohort used in [15] included images from patients of

varying age, biological sex, and skin tone, which often ex-

hibit different visual appearance and prevalence of derma-

tology conditions. Previous work [3] has demonstrated dis-

parities in model performance across sex and skin tone on

a facial recognition task, while [14] found no measurable

correlation between model performance and skin tone val-

ues on skin disease classification tasks. The model in [15]

showed slight variations on model accuracy across these de-

mographic characteristics. To the best of our knowledge,

however, there has been no previous analysis of how agree-

ment in classification explanations by humans and models

vary within such a diverse patient cohort.

Figure 1 shows sample images demonstrating the vari-

ability in image content, skin tone, and patient age.

2.3. Saliency Maps and Integrated Gradients

What constitutes a useful model explanation is a topic of

significant debate [9,11,13]. One subset of these techniques

explain how a model processes particular inputs [23,25,26,



Figure 1: Sample images in the dataset. Some images are

masked to omit sensitive information; the model had access

to the full image, including this information.

30,31,39]. Other techniques describe what each component

of a neural network does [2,16,24,40]. Yet another set alters

the network to explicitly include an interpretability compo-

nent or to generate explanations [12,20,37]. Our work uses

saliency maps, a model explanation technique from the first

of these subsets. A saliency map assigns a score to each

input pixel specifying how ‘important’ it was for the model

performing the task.

In this paper, we use Integrated Gradients [31] to gener-

ate saliency maps. In this technique, a baseline image x′ is

specified. For each input x, the gradient of the model out-

put score function F is computed at each of m images on

the line segment between x′ and x. The average gradient

is scaled by the difference in pixel intensity to produce an

importance score for each pixel i in the image:

IGi(x) = (xi − x′

i
)
1

m

m∑

k=1

∂F (x′ + k

m
(x− x′))

∂xi

We chose Integrated Gradients because this technique satis-

fies the properties of sensitivity and implementation invari-

ance [31], unlike other explanation techniques mentioned

above. Internal experiments on a single-image classification

model on the dataset from [15] showed minimal differences

between saliency maps generated via Integrated Gradients

and GradCAM [23], suggesting that our conclusions are not

highly sensitive to the saliency map generation method.

We combine Integrated Gradients with the Smooth-

Grad [27] technique, in which saliency maps are averaged

over noisy versions of each input.

2.4. Quantitative Explanation Evaluation

Previous work on quantitative evaluation of model expla-

nations has focused on the quality of the model explanation

as a representation of the inner workings of the model. [2]

quantifies how well the activations of neurons segment

human-labeled concepts within an image. This allows fine-

grained understanding of individual neurons within the net-

work, but it is challenging to transfer this approach to new

models because a large number of explicit concept-labels

must be hand-crafted and collected for new datasets. Al-

ternatively, [22] proposed a perturbation-based approach

that removes pixels with the highest attributions and exam-

ines the effect on the network’s classification score. Relat-

edly, [6] proposed to crop input images to bounding boxes

containing all salient regions and determine whether the

network is still able to classify appropriately. This class

of metrics quantifies whether saliency maps accurately rep-

resent the image pixels used to make network predictions,

but does not measure whether such pixels agree with human

intuition behind the decision-making process.

[17] takes an important step toward this goal by quanti-

tatively comparing saliency maps with segmentations of an

explicitly specified potential source of bias (ink markings

on skin images). However, this requires pre-existing knowl-

edge of image components that might bias the model. In-

stead, we quantitatively compare saliency maps with human

segmentations of regions that we expect should be used for

model learning. This allows us to identify potential sources

of bias without hypothesizing a priori that might exist.

3. Methods

3.1. Image Dataset

We used the dataset in [15], comprised of 19,870 adult

patient dermatology cases submitted to a teledermatology

company from 2010 to 2018. Each case comprised 1-6

clinical images taken by medical assistants, along with 45

metadata fields specifying the patient’s demographic infor-

mation, medical history, and symptoms. All data were de-

identified according to HIPAA Safe Harbor prior to transfer

to study authors. The protocol was reviewed by Advarra

IRB (Columbia, MD), which determined that it was exempt

from further review under 45 CFR 46.

The reference standard skin condition for each case was

based on aggregated opinions of multiple dermatologists

from a panel of U.S. and Indian board-certified dermatol-

ogists. When reviewing the images and additional med-

ical information associated with a case, each dermatolo-

gist independently generated a differential diagnosis, com-

prised of a set of diagnosis codes and their respective confi-

dence. Diagnosis codes were drawn from the Systematized

Nomenclature of Medicine-Clinical Terms (SNOMED-CT)

or entered as free-text if no appropriate SNOMED term was

found. These diagnosis codes were manually mapped to a

short list of 419 conditions of the appropriate granularity by

three U.S. board-certified dermatologists. Ultimately, the

26 most prevalent conditions on this list were chosen, along

with an ‘Other’ category assigned to the remaining condi-

tions. Cases that contained multiple conditions or that were

deemed not diagnosable were removed from the dataset.

Cases collected between 2010 and 2017 were designated

as the development set to train and optimize the model

(16,114 cases), whereas cases collected afterwards were

used as the test set to conduct all evaluations (3,756 cases).



No patients were present in both the development and test

set. More details about the construction of the dermatology

dataset are available in [15].

3.2. Classification Model

We used the network from [15] to predict condition la-

bels from the images and metadata associated with each in-

put case. Up to 6 input images per case were fed as input

to a neural network with the Inception-v4 [33] architecture.

The pre-logit layers of each of these sub-networks were av-

eraged and concatenated with a one-hot vector encoding of

the case metadata; this final representation was fed to a soft-

max layer outputting a vector of classification scores for

each of the 27 classes (26 conditions + ‘Other’ category).

The weights of each Inception-v4-like arm of the net-

work architecture were initialized to weights used for classi-

fication of the ImageNet dataset [7]. Then, network weights

were optimized using stochastic gradient descent on the

training cases, augmented by random cropping, rotation,

flipping, and color perturbation to each image. Training

proceeded for 100,000 steps with a batch size of 8.

The ensemble version of the model was shown to per-

form comparably with dermatologists and superior to pri-

mary care physicians and nurse practitioners on a test sub-

set, with top-1 accuracy of 66%, 63%, 44%, and 40% re-

spectively. Additional details about the model architecture,

training, and evaluation procedure are available in [15].

3.3. Pathology ROI Label Collection

We collected at least one ‘region-of-interest’ (ROI) la-

bel for 1907 images from 1309 cases in the test set, sam-

pled randomly from the distribution of conditions present

in that dataset. For each image, three dermatologist-

trained graders specified polygon-shaped regions contain-

ing pathology as binary masks; pixels with pathology were

assigned to 1, and all other pixels were assigned to 0.

Graders first indicated whether a skin condition was visi-

ble within each image. For images with clearly-visible skin

conditions, graders then labeled polygonal ROIs on each

image. Some images were ambiguous to segment into a

single ROI; for example, rash-like conditions often present

as diffuse markings dispersed across large sections or sev-

eral patches across the image. Graders determined whether

there were fewer than five distinct pathology ROIs in the

image. If so, graders individually outlined each ROI. If

more than five ROIs were present in the image, graders in-

dicated this and did not provide an ROI for the image. All

subsequent analysis was done only on images for which all

ROIs were labeled. For each image, ROI labels of differ-

ent graders were combined by pixelwise majority vote to

produce a consensus ROI label.

We collected consensus ROI labels from three graders

out of a pool of 50 graders for each image in the evalu-

Figure 2: Distribution of Fleiss kappa scores indicating

inter-rater agreement of ROI labels. Dark blue vertical lines

represent individual datapoints within each histogram bin.

ation set. The Fleiss kappa value, which measures inter-

rater agreement, was 0.65±0.27 across the dataset; its dis-

tribution is shown in Figure 2. Images with Fleiss kappa

below 0.4 were discarded, resulting in a filtered dataset of

1526 images from 1083 cases, with an average Fleiss kappa

value of 0.76±0.16. This dataset is henceforth referred to

as the ‘saliency evaluation dataset’. A diagram demonstrat-

ing how ROIs were generated and used to compute model-

human explanation agreement is shown in Figure 3.

3.4. Saliency Map Generation

For each image in the saliency evaluation dataset, we

used Integrated Gradients, described in Section 2.3, to gen-

erate saliency maps. Each saliency map was generated us-

ing SmoothGrad [27] on a 50-step path between a black

baseline and input image. The final saliency map was nor-

malized to range from -1 to 1. All saliency maps generated

are visualized using the techniques described in [32].

3.5. Quantifying Explanation Agreement

We used two metrics to quantify model-human explana-

tion agreement on each image: a thresholded Dice score

and Spearman’s rank correlation coefficient. We then used

case-level agreement metrics to compute dataset summary

statistics as in Sections 4.2 and 4.3. In particular, we com-

puted these statistics on only the image with the highest DS

and SRCC across the case, in order to avoid overweighting

cases with multiple images and to understand the model’s

behavior on the most informative images.

The thresholded Dice score (DS) was determined by

computing the Dice score [8,28] between a thresholded ver-

sion of the continuous valued Integrated Gradients scores

and the binary grader-based ROI labels. Choosing an appro-

priate threshold is non-trivial; the salient regions of differ-

ent images vary in size and relative intensity. We chose the



Figure 3: Process for generating explanation agreement

metrics. ROIs are labeled by 3 dermatology-trained graders.

Majority consensus selects the final ROI that is compared to

both the raw saliency map and a binary version of this map.

threshold for each image to be the multiple of 0.01 between

0 and 1 that maximizes the computed Dice score for that

particular image; since we follow this procedure for every

image, relative rankings between examples remain valid.

We used Spearman’s rank correlation coefficient [29]

(SRCC) as a complementary metric that does not depend

on the choice of a threshold and explicitly characterizes the

relative rankings of attributions in the saliency map. SRCC

is determined by computing the Pearson correlation coef-

ficient between the ranks of the continuous valued scores

produced by integrated gradients for each pixel and the cor-

responding pixel-wise binary human-graded ROI labels.

The pixelwise nature of the saliency maps yields metrics

that are lower than the values in the segmentation literature,

even when the generated saliency maps and the human-

labeled regions of interest qualitatively agree. To provide

context for what different agreement scores mean qualita-

tively, Figure 4 shows sample images, saliency maps, and

human labeled ROIs, for different values of the two met-

rics.

Figure 4: Images with varying thresholded Dice scores

and Spearman’s rank correlations. Each row shows an

example with the original image (I), image overlaid with

ROIs (I+ROI), image overlaid with ROIs and saliency

map (I+ROI+SM), and saliency map overlaid with ROIs

(ROI+SM). The Dice score metric ranges from 0 to 1, but

the maximum value seen in our dataset was approximately

0.5. Some images are masked to omit sensitive information.

4. Experiments & Results

4.1. On which input examples is model­human ex­
planation agreement lowest?

We ranked all images by DS and SRCC and qualitatively

examined images with the best and worst model-human

explanation agreement amongst correctly- and incorrectly-

classified examples. Figure 5 shows example images for

which the DS and SRCC fall within either the top 10%

or the bottom 10% of the dataset; these consist of both

correctly and incorrectly-classified images. To further un-

derstand low model-human agreement cases, we collected

body part labels for images within the bottom 10% of the

dataset. Trained human graders were instructed to label all

body parts present in each image. The representation of

various body parts present in the images within the bottom

10% of the dataset is shown in Figure 6.

4.2. How does model­human explanation agreement
vary across different skin conditions?

We analyzed the DS and SRCC across cases stratified by

disease type. We further stratified this comparison by pre-



Figure 5: Examples with lowest (left) and highest (right) model-human explanation agreement between the model saliency

map (SM) and human-labelled ROI, as measured by both thresholded Dice score and Spearman’s rank correlation. Examples

are further divided as correctly (top) or incorrectly (bottom) classified. Some images are masked to omit sensitive information.

Figure 6: The fraction of examples containing a particular

body part in the bottom 10% of the dataset in terms of both

Dice score and Spearman’s rank correlation. A large pro-

portion of images with facial features (oral cavity, lip, and

chin) had low model-human explanation agreement.

diction accuracy. Figure 7 shows these results for conditions

with at least 5 cases containing ROI-labeled images.

Figure 7 also shows example images, ROIs, and saliency

maps from the bottom-three conditions in terms of both DS

and SRCC. Amongst images from correctly classified cases,

those with androgenetic alopecia and acne demonstrated

notably lower mean Dice scores compared to other condi-

tions. Amongst images from incorrectly classified cases,

melanoma and seborrheic keratosis demonstrated notably

lower mean Dice scores compared to other conditions.

4.3. How does model­human explanation agreement
vary across different demographic groups?

We performed statistical analysis to compare case-level

model-human explanation agreement for sex, skin tone, and

age, each in terms of DS and SRCC. For these six analyses,

we used a Bonferroni-adjusted α = 0.05/6 = 0.0083. The

results in Figure 8 indicate a significant difference in model-

human explanation agreement based on sex (Two-sample

t-test | DS: t=-3.67, p<0.001; SRCC: t=-3.36, p<0.001),

but not based on skin tone (1-way ANOVA | DS: f=0.42,

p=0.83; SRCC: f=2.66, p=0.02) or age (Pearson correlation

| DS: ρ=0.10, p<0.001; SRCC: ρ=0.04, p=0.16).

5. Discussion

The left column of Figure 5 suggests that images with

certain body parts (e.g., lips, hair, and fingernails) demon-

strate the starkest differences between saliency maps and

human-labeled ROIs. This finding is further verified via the



Figure 7: Model-human explanation agreement by skin

condition classes. The scatterplot compares thresholded

Dice scores and Spearman’s rank correlation examples of

correctly (green) and incorrectly (red) classified cases. Di-

amonds denote conditions amongst the bottom-3 lowest in

terms of both DS and SRCC; sample images, ROIs, and

saliency maps for these conditions are shown below. Some

images are masked to omit sensitive information.

body part distribution for low agreement cases in Figure 6

(note that this figure plots all present body parts in an image,

not just the ones highlighted by its corresponding saliency

map). The model attends more strongly to this “normal

anatomy” even when clear skin pathology is present in a

spatially distinct location. After examining the example im-

ages, a board-certified dermatologist confirmed the conclu-

sion that this anatomy is inappropriate as primary criteria

to determine skin conditions for those cases. Though our

analysis does not determine what causes specific model pre-

dictions, the repeated presence of these elements in images

with low model-human explanation agreement suggests that

the model might associate these features with certain condi-

tions, instead of focusing on the pathology of interest itself.

In contrast, the right column of Figure 5 shows cases

where the model correctly focused on pathology. This accu-

rate saliency localization makes intuitive sense for correctly

classified examples. However, for incorrectly classified ex-

amples, the model focuses on the correct spatial locations

but may be misinterpreting the texture. Model explanations

beyond saliency maps are needed to understand this issue.

Figure 8: Model-human explanation agreement by demo-

graphic groups. From top to bottom, the plots represent the

thresholded Dice score (left) and Spearman’s rank correla-

tion coefficient (right) for different sexes, skin tones, and

ages respectively. In all bar plots, error bars indicate a 95%

bootstrap confidence interval.



When stratified by model prediction accuracy, androge-

netic alopecia and acne images have lower mean human-

model explanation than other conditions, a finding con-

sistent with the qualitative observation that the model fre-

quently misattends to hair and lips in images. The andro-

genetic alopecia finding indicates that either: (1) the model

correctly uses hair as context with which to compare hair

loss that occurs in androgenetic alopecia, or (2) the model

has learned that images that have hair in them are more

likely to be androgenetic alopecia, regardless of the spe-

cific hair loss pattern. Though we cannot definitively accept

either of these hypotheses, qualitative analysis of the exam-

ples shows that the model attends to regions where the hair

is present and not where the hair is absent, which is incon-

sistent with the first hypothesis. Similarly, many of the acne

images in our dataset show acne on the face. This, com-

bined with the attention paid by the model to the patient’s

lips instead of the affected lesion, suggest that the model

might have learned to associate facial features with acne.

Understanding why certain conditions exhibit particu-

larly low human-model explanation agreement on incor-

rectly classified exmamples is more difficult. Though sam-

ple images from these classes confirm the qualitative ob-

servation that the model occasionally attends to fingernails

(and other “normal anatomy” image features) instead of

relevant lesions, there is no intuitive connection between

these characteristics and the corresponding disease cate-

gories (melanoma and seborrheic keratosis). These are both

conditions with low representation in the training dataset

(0.6% and 4.4%, respectively); one hypothesis is that, with-

out enough training examples to construct a representation

of the underlying pathology, the model instead focuses on

auxiliary image components. If so, training with additional

melanoma and seborrheic keratosis images could improve

both the model-human explanation agreement and the accu-

racy on these conditions. Alternatively, these results suggest

that incorporating an object-detection or pre-processing al-

gorithm to identify or remove these components of images

could encourage the model to generalize better.

Finally, stratification by demographic groups confirmed

that skin tone and age do not significantly affect human-

model explanation agreement, even though these character-

istics affect the visual appearance of skin and hair. On the

other hand, stratification by sex did yield a slight, statis-

tically significant difference in human-model explanation

agreement. This might be due to the difference in natural

distributions of conditions with varying levels of agreement.

In all of our experiments, we observed similar trends in

the thresholded Dice score and Spearman’s rank correlation.

While these metrics differ in specific examples as shown in

Figure 4, the summary statistics across different data strati-

fications demonstrate similar trends for both metrics.

One concern about our method is that collected ROIs

represent only pathological regions, and that it is reason-

able for the model to attend to other image context (e.g.

to understand skin tone, compare to normal skin character-

istics, etc.). We address this issue via adaptive threshold-

ing of the Dice score. In particular, while we might expect

the model to attend to external context, it seems unlikely

that these “non-pathology ROIs” should be more important

than pathology ROIs. We pick a threshold on the saliency

map to produce a ‘saliency segmentation’ that maximizes

the Dice score with the labeled pathology ROI. If the model

is behaving correctly, we expect there to exist a threshold at

which the saliency segmentation includes pathology ROIs

but not non-pathology ROIs, yielding a high Dice score.

Thus, even if the model does use non-pathology ROIs, if

it selects the correct the pathology ROIs, we would expect

a high Dice score. By a similar argument, we would expect

a high Spearman’s rank correlation, since that metric is ex-

plicitly based on pixel rankings; even if the model uses both

non-pathology and pathology ROIs, we would expect the

pathology ROIs to rank higher. However, the assumption

that pathology ROIs should be more important than non-

pathology ROIs might not hold. Future work to address this

would increase the robustness of our technique.

Another potential concern is that our method is sensi-

tive to the underlying saliency map generation technique.

However, our strategy is applicable to maps generated via

any technique. Thus, the high-level method in this paper is

applicable even as saliency map generation techniques con-

tinue to improve. Further, this high-level method could be

applied to maps generated via a suite of techniques and used

to identify persistent trends.

6. Conclusion

We conducted a quantitative assessment of the agree-

ment between model-based saliency maps and human-

labeled regions-of-interest in a skin condition classifica-

tion task from consumer-grade camera images. We also

computed statistics that summarize trends in this agreement

for different skin conditions and demographics. We found

that several examples for which model-human explanation

agreement were lowest were cases in which the model iden-

tified normal anatomy (e.g. lips, hair, and fingernails with-

out pathology) as important for diagnosing disease, par-

ticularly for correctly-classified androgenetic alopecia and

acne examples and for incorrectly-classified melanoma and

seborrheic keratosis examples. Further, we found signifi-

cant differences in model-human explanation agreement be-

tween different sexes, but not between groups of different

age or skin tone. These findings suggest future data collec-

tion and model development strategies that could improve

network performance and generalizability.
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