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Abstract

We describe an efficient method to accurately estimate the

effectiveness of a previously trained deep learning model for

use in a new learning task. We use this method, “Predict To

Learn” (P2L), to predict the most likely “source” dataset to

produce effective transfer for training on a “target” dataset.

We validate our approach extensively across 21 tasks, in-

cluding image classification tasks and semantic relationship

prediction tasks in the linguistic domain. The P2L approach

selects the best transfer learning model on 62% of the tasks,

compared with a baseline of 48% of cases when using a

heuristic of selecting the largest source dataset and 52% of

cases when using a distance measure between source and

target datasets. Further, our work results in an 8% reduction

in error rate. Finally, we also show that a model trained from

merging multiple source model datasets does not necessar-

ily result in improved transfer learning. This suggests that

performance of the target model depends upon the relative

composition of the source dataset as well as their absolute

scale, as measured by our novel method we term ‘P2L’.

1. Introduction

In deep learning, large number of examples often help

capture a robust representation of the unknown input distri-

bution [19] since small data sets may not sufficiently sample

the input space. However, in practice, small training jobs

are common and labeled data is scarce in many domains.

In a survey of industry visual recognition tasks, the users

submitted on average 250 images comprising 5 labels per

task (see Section 4.3.3).

Our goal is not cross-task transfer. Our aim is to devise

a practical and effective guideline for domain adaptation,

for intra-task (such as image classification, or relationship

prediction) cross-domain transfer, such as transfer from a

classification model trained on a subset of ImageNet to a

classification model for some unknown image classes related

to a problem like industrial defect detection. A motivation is

to optimize training of models in a cloud-based vision API.

Inductive transfer learning methods [26, 36] have been

identified as a possible solution to this problem. These meth-

ods use knowledge acquired in a “source” task to enhance

the learning of a new “target” task. However, these methods

commonly assume that there is a “best” transfer model, typ-

ically the model trained with the largest data set [28]. Yet

this assumption stands in tension with results showing that

while a well chosen source can improve performance signifi-

cantly, a poorly chosen source results in worse performance

than random initialization [26, 29]. An open challenge re-

mains: for fine-tuning of neural nets, on how to predict the

effectiveness of transfer prior to training.

In this work, we describe a method for identifying good

transfer models prior to training, that we then validate for

commonly used ML tasks in both visual and linguistic do-

mains. A cloud based API which trains deep models for

users, for example, must be prepared to train accurate mod-

els from widely varied target tasks automatically, while min-

imizing training time (and computational resources) and

maximizing accuracy. Precluding exhaustive search at target

task training time, P2L requires only a single forward pass

of the target data set through a single reference model to

identify, via a predictive algorithm, the most likely candidate

for fine-tuning.

In brief, beginning with a single reference model (for

images, VGG16 trained on ImageNet1K, and for semantic

relations PCNN), we first generate feature vectors for each

source dataset. We then use these models to characterize

the similarity between source domain features and the target

domain’s features. Combining this similarity measure with a

non-linear measure of source domain size results in a mea-

sure that reflects the source most likely to provide a useful

embedding, independent of the larger reference model.



2. Related Work

Transfer learning literature explores a vast number of

diverse strategies such as ensemble learning, co-training,

model selection, collaborative filtering, few-shot learning

[6] [32], domain adaptation [27], weight synthesis [33],

and multi-task learning [18] [23] [34] and combinations

thereof. Researchers have also investigated practical consid-

erations for domain transfer with limited or incomplete anno-

tations [21] and often suggesting novel learning architectures

and optimization objectives effective for such scenarios.

Representation transfer: Representation transfer (RT)

learning approaches share a common intuition that compact

representations learned from a “source” task can be reused

to improve performance on a related “target” task. Instance-

based approaches attempt to identify appropriate data used

in the source task to supplement target task training, feature-

representation approaches attempt to leverage source task

weight matrices, and parameter-transfer approaches involve

re-using the architecture or hyper-parameters of the source

network [9, 26]. These approaches, often supplemented

by related small-data techniques such as bootstrapping, can

yield improvements in performance (e.g., [4]).

Meta-learning [20] is another approach for representation

transfer. While meta-learning typically deals with training a

base model on a variety of different learning tasks, transfer

learning is about learning from multiple related learning

tasks [12]. Efficiency of transfer learning depends on the

right source data selection, whereas meta-learning models

could suffer from ’negative transfer [26] of knowledge if

source and target domains are unrelated.

One approach to RT transfer learning is to leverage exist-

ing deep nets trained on other large dataset(s), for example

VGG16 [28] for images classification or PCNN [40] for rela-

tion prediction. The trained weights in these networks have

captured a representation of the input that can be transferred

by fine-tuning the weights or retraining the final dense layer

of the network on the new task. Most DNN-based RT works

assume there is only one source model, usually trained from

ImageNet, whereas P2L considers the problem of transfer

learning when multiple source models are available.

The Learning to Transfer [37] framework learns a reflec-

tion function that transforms feature vector representations to

be more effectively classified using a kNN-based approach.

Although it uses a model trained on ImageNet to produce the

initial feature vectors, it is not a parameter-transfer method,

since the selected model is not fine-tuned on the target do-

mains. Our experience is that it is difficult to curate a large

number (tens) of prior experiences to adopt this approach in

practice.

Fine-tuning variations: Our approach is most similar to

that of selective joint fine-tuning [13]. The selective fine-

tuning methods typically begin by using low-level features

to identify images within a source dataset having similar

low-level "textures" to a target dataset. Selective joint fine-

tuning concludes by using a multi-task objective to fine-tune

the target task using these images. A related approach has

been used to enhance performance and reduce training time

in document classification [10] and to identify examples to

supplement training data [13, 38]. Our goal is to extend

this approach to high-level features, and to domains out-

side computer vision, in order to construct a more complete

map of the feature space of a trained network. In this as-

pect our work has some parallels with “learning to transfer”

approaches [35], but it attempts to train a source model opti-

mized for transfer, rather than for target accuracy.

While some recent studies in limited domains have re-

lated efficacy of this approach to a similarity between target

and source datasets [38], and to the diversity [30] of the

examples, few have explored the nature of performance im-

provement across multiple modalities and across multiple

domains in realistic and real world settings. Another recent

work [11] uses similarity as a metric for selecting a combi-

nation of source models which can be subsequently used for

automatically labelling wild data samples, in order to fine-

tune source models for a target task. However, it is unclear

how these methods perform beyond the few datasets used in

their empirical work.

Other Approaches: When transferring information cap-

tured by previous task-learning for a new task, it is important

to take into account the nature of both tasks. One promis-

ing approach involves use of recommender systems (e.g.,

task2vec [2]) which identify models with similar latent-space

representations of labeled data. In multi-task visual learning,

a model learned to estimate the similarity space of various

visual tasks is used to estimate the degree to which models

trained to perform these tasks might contribute to transfer

[39]. Our work aims, in part, to combine the low compute

cost of the former estimation technique with the enhanced

performance of the latter transfer technique, by learning a

novel method for selection among previously trained source

models.

3. Methods

3.1. Embedding Divergence

Our goal is to make an optimal choice among pre-

trained network weights learned for a target task ti ∈ T =
(t1, ..., tN ) from source tasks sj ∈ S = (s1, ..., sM ). Given

a target task and dataset ti, a model M(ti, sj) is generated by

first training on the source task and dataset sj , and then this

information is transferred to ti through mechanisms such as

fine-tuning. For each pair (ti, sj), performance improvement

by transfer in each scenario can be measured by:

I(ti, sj) = P (M(ti, sj))− P (M(ti, φ)) (1)

where P (·) is some defined performance evaluation



(such as accuracy), φ represents the null source task and

dataset (that is, the model M(ti, φ) uses randomly initial-

ized weights), and I(ti, sj) is the measured performance

improvement. Determining the optimal sj for ti would then

be achieved by optimizing I(ti, sj).
However, since exhaustively training every possible

model for ti is computationally expensive, we build a re-

liable estimator for I(·, ·), whose optimum could be used

instead to quickly choose the optimal sj . Based on extensive

experimentation, we propose this estimator, E(·, ·), which

we term the “embedding divergence”, as:

E(ti, sj) = z(log(|sj |)) + k · z(D(ti, sj)) (2)

where |sj | is the size of the source dataset sj , D(·, ·)
is a computed “distance” between the target and the source

datasets, and k is a learned parameter. The standard z-scaling

function, defined as z(x) = (x− µ)/σ is not strictly neces-

sary, but it makes it easier to compare and to display inter-

mediate results.

The equation reflects the empirical observation that a

larger source dataset tends to generate a more improved

target model, and that this improvement tends to grow with

size–but only logarithmically [15]. Importantly, the equation

also reflects the empirical observation that size alone is an

insufficient estimator, and that dissimilarity between the

datasets tends to be a negative factor that works against size.

As shown in Figure 4, for 9 target datasets over 8 sources

((Sv, Tv) in section 4), we found that the performance of the

target task is strongly correlated with both the similarity of

the target dataset with the source, as well as the size of the

source dataset itself.

We describe our choice of D(·, ·) based on two factors.

First, we represent each dataset by a single, summarizing

feature vector, F (·). For example, in our experiments with la-

beled images, F (ti) is computed from a convolutional neural

network, by extracting for each image the vector produced

at a specific layer of the network, and then summarizing the

entire dataset by a statistical technique, such as a mean or a

trimmed mean. Just as easily, F (ti) could be computed by

another method, such as a future type of reference network,

as long as it can represent the entire dataset.

Second, the chosen dissimilarity function D(ti, sj) must

be shown to meaningfully compare the two vectors, be-

ing small for “near” datasets, and yet be meaningful for

high-dimensional vectors. Candidates for D(·, ·) would in-

clude Kullback-Leibler or Jensen-Shannon divergence, or

Chi-square distance, or a Minkowski metric with p = 1
(cityblock distance) or p = 2 (Euclidean distance).

Once we have selected a choice of D(·, ·), the value of k
can be tuned based on the performance of the approximation

function E(·, ·) in comparison to the ground truth improve-

ment function I(·). The value of k is learned by first training

E(·, ·) on a collection of target and source datasets, and then

Figure 1: Relationship of correlation metric (Spearman ρ)

with the balancing parameter k and various similarity met-

rics (KL=KL Divergence, JSD=Jensen Shannon Distance,

CHI2=χ2 distance, and EUC=Euclidean distance) studied.

evaluating the quality of the estimation on a held-out set of

target and source datasets.

Because the exact numeric values of the estimate E(·, ·)
are not directly comparable with the measures of improve-

ment in I(·), “quality” is defined as how similarly E(·, ·)
ranks the order of the datasets sj , compared to the ground

truth ranking given by I(·). There are a number of ways

to define rank order similarity, many of them based on the

non-parametric correlation method of Spearman ρ. We note,

however, that it is not necessary to evaluate how well E(·, ·)
orders the entire collection S of possible source datasets sj ;

usually we are only interested in how similarly E(·, ·) orders

some topmost T datasets.

In practice, we have found empirically that (1) the second-

last layer of a deep learning network gives good represen-

tative vectors for images, (2) averaging these vectors gives

a good summary for a dataset, (3) that the choice of dis-

tance function is not critical–although KL-divergence and

cityblock work well, and (4) that the results are not overly

sensitive to the exact choice of k (see Figure 1). The optimal

choice of T for measuring the quality of top-T ranking may

depend on the statistical properties of the collection S, but it

appears to be best if T is small.

This work takes an engineering approach to proposing an

approximation function E(ti, sj). However, this framework

is extensible to future work, which may explicitly learn other

compact representations of the datasets, other inexpensive

dissimilarity functions, and more sophisticated non-linear

ways of modeling the observed interaction of size and dis-

tance.

3.2. Implementation Details for Images

As described in Figure 2, we use as a reference model

the VGG16 model pre-trained on ImageNet1K. For F (·), we

first extract the response of the penultimate full connection

layer, a 4096-dimensional vector. In a learning task with k
images, we extract k such vectors vi, compute their mean, vµ,



Figure 2: Deep Learning Pipeline for Images.
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Figure 3: Deep Learning Pipeline for Relation Prediction.

and then L1-normalize this mean, giving vµ as the summary

feature vector for this task. For D(·, ·), we compute one

of several possible distance measures, smoothing any zero

components by adding an appropriate ǫ value.

3.3. Implementation Details for Semantic Relations

The task of relation prediction provides a second bench-

mark for source domain selection. In this task, a seman-

tic relations base is extended with information extracted

from text. We use the CC-DBP [14] dataset: the text of

Common Crawl1 and the semantic relations schema and

training data from DBpedia [3]. DBpedia is a knowl-

edge graph extracted from the infoboxes from Wikipedia.

An example edge in the DBpedia knowledge graph is

〈LARRY MCCRAY genre BLUES〉, meaning Larry McCray

is a blues musician. This relationship is expressed through

the DBpedia genre relation, a sub-relation of the high level

relation isClassifiedBy. The relation prediction task is to

predict the relations, if any, between two nodes in the knowl-

edge graph from the entire set of textual evidence, rather than

from each sentence separately as in mention-level relation

extraction.

Figure 3 shows the relation prediction neural architecture.

The feature representations are taken from the penultimate

layer, the max-pooled network-in-network. All models have

the same architecture and hyperparameters.

1http://commoncrawl.org

4. Experimental Results and Analysis

4.1. Experimental Approach: Images

For evaluating P2L we used Caltech-UCSD Birds

(CUBS) [8], Stanford Cars (Cars) [17], Sketches [22],

Wikiart [31] and Oxford Flowers (Oxford) [24] and 9

datasets from the Visual Decathlon Challenge [1]: Aircraft,

CIFAR100, Daimler Pedestrian Classification (Daimler), De-

scribable Textures (DTD), German Traffic Sign (GTSRB),

Omniglot, Street View House Number (SVHN), UCF101,

VGG-Flowers. These 14 datasets, representing fine grained

classification tasks, serve as targets (Tv) for our evaluation.

For source datasets (Sv), we used Places1 [5], Ima-

geNet1K [25] and 15 subsets from ImageNet22K [16]. Im-

ageNet22K contains 21,841 categories spread across hier-

archical categories such as person, animal, fungus etc. We

extracted some of the major hierarchies from ImageNet22K

(Fig 5) to form multiple source image sets for our evalu-

ation. A total of ∼9 million images were used. Some of

the domains like animal, plant, person, and food contained

substantially more images (and labels) than others categories

such as weapon, tool, or sport . This skew is reflective of

real world situations, and provides a natural test bed when

comparing training sets of different sizes. This is visible in

Fig 5

Each of these ImageNet22K domains was then split into

four equal partitions. The first was used to train the source

model, and the second was used to validate the source model.

One-tenth of the third partition was used to create a transfer

learning target and the fourth partition was used to validate it.

For example, the person hierarchy has more than one million

images. This was split into four equal partitions of more

than 250K each. The source model was trained with data

of that size, whereas the target model was fine-tuned with

one-tenth of that data size taken from one of the partitions.

These smaller target datasets are reflective of real transfer

learning tasks. We thus generated 15 source training datasets

and 15 possible target training datasets from ImageNet22K.

The 15 source datasets were used, along with Places1 and

ImageNet1K, as source datasets for transfer learning.

To tune k in our approximation function E(·, ·) ( Equa-

tion 2), as well as to determine which dissimilarity measure

to use, 9 of the target training tasks generated from Ima-

geNet22K were used as a training group, (St, Tt). These

consisted of furniture, food, person, nature, music, fruit,

fabric, tool, and building. The k value thus generated was

used for evaluation on the workloads in the 14 target tasks

(referred to above as Tv), as well as 7 tasks for Semantic

Relations.

The training of the source and target models was done

using Caffe using a ResNet-27 model. The source models

were trained using SGD as in [7] for 900,000 iterations with

a step size of 300,000 iterations and an initial learning rate



Figure 4: Relationship of performance of the target model to size of the source dataset (X-axis) and its similarity with source

dataset (Y -axis) for 9 targets over 8 sources. Both the similarity with the target and the size of the source dataset correlate with

the performance of the target model. Color and size of each bubble reflect the performance of the target model.

of 0.01. The target models were trained with an identical

network architecture, but with a training method with one-

tenth of both iterations and step size. A fixed random seed

was used throughout all training.

4.2. Experimental Approach: Semantic Relations

We split the task of relation prediction into seven subtasks

composed of the high-level relations with the most positive

examples in the CC-DBP; other relations were discarded.

This was intended to mirror the partitions of ImageNet by

high-level classes. The seven source domains (Sv) are shown

in Figure 5. A model is trained for each of these domains on

the full training data for the relevant relation types.

Our approach to transfer learning was the same as in

images: a deep neural network trained on the source domain

was fine-tuned on the target domain. Fine-tuning involves

re-initializing and re-sizing the final layer, since different

domains have different numbers of relations. The final layer

is updated at the full learn rate α, while the previous layers

are updated at f · α, with f < 1. We used a fine-tune

multiplier of f = 0.1.

A new, small training set is built for each target task. For

each split of CC-DBP, we take 20 positive examples for each

relation from the full training set. (If the total examples

is fewer than 20, we take all the training examples.) We

then sample ten times as many negatives (i.e., unrelated

pairs of entities). These form the target training sets (Tv).

The model trained from the full training data of each of the

different subtasks is then fine-tuned on the target domain.

We measure the area under the precision-recall (PR) curve

for each trained model. We also measure the area under the

PR curve for a model trained without transfer learning.

4.3. Results

When training a model, we compare our P2L method

against five baseline methods of initializing training weights:

1. Source model trained on largest dataset (B1) like in [15]

2. Source model trained on ImageNet1K (B2) for images.

3. Randomly chosen source model from set of models (B3).

4. No transfer learning: weights initialized randomly (B4).

5. Source model trained on least divergent dataset (B5)

We have used this to compare P2L across two domains: Im-

ages (Section 4.3.1) and Semantic Relations (Section 4.3.2).

In summary, as shown in Table 1 across 21 tasks in the

above two contexts, P2L was able to deliver an average

accuracy of 67.22% compared to 64.47% and 64.86%for the

baseline method of picking the largest dataset (B1) and most

convergent (B5). Additionally, P2L was able to pick a better

model in 13 out of 21 tasks. In three tasks where it did not

pick the best, the prediction scores between its pick and the

winner were very close. The Spearman correlation between

the ground truth and the predictions over all the possible

source datasets was strong for images (0.707) as shown in

Table 2 and semantic relations (0.763) as shown in Fig 6.

Tables 3 and 4 show the relative increase in final perfor-

mance for our proposed method in comparison to each of



Figure 5: Log10(Size) of sources Tv

these three methods, across images and relations. In the case

of images, we present a comparison against ImageNet1K

also in Table 3, since ImageNet1K is often used as a source

dataset for transfer learning.

Additionally in Figure 7, we see that P2L is able to pick

the best source model for the 21 tasks in maximum of 3

picks from the basket of source models. In contrast, the

largest dataset method (B1) would take 6 picks and the most

convergent (B5) would take 5 picks.

The latency of a prediction is low. For a dataset like

DTD it was 65 seconds on a K40 GPU end to end. In

contrast, a training run on DTD takes 43200 secs on the

GPU. The prediction latency is largely a function of the

number of images in the target dataset. Processing speed for

a prediction over 17 source datasets was 30 images/second.

4.3.1 Validation on Image space

We tested distance measures based on Kullback-Leibler Di-

vergence (KLD), Jensen-Shannon Divergence (JSD), Chi-

square (CHI2), and Euclidean distance (ED). For each train-

ing task in (St, Tt), we calculated the rank-correlation (Spear-

man ρ) between the predictions of each of these measures,

and the ground-truth transfer performance based on Top-1

classification accuracy. This is shown in Figure1

This parameter selection of k is essentially offline, and

only needs to be done once. The same value of k is used for

images as well as semantic relations.

4.3.2 Validation on Common Crawl - DBpedia

Figure 6A shows the correlation of the prediction E(ti, sj)
with the improvement I(ti, sj), when using KLD in addition

to sizes of the source domains’ training set in E(·, ·). Fig-

ure 6B shows the same when only size is used. Using the

estimator produced better predictions, that is, E(ti, sj) and

I(ti, sj) were then better correlated (Spearman ρ = .763).

Additionally the overall accuracy obtained using P2L at

71.79% was higher than the overall accuracy obtained using

just size at 70.6%.

Table 2: Spearman ρ for predictions vs ground truth for

transfer learning on images using P2L

Target Spearman Target Spearman

Dataset ρ Dataset ρ

CUBS 0.821 Sketches 0.843

VGG-Flowers 0.630 Daimler 0.652

UCF101 0.777 Omniglot 0.525

Oxford 0.718 GTSRB 0.520

Aircraft 0.608 SVHN 0.603

DTD 0.951 Wikiart 0.8407

Cars 0.64951 CIFAR100 0.730

Figure 6: Transfer learning improvement for semantic rela-

tions. A: Predicted by KLD and size in CC-DBP. B: Pre-

dicted by size only in CC-DBP.

Figure 7: Number of attempts needed to get to best result for

all 21 datasets across image and semantic relations

4.3.3 Comparing Against Merged Source Datasets

To help put these results in context, we have investigated

how well a merged dataset of various source domains could

do in comparison to its individual components. While it may

seem that a single merged dataset would perform as well

or better than individual sources, in reality we have noticed



Table 1: Summary of Results

Domain Mean Top-1 Accuracy Mean Spearman Correlation

P2L Largest Least P2L Largest Least

(ours) Dataset Divergent (ours) Dataset Divergent

Images (14 tasks) 65.57 61.40 64.11 0.703 0.685 0.532

Semantic Relations (7 tasks) 71.79 70.6 66.36 0.763 0.714 0.037

Average over 21 tasks 67.22 64.47 64.86 0.723 0.695 0.367

Table 3: Gain Summary for Images. P2L= Accuracy using our method; B1 = Accuracy when largest source training dataset

St was used; B2 = Accuracy when training from ImageNet1K pretrained weights; B3 = Avg accuracy of randomly picked

source dataset St; B4 = Accuracy achieved when training from random weights M(ti, φ); B5= Least Divergent D(ti,Sj)

Target Dataset P2L Picked Largest Training Least ImageNet1K Random Dataset No Transfer

ti Best Dataset Divergent Selection Selection Learning

Dataset ? (P2L-B1)/B1 (P2L-B5)/B5 (P2L-B2)/B2 (P2L-B3)/B3 (P2L-B4)/B4

CUBS Yes 1.00 0.00 0.28 1.69 4.28

VGG-Flowers Yes 0.57 0.00 0.21 0.82 2.13

UCF101 Yes 0.00 0.00 0.08 0.47 1.77

Oxford Yes 0.19 0.00 0.08 0.58 1.30

Aircraft Yes 0.00 0.00 0.01 0.67 0.55

Sketches Yes 0.08 0.17 0.00 0.17 7.26

Daimler Yes 0.00 0.00 0.00 0.00 0.01

Omniglot Yes 0.00 0.00 0.00 0.07 0.27

GTSRB Yes 0.00 0.00 0.00 0.00 0.01

SVHN No -0.01 0.00 0.00 0.02 0.02

DTD No 0.00 0.60 -0.03 0.55 2.25

Wikiart No 0.00 -0.04 -0.04 0.79 1.31

Cars No 0.00 0.00 -0.04 0.52 2.56

CIFAR100 No 0.00 -0.06 -0.06 0.30 4.20

results to the contrary.

We built a combined dataset of ImageNet22K and Places2

into one large dataset (referred to as LC) and trained a

ResNet27 model with it. We then took 71 training datasets

submitted by users to a custom learning cloud API, and per-

formed transfer learning experiments from models trained

on LC and ImageNet1K. Given that ImageNet1K is a subset

of ImageNet22K, it is a subset of LC too. The transfer ex-

periments were done using 8 different learning rate regimes.

For our experiments, we randomly split each set of images

with labels into 80% for fine-tuning and 20% for validation.

For these 71 training sets, we had a total of approximately

18,000 images: an average of 204 training images and 50

held-out validation images each. There were 5.2 classes per

classifier on average, with 2 to 60 classes per classifier.

As seen in Figure 8, the large dataset LC did not always

win. For training datasets which were closer in divergence

to ImageNet1K, the model trained on it was a better base for

transfer learning overall. As the task data diverged more and

Figure 8: Accuracy: ImageNet1K vs. Combined dataset

more from ImageNet1K, LC won more and more. In Fig-

ure 8, the x-axis denotes the divergence of the task data from

ImageNet1K and the y-axis denotes the number of times

either LC or ImageNet1K was winner over the 8 learning

rate regimes which were tried for each task. Thus the y-axis



Table 4: Gain Summary for Semantic Relations

Target Dataset P2L Picked Largest Training Random Dataset No Transfer

ti Best Dataset? Dataset Selection Learning

(L2T-B1)/B1 (P2L-B3)/B3 (P2L-B4)/B4

hasPart Yes 0.15 0.13 0.40

copartWith Yes 0.00 0.14 0.34

sameSettingAs Yes 0.00 0.17 0.30

hasLocation Yes 0.00 0.09 0.14

hasMember No 0.00 0.07 0.14

hasRole No 0.00 0.01 0.13

isClassifiedBy No -0.01 0.08 0.08

values range from 8, denoting when the combined dataset

won for all the learning rates tried, to -8, denoting when

ImageNet1K won.

The likely reason is that, although merging datasets cer-

tainly increases size, the merged data is also more diverse

and tends to have higher divergence. This empirical result

further supports our observations that when considering an

individual source dataset, or a merged dataset, or an aug-

mented source dataset, one needs to carefully consider both

indicators of the final performance: the size of the effective

source dataset, and its divergence with the target dataset.

5. Future Work

The current P2L approach estimates transfer performance

at the level of large conceptual categories (e.g.,"animal", or

"location"). However, large labeled data sets, such as those

used in ImageNet1K, contain deep hierarchies (e.g., animal

→ mammal → cat → cheetah) that may help to characterize

finer resolution maps of the feature space. Identifying crucial

sub-features can assist further in selecting more specific

source categories, and in developing more efficient source

models and transfer techniques.

We currently use only one modality in isolation for de-

termining which source model to use. However, there is

significant other information like accompanying test or au-

dio besides the visual (or the semantic relations) which could

additionally aid in determining a good source model. For

example, blight is a crop disease and crops are more likely

to occur in a plant dataset than any other dataset. If one can

determine such links from external datasets, they could help

choose the best source. Additionally, extracted tags, or other

kinds of semantic information extracted from a knowledge

graph, can be expected to yield substantial improvements.

Our current P2L method is focused on a single vector char-

acterization of the relationship of source and target datasets

(i.e., similarity). We plan to extend our study to explore

a more complex model, both of the representation of the

datasets, as well as oc more enriched relationships. For ex-

ample, dispersion statistics of the datasets may be provide

further insights into predicting efficacy of the transfer.

6. Conclusions

We described an efficient method for fine-tuning a can-

didate from a family of pretrained models, applicable to

both the image and semantic relations. We conducted an

empirical test of the method using models trained on specific

conceptual categories across images and semantic relations,

demonstrating improved transfer learning results, outper-

forming baselines such as picking the model trained with

the largest data set, or a distance measure between source

and target or using a common industry standard model like

ImageNet1K. These findings suggest that a learned repre-

sentation from previous tasks can be used to select the best

transfer candidate in order to get greater transfer learning.

Despite order of magnitude differences in training set

sizes, we were able to obtain transfer gains by computing an

estimate of conceptual closeness. Although prior work has

described a saturating curve for training set size contributions

to accuracy [19]–a curve which we also observed in our data–

we showed that feature similarity provided transfer benefits

not predicted by dataset size alone.

Our method is efficient at training and classification time,

and has been shown to improve accuracy versus the baseline,

both on publicly available image and semantic relations

datasets. These results help to explain the tension in the

literature between results showing that larger datasets usually

outperform smaller, [28], but that ill-selected transfer models

can nonetheless degrade performance [29].

Our results suggest that rather than there being a single

“best” transfer model, transfer performance critically depends

upon the similarity between the source and target models

besides the size. Further, methods such as P2L can map

the degree of overlap between disparate tasks to select more

optimal models. Exploring these “maps” of feature space

similarities could be a valuable future direction for deep

learning research.
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