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Abstract

Deep learning solutions are vulnerable to adversarial

perturbations and can lead a “frog” image to be misclas-

sified as a “deer” or random pattern into “guitar”. Ad-

versarial attack generation algorithms generally utilize the

knowledge of database and CNN model to craft the noise. In

this research, we present a novel scheme termed as Camera

Inspired Perturbations to generate adversarial noise. The

proposed approach relies on the noise embedded in the im-

age due to environmental factors or camera noise incorpo-

rated. We extract these noise patterns using image filter-

ing algorithms and incorporate them into images to gen-

erate adversarial images. Unlike most of the existing al-

gorithms that require learning of noise, the proposed ad-

versarial noise can be applied in real-time. It is model-

agnostic and can be utilized to fool multiple deep learning

classifiers on various databases. The effectiveness of the

proposed approach is evaluated on five different databases

with five different convolutional neural networks such as

ResNet-50, VGG-16, and VGG-Face. The proposed attack

reduces the classification accuracy of every network, for in-

stance, the performance of VGG-16 on the Tiny ImageNet

database is reduced by more than 33%. The robustness of

the proposed adversarial noise is also evaluated against dif-

ferent adversarial defense algorithms.

1. Introduction

The vulnerability of convolutional neural networks

(CNNs) against adversarial attacks raises several issues re-

garding the reliability of these networks. Some of the pos-

sible reasons for adversarial vulnerability are: (i) sharing

of the spatial structure in input pixel domain between the

weights of convolutional layer and (ii) high bias of the CNN

models towards texture and shape of the input [12, 13]. A

small modification in the input space might alter the spa-

tial structure of the CNN filters which in turn gets escalated

deeper in the networks. Goswami et al. [18,19] have shown

the filter responses of CNN models and observed that some

neurons are sensitive towards hand-crafted adversaries such

as random lines.

To attack a model, most of the existing attack genera-

tion algorithms (including gradient and optimization based

attacks [17, 48]) require information about the Deep Neural

Network (DNN) model in consideration, such as the param-

eters and gradient or logit layer information. Firstly, this

information is difficult to achieve and secondly, this leads

the adversaries to be specific to the models. Therefore, ex-

tending these attacks to multiple models is computationally

expensive.

Inspired by these findings and the sensitivity of neu-

ral network models towards input pixels, this research pro-

poses a novel method of generating the adversarial exam-

ples. In this research, we pose the question whether the

knowledge of only the input image can be used to create ad-

versaries. Image filtering operations such as Laplace and

wavelet transform are useful in extracting the texture/shape

related information such as edges and object structure. We

utilize these operations to obtain the noise from the image

itself for adversarial example generation. The proposed ad-

versarial generation algorithm is a real-world attack algo-

rithm where no knowledge of classifier is required to fool

it. Figure 1 summarizes the difference in the concept of the

proposed adversarial attack algorithm with most of the ex-

isting algorithms.

1.1. Related Work

Existing adversarial noise generation algorithms can be

broadly grouped into two categories: (i) unique perturba-

tion and (ii) generalized perturbation. Unique image per-

turbations are the ones where, for each image, a noise vec-

tor is learned to fool a CNN classifier. On the other hand,

a generalized perturbation is a single noise vector that can

be used on multiple images to fool the classifier. Szegedy

et al. [48] proposed the first unique perturbation algorithm,

where the authors generated the imperceptible noise using

L-BFGS technique. Since then, several researches have pro-

posed various unique perturbation algorithms such as Fast



Figure 1: Comparing the proposed DNN agnostic adversarial algorithm and existing adversarial approaches. The proposed algorithm does

not require DNN model training for generating the adversary and same adversary can be used to fool multiple DNN models. First part

(i.e., before images) shows the generation of adversarial noise from DNNs and second part (i.e., after images) shows the fooling of DNN

models after noise manipulation.

Gradient Sign Method (FGSM) [17] and iterative method

of FGSM [25]. Biggio et al. [6] proposed gradient based

test time evasion attack. Papernot et al. [34] presented ad-

versarial attack by modifying the most salient pixels in the

image. Su et al. [47] have demonstrated that alteration of a

single pixel can also fool the deep classification models into

making wrong classification with high confidence. Carlini

and Wagner [7] presented three different kinds of attacks

with the minimization of l0, l∞, and l2 norm of the loss

function. Similar to this, Chen et al. [8] estimated the gra-

dient from the targeted model for crafting an adversarial at-

tack. Zhao et al. [55] proposed the optimization of zeroth

order norm without leveraging the gradient of the network.

Sharif et el. [44] proposed the adversarial generative net-

works to craft the noise. The computation of above men-

tioned adversarial attacks is based on a different norm of the

loss function and is image specific. Mopuri et al. [33] and

Moosavi-Dezfooli et al. [31] proposed a generalized pertur-

bation vector to fool deep classifiers on any image based

on a particular distribution. The model works for different

images of a database but it is not database agnostic.

Other than the above-discussed attacks, Sabour et al. [42]

have presented modifications in the internal layers of DNN

as a potential adversary. The aim is to make the internal

representation of adversarial images similar to the origi-

nal images. Apart from these attacks, multiple adversar-

ial defense algorithms are also presented in the literature

[3, 14–16, 39, 46, 53].

1.2. Research Contributions

The proposed adversarial attack algorithm generates im-

age specific noise pattern that is agnostic to DNN models

and image database characteristics. In other words, the pro-

posed algorithm is independent of the knowledge of the

classification model being attacked and can generate mul-

tiple noise patterns for a single image of ‘any’ database in

real-time. The key contributions of this research are:

1. a novel class of real-time adversarial generation al-

Original Noise Adversarial Original Noise Adversarial

Frog Deer Bird Cat

Horse Airplane Ship Automobile

Figure 2: Adversarial images with their corresponding noise gen-

erated from the images using the proposed CiPer-S algorithm.

Class labels of original and adversarial images are mentioned at

the bottom of the respective images. The images are misclassified

with atleast 85% confidence.

gorithm termed as CiPer (camera inspired perturba-

tion) is proposed which is based on the inherent noise

present during data acquisition. Figure 2 shows the

original, noise, and adversarial examples created us-

ing the proposed algorithm on the CIFAR-10 database

[24].

2. The proposed algorithm is generic in two aspects - it

is database-agnostic and model-agnostic. The gener-

alizability of CiPer is demonstrated on four databases

including Tiny ImageNet1, CIFAR-10 and CIFAR100,

and five CNN models including ResNet-50 [22], VGG-

16 [45] and VGG-Face [36].

3. The resiliency of CiPer is demonstrated against mul-

tiple state-of-the-art (SOTA) adversarial defense ap-

proaches: (i) adversarial training [25, 49], (ii) wavelet

denoising based on Bayes thresholding, (iii) Bilateral

filtering [38], (iv) Total Variance Minimization [41]

[20], and (v) Defense GAN [43].

1https://tiny-imagenet.herokuapp.com/
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Figure 3: Illustrating the potential sources of adversarial noise that may be present in an image due to environment and sensor imperfections.

2. CiPer: Proposed Adversarial Attack

As shown in Figure 3, while capturing the image of a

scene/object from a digital camera, it passes through a lens,

a blurring filter, and a color filter array before being cap-

tured on an imaging sensor. The digital version of the

scene/object is then processed through color interpolation,

gamma correction, color correction, and white balance ad-

justment. Finally, the digital image is stored in the camera

memory. This entire process introduces inevitably hidden

noise/imperfections in images. These imperfections might

be due to environmental noise or camera noise. Even if the

image is captured in perfect conditions, there can be mul-

tiple sources of camera noise such as the photonic noise

and sensor noise. Photonic noise is a random statistical

noise and pattern noise is the deterministic component of

the image pixels, which remains roughly the same for mul-

tiple images of the same scene. These sensors and pattern

noises are effective enough and have been explored in the

field of camera/sensor identification to identify the source

from which a particular image is captured [1, 2, 27] and for

Steganalysis [5]. In this research, we propose to extract

this information and utilize for adversarial noise generation.

This inherent noise is extracted using multiple image filter-

ing/enhancement algorithms to generate adversarial exam-

ples to fool DNN models.

2.1. Generating Adversarial Example

The input image is first filtered using different kinds of

filtering techniques. The difference image (N ) is then com-

puted as the absolute change between the clean image (I)

and the filtered image (I ′). The difference image can be

considered as noise, which might be present due to the cam-

era or environment, or can also be treated as high-frequency

information such as edges and structure. The extracted

noise (N ) can either be added or subtracted from the clean

image (I) to make it an adversarial image (P ). Mathemati-

cally, the adversarial noise (N ) can be represented as:

N = I − F (I) (1)

where, F is a linear or non-linear filtering operation to be

performed on input image I . For example, the Gaussian

filter F can be defined as:

Fg(n1, n2) = e−(n2

1
, n2

2
)/2σ2

F (n1, n2) = Fg(n1, n2)/
∑

n1

∑

n2

Fg
(2)

where, n1, n2, and σ are the size and standard deviation

of the filter. The adversarial examples can be generated by

solving the following optimization problem:

P = I ⊕ (ϕ ·N), s.t. P and I ∈ [0, 1] (3)

where, ⊕ denotes the addition or subtraction operation.

ϕ represents the strength parameter which controls the

amount of noise to be added to make it imperceptible. The

noise N might not be unique and can be generated through

different image filtering operations. Let C be the deep

learning classifier which outputs continuous probability val-

ues corresponding to each training class by minimizing the

loss function. The aim is to fool this classifier so that

C(P ) 6= l, where l represents the true class of I .

In this paper, ϕ ranges from 0 to 1. Similar to exist-

ing algorithms such as L-BFGS and FGSM, the adversar-

ial examples can be generated by line-searching the ϕ > 0
parameter. Due to the extraction of noise inherited during

the time of image acquisition from the camera, the proposed

adversary is termed as CiPer (Camera Inspired Perturba-

tions). The proposed algorithm has two variants: (i) the al-

gorithm with the addition operator is referred to as CiPer-P

and (ii) with subtraction as CiPer-S. Addition is performed

when the difference image is treated as noise inherent in

images during acquisition while subtraction is performed to

remove high-frequency information, i.e., edge or structure.

One of the advantages of the proposed algorithm is the high
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Figure 4: Sample adversarial examples generated using various filtering operations on CIFAR-10. The first column shows the original

images. Thereafter, the first column of each block comprises the adversarial images generated via the proposed CiPer-P algorithm and the

second column of each block demonstrates the adversarial images generated via the proposed CiPer-S algorithm.

efficiency in attacking black-box DNN models. Currently,

the algorithm operates for untargeted attacks2.

2.2. Image Filtering Techniques

In this research, various filtering algorithms ranging

from spatial to wavelet domain are used to extract the adver-

sarial noise (N ). Each filter encodes different information

and hence by using different filters, multiple noise vectors

can be learnt for a single image. For instance, median fil-

ter helps in eliminating salt-and-pepper noise or impulsive

noise. Extracting noise using median filter can generate ad-

versary image with salt-and-pepper or impulse noise.

Laplace Filtering [35]: It is a derivative filter which is gen-

erally used to find the most frequently altered information in

the image i.e., edges. The noise affects the high frequency

information more as compared to the low frequency coun-

terpart and hence filtering with Laplacian can help in better

extracting the noise information.

LoG Filtering [35]: Derivative filters are sensitive to noise

and thus lead to extraction of undesired information that

might not be useful to generate the adversary. Therefore,

the image is first smoothed using a Gaussian filter followed

by applying the Laplacian filter.

LoG(x, y) =
−1

πσ4
[1−

x2 + y2

2σ2
]e−

x
2+y

2

2σ2 (4)

2A targeted attack is defined where the image is misclassified to one

of the particular target class, whereas untargeted attack is defined as the

classification of the image in the class other than its original label.

The filter F to generate the noise can be calculated as:

Fg(n1, n2) = e−(n2

1
, n2

2
)/2σ2

F (n1, n2) = (n2

1
+ n2

2
− 2σ2)Fg(n1, n2)/σ

4
∑

n1

∑

n2

Fg

(5)

The response of LoG is zero in the region of uniform

intensities and returns +ve or -ve at regions with sharp

changes, e.g. edges.

In addition to the filtering techniques discussed above,

the following filtering algorithms are also used: (i) Aver-

age: pixel values in the center of each image patch (3 × 3)

are replaced with the mean value of its neighborhood, (ii)

Guided [21]: performs smoothing while preserving edge

information. The algorithm does not suffer from gradient

reversal artifacts and transfer structure information to the

filtered output image, (iii) Integral: in integral image a

pixel value is defined as the sum of the pixel values above

and to the left of it. The advantage of integral filtering is the

fast and non-uniform filtering in the image, (iv) Wavelet

transform: provides four sub-bands: low-frequency and

three high-frequency sub-bands in the horizontal, vertical,

and diagonal directions, respectively. We have performed

single-level decomposition followed by adaptive threshold-

ing on each of the high-frequency components. The fil-

tered wavelet sub-bands are reconstructed back and further

enhanced using Gaussian and median filtering techniques,



Table 1: Number of original and adversarial test images of each

database used to perform the experiments. n represents the num-

ber of filtering algorithms and 2 is for CiPer-P and CiPer-S.

Database Original Adversarial

CIFAR-10 [24] 10,000 10,000×(2n)

CIFAR-100 [24] 10,000 10,000×(2n)

Tiny ImageNet3 10,000 10,000×(2n)

MNIST [26] 10,000 10,000×(2n)

LFW [23] 13,143 13,143×(2n)

and (v) Median: it is one of the popular non-linear filtering

techniques to reduce the impulse noise. The median value

is expected to be robust to outliers.

Figure 4 shows the adversarial images generated after

addition or subtraction of these noises using the proposed

CiPer algorithm. The addition of the noise in the original

image mostly altered the objects pixels as compared to the

background. The phenomena can be easily verified while

capturing the object from the camera; the noise affects the

object pixels due to the reflection of objects. Similarly, the

subtraction of noise shows the reduction in edge informa-

tion.

3. Experimental Results and Analysis

To demonstrate the generalizability and robustness of the

proposed algorithm, we have computed results with multi-

ple models and databases. The next subsection summarizes

the databases and algorithms along with the implementa-

tion details. This is followed by the results of the proposed

CiPer-S and CiPer-P attacks with different filters. Finally,

we demonstrate the resiliency of the proposed attacks to

state-of-the-art defense algorithms.

3.1. Experimental Setup

Databases: Five databases are used for evaluation: MNIST

[26], CIFAR-10 [24], CIFAR-100 [24], Tiny ImageNet4,

and Labeled Faces in the Wild (LFW) [23]. The results are

demonstrated for three different classification tasks: digit

classification, object recognition, and face attribute identi-

fication. Attribute classification experiments are performed

with two attributes, pale skin and smile. The statistics of the

number of testing and corresponding adversarial images are

given in Table 1. CNN models are trained on the training

set of each database used while evaluation is performed on

the original testing and adversarial testing sets.

Implementation Details of CNN Models: To demonstrate

the effect of the proposed CiPer adversarial algorithm and

justify the adversarial impact, we have used three SOTA

pre-trained CNN models: ResNet-50 [22], VGG-16 [45]

and VGG-Face [36] fine-tuned for object recognition and

4https://tiny-imagenet.herokuapp.com/

Figure 5: Results of VGG-16 [45] based object classification on

the original and CiPer-S images generated from CIFAR-10 (Top)

and CIFAR-100 (Bottom).

face attribute identification, respectively. ResNet-50 model

is trained from scratch with the learning rate and batch size

set to 10−3 and 32 respectively. The model is trained for 10
epochs.

Apart from using SOTA CNN models we have trained

two different CNN models: one shallow (#1) and one deep

(#2). The shallow model contains 4 convolutional blocks, 3
dropout blocks, and 2 dense layers, whereas the deep model

contains 13 convolutional blocks each followed by batch-

normalization layer, 7 dropout blocks, and 2 dense layers.

The models are trained with cross-entropy loss using the

Adam optimizer. The learning rate and weight decay are

fixed to 0.0001 and 1e−6. For training, we use 200 epochs

for CIFAR-100 and 100 epochs for CIFAR-10 with a batch

size of 32. CNN models are trained on the clean (i.e., unper-

turbed) training set of each database and evaluated on both

clean and adversarial testing sets.

3.2. Results of CiPer Attack

The results are presented according to the classification

task.

Object Classification: On the original images from

CIFAR-10 and CIFAR-100 databases, VGG-16 [45] yields

classification accuracy of 74.8% and 47.4%, respectively. It

is observed that the adversarial examples based on Laplace

and Integral filters, which can extract the texture and edge

information, are the most effective in fooling the CNNs. For

example, the integral filtering based CiPer-S attack reduces

the accuracy of VGG-16 by 23.3% and 30.4% on adver-

sarial test set compared to clean test set of CIFAR-10 and

CIFAR-100, respectively. The results of each filter on CI-
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Figure 6: Score Distribution of clean and CiPer-S adversarial im-

ages of CIFAR-10 database using VGG-16.2 Due to the proposed

attack overlap between the scores of different classes increased

which leads to misclassification in the network.

CiPer-P CiPer-S

Figure 7: Results of ResNet-50 [22] based object classification on

the CiPer-P and CiPer-S images generated from CIFAR-10.

CiPer-P CiPer-S

Figure 8: Results of VGG-16 [45] based object classification on

the CiPer-P (left) and CiPer-S (right) adversarial images generated

on Tiny ImageNet.

FAR databases are shown in Figure 55. Similar reductions

are observed on the CIFAR-100 database as well. Figure

6 shows the score distribution computed using VGG-16 on

original and CiPer adversarial CIFAR-10 images. The score

distribution shows the increase in the overlap between the

images of various classes due to the CiPer adversary thus

leading to misclassification.

ResNet-50 [22] model yields 84.2% accuracy on the

original CIFAR-10 database (Figure 7) and CiPer-S with

Laplacian filtering reduces the performance by 19.9%. The

reduction in recognition performance shows the effective-

ness of the proposed adversarial algorithm in fooling state-

of-the-art deep learning models. On the Tiny ImageNet

database, the VGG-16 model yields 47.2% recognition ac-

curacy. The results reported in Figure 8 show that median

filtering has maximum impact on the performance, and the

accuracy reduces by more than 33% and 29% with CiPer-P

and CiPer-S, respectively.

5Due to space constraints graphs corresponding to the best CiPer algo-

rithm are reported.

Table 2: Object classification accuracy (%) on original and adver-

sarial images generated using the proposed CiPer algorithm.

Data Type
CIFAR-10 CIFAR-100

Model 1 Model 2 Model 1 Model 2

Original 82.0 88.5 53.3 65.1

CiPer-P

Average Filtered 74.6 82.9 38.8 53.4

Laplace Filtered 79.5 86.8 46.5 61.0

LoG Filtered 67.6 86.5 46.7 60.7

Guided Filtered 78.8 86.5 45.6 59.3

Integral Filtered 74.6 82.9 38.8 53.4

Wavelet Filtered 77.3 85.0 43.3 57.3

Median Filtered 78.4 85.5 45.2 57.9

CiPer-S

Average Filtered 71.0 67.8 40.7 34.8

Laplace Filtered 65.2 68.8 36.3 40.4

LoG Filtered 76.1 70.8 38.7 40.9

Guided Filtered 74.4 78.8 44.0 48.8

Integral Filtered 71.0 67.8 40.7 34.8

Wavelet Filtered 72.6 73.5 44.0 41.4

Median Filtered 75.3 78.2 47.0 48.2

Results with Model #1 (Shallow) and Model #2 (Deep):

The results of these models are summarized in Table 2.

On the original images from CIFAR-10 and CIFAR-100,

CNN model #1 yields 82.0% and 53.3% accuracy, respec-

tively. As shown in Table 2, custom model #1 has shown

high vulnerability against texture and edge-based filtering.

The Laplace filtering based attack reduces the accuracy on

CIFAR-10 and CIFAR-100 databases by up to ∼ 30%.

Model #2 yields 88.5% and 65.1% accuracy on clean im-

ages of CIFAR-10 and CIFAR-100, respectively. With in-

tegral filtered CiPer-S adversarial images, the relative per-

formance reduces by 23.3% and 46.5%, respectively. Other

than object recognition performance on CIFAR databases,

the proposed attack reduces the digit recognition accuracy

by at least 14% on the MNIST database. The deeper CNN

model (i.e., #2) shows higher sensitivity towards CiPer-S

adversarial images and average/integral filter with CiPer-S

is observed to be the most effective perturbation.

The vulnerability of SOTA deep models shows that noise

generated through image filtering operations is model ag-

nostic, i.e., it is inherently transferable across multiple mod-

els [10]. One possible reason for the success of this attack

could be the that filtering generally reduces the edge infor-

mation in the images. It also shows the sensitivity of CNN

models towards high frequency information present in the

input image.

Attribute Classification: Following the protocol defined

by Chhabra et al. [9], with original images, VGG-Face

yields 75.1% and 66.2% accuracy for smiling and pale skin

attributes, respectively (Figure 9). The maximum impact is

observed with guided filtering perturbation, and the accu-

racy on adversarial examples reduces by 6.92% and 48.9%

compared to clean images for smile and pale skin classifica-

tion, respectively. On the LFW database, guided along with

average and integral filtering have the maximum impact on



Figure 9: Facial attribute perturbation results on LFW using

VGG-Face.

the performance.

Visual quality of CiPer: We also perform the visual quality

assessment to show that CiPer perturbation does not affect

the quality of CIFAR images, while affecting the classifi-

cation performance of deep models. Two no-reference im-

age quality metrics are used to analyze the visual quality of

perturbed images: (i) Naturalness Image Quality Evaluator

(NIQE) [29] and (ii) Blind Image Spatial Quality Evalua-

tor (BRISQUE) [30]. Lower value of these metrics indicate

better perceptual quality of the image. The NIQE scores re-

main approximately the same (in the range of 18.85–18.87)

for original as well as different kinds of CiPer adversar-

ial images. The BRISQUE quality scores either remain

same or improve on adversarial images compared to orig-

inal images. For example, for the CiPer generated images,

the BRISQUE scores change to 41.97 and 58.63, compared

to 43.44 and 59.06 on original images. This interestingly

showcases higher perceptual quality of adversarial images.

To further understand the visual perception of attacked

images, we computed the Average Structural Similarity In-

dex (SSIM) that measures the similarity between two im-

ages [40, 52]. Values close to 1 indicate higher similarity

between two images. On the TinyImageNet database, aver-

age SSIM of CiPer-P adversarial (integral) images is 0.89.

Further, the norm of the CiPer attack can also be controlled

as shown in Equation 3.

Analysis Regarding Filter Selection: Since multiple ad-

versarial images can be generated by using different filters,

we also evaluated the effectiveness of the filters. It is ob-

served that every filter is not as effective in crafting the ad-

versarial noise and the performance reduction is more for

some filters compared to others. We have observed that tex-

ture based filters such as Laplace and LoG, and smoothing

based filters such as average and median are useful for gen-

erating adversarial noise. The integral filter has shown con-

sistent performance across all databases and CNN models,

including deep and shallow networks.

Comparison with Random Noise and Universal Attack:

We compared the performance of CiPer with the quasi-

imperceptible Gaussian noise corrupted images. With

VGG16, the performance on CIFAR-10 and CIFAR-100

Table 3: Resiliency of the proposed CiPer adversarial genera-

tion algorithms using wavelet filtering with Bayesian threshold-

ing for object classification. Recognition rate further decreases in

the presence of a defense mechanism against CiPer especially on

CIFAR-10 and CIFAR-100 highlighting the resilience of CiPer al-

gorithms. The values here should be compared with Table 2 to

understand the effectiveness of defense algorithm.

Data Type
CIFAR-10 CIFAR-100

Model 1 Model 2 Model 1 Model 2

Original 82.0 88.5 53.3 65.1

CiPer-P

Average Filtered 71.2 78.5 41.6 49.5

Laplace Filtered 75.2 82.1 46.1 54.7

LoG Filtered 63.5 81.9 47.0 55.0

Guided Filtered 73.2 79.6 45.3 53.2

Integral Filtered 71.2 78.5 41.6 49.5

Wavelet Filtered 72.6 78.9 45.2 51.0

Median Filtered 72.9 78.5 46.2 49.5

CiPer-S

Average Filtered 62.0 61.7 38.2 31.9

Laplace Filtered 62.7 68.6 32.5 36.6

LoG Filtered 75.4 69.5 34.6 37.5

Guided Filtered 67.1 73.1 39.9 42.4

Integral Filtered 62.0 61.7 38.2 31.9

Wavelet Filtered 64.6 67.5 39.8 37.9

Median Filtered 69.1 72.6 43.3 44.4

databases reduces by 3% (noise variance = 0.0005) and

4.5% (noise variance = 0.001), respectively. On the other

hand, the proposed CiPer attack reduces the accuracy by

17.4% and 14.4%, respectively. On CIFAR100 with Model

2, the Gaussian attack (noise var. = 0.001) reduces the per-

formance by 9.5% whereas, the CiPer attack reduces it by

30.3%.

We also compared the performance with universal per-

turbation [31]. We followed the same protocol for both the

attacks and observed that universal attack reduces the accu-

racy of a CNN by a similar amount as CiPer, when noise is

learned using a training set of the same database. For ex-

ample, the CIFAR-10 trained universal perturbation noise,

which has a similar magnitude as CiPer, reduces the accu-

racy of model # 2 on CIFAR-10 by 30%. However, when

the CIFAR-10 noise is used on CIFAR-100, the accuracy

drops by 10%, whereas CiPer leads to 33.2% reduction.

This shows that the universal perturbation algorithm is not

database agnostic, whereas CiPer is database agnostic.

3.3. Resiliency under Adversarial Defense

For evaluating the resiliency of the proposed attack, two

different kinds of adversarial defense algorithms are used:

(i) adversarial training and (ii) mitigating the effect of ad-

versarial noise through filtering.

In the literature, the most robust adversarial defense is

based on adversarial training [49] where the adversarial im-

ages are used for retraining the network. We have observed

that when the models are trained using CiPer-S images,

it performs well on the adversarial images generated us-

ing CiPer-S images but fails for CiPer-P images and vice



versa (i.e., lacks generalizability). For example, when the

VGG-16 network is re-trained using CiPer-P generated us-

ing Laplace filtering, it fails to significantly improve the ac-

curacy on CiPer-S adversarial images generated using aver-

age and integral filtering (i.e., improvement of 1–2% only).

The results are observed across each deep model, filtering,

and generation technique (i.e., CiPer-P and CiPer-S).

Adversarial training using existing state-of-the-art at-

tacks such as FGSM [17], DeepFool [32], and Saliency

[34] attacks are also performed. The adversarially retrained

model does not show any performance improvement com-

pared to the original model. For example, the performance

of DeepFool retrained VGG-16 model is 20% lower than

the original model. The significant drawbacks of adversar-

ial training are computationally intensive nature, lower gen-

eralizability [37,43], vulnerable to new attacks [11,54], and

open other serious threats [28] such as privacy.

Other strong defenses are based on filtering techniques

such as wavelet and bilateral [20, 38]. The resiliency of

CiPer is therefore tested against wavelet denoising based

on Bayes thresholding, Bilateral filtering [38], Total Vari-

ance Minimization [20], [41], and Defense GAN [43].

The proposed CiPer algorithm is based on manipulation of

inevitably inherent noise in the images through filtering.

Therefore, it might be the question of concern: whether

this manipulated noise can be removed using a robust im-

age filtering operation? To show the strength of the pro-

posed algorithm, wavelet denoising with Bayesian thresh-

olding is applied on the adversarial images as follows: The

noisy signal is first decomposed using selected wavelet fil-

ter up to l levels. the decomposed detailed coefficients of

noisy signal at each level are filtered using the threshold

computed by Bayesian rule, and the modified detailed coef-

ficients are combined with original low-frequency compo-

nents to reconstruct the noise-free signal. The results related

to these findings are reported in Table 3. It is interesting to

observe that under wavelet filtering based defense, the ac-

curacy further reduces except for LoG filtering and the pos-

sible reason is further reduction of high frequency informa-

tion. In case of adversarial defense through wavelet filtering

on CIFAR-100, the recognition accuracy under Laplace and

LoG CiPer-S adversary reduces to 32.5% and 34.6% from

36.3% and 38.7%, respectively.

Other than wavelet denoising, bilateral filtering by Rat-

zlaff et al. [38], total variance minimization (TVM) denois-

ing by Guo et al. [20] and Defense GAN by Samangouei

et al. [43] are found to be ineffective defenses against the

proposed CiPer algorithms. Bilateral filtered images re-

duce the recognition accuracy in the range of 4.7%–10.6%

which further reduces in the range of 12.4%–18.4% when

denoised using bilateral filtering across all three databases.

In the original paper, the Defense GAN algorithm is eval-

uated for MNIST database and hence not claimed effective

for CIFAR databases. Similar argument is given by Athalye

et al. [4] regrading its effectiveness on CIFAR-10. On using

Defense GAN to counter the proposed attack, CiPer attack

is able to retain the fooling rate on each CNN model includ-

ing VGG-16. Most of the existing defense algorithms show

the effectiveness against learning based adversaries which

find and perturb the most salient pixels for classification.

The proposed attack does not utilize any classification re-

lated information of the images and hence might be able to

fool the existing defense algorithms. Another reason could

be that inherent nature of these noise which we have used

might be treated as natural and existing defenses do not pro-

vide any attention. The filtering based defenses are found

to be ineffective to recover the recognition performance be-

cause further filtering of CiPer adversarial images reduces

the information which might be relevant for recognition.

4. Conclusion

In this research, we propose CiPer: a novel adversar-

ial noise generation algorithm which is both database and

model agnostic. CiPer identifies Camera Inspired Per-

turbations in images using various image filtering opera-

tions. These perturbations are inherently present as noise

in images, and CiPer utilizes them to fool the classifier.

The performance of the algorithm is evaluated on multiple

databases and CNN models, and the results show significant

reduction in performance. The analysis using the results of

CiPer-S might help in generating strong adversaries using

the removal of high-frequency from images and in increas-

ing the robustness of CNNs by looking at what it learns.

The adversarial images generated using CiPer are not only

effective in fooling SOTA CNNs but also resilient to mul-

tiple defense approaches including image enhancement and

generative models. In future, we plan to explore simultane-

ous implementations of multiple filtering algorithms to gen-

erate adversarial noise, as the noise present in images might

be due to various sources. Further, image watermarking lit-

erature can be explored to embed imperceptible adversarial

noise in different regions of the images [50, 51]

5. Acknowledgement

A. Agarwal was partially supported by the Visvesvaraya

PhD Fellowship. M. Vatsa is partially supported through

the Swarnajayanti Fellowship by the Government of India.

References

[1] A. Agarwal, R. Keshari, M. Wadhwa, M. Vijh, C. Par-

mar, R. Singh, and M. Vatsa. Iris sensor identification in

multi-camera environment. Information Fusion, 45:333–

345, 2019. 3



[2] A. Agarwal, R. Singh, and M. Vatsa. Fingerprint sensor

classification via mélange of handcrafted features. In IEEE

ICPR, pages 3001–3006, 2016. 3

[3] A. Agarwal, R. Singh, M. Vatsa, and N. Ratha. Are image-

agnostic universal adversarial perturbations for face recogni-

tion difficult to detect? IEEE BTAS, pages 1–7, 2018. 2

[4] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradi-

ents give a false sense of security: Circumventing defenses

to adversarial examples. ICML, pages 274–283, 2018. 8

[5] I. Avcibas, N. Memon, and B. Sankur. Steganalysis using

image quality metrics. IEEE TIP, 12(2):221–229, 2003. 3

[6] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P.
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