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Abstract

Person re-identification (re-ID) is a key problem in smart

supervision of camera networks. Over the past years, mod-

els using deep learning have become state of the art. How-

ever, it has been shown that deep neural networks are flawed

with adversarial examples, i.e. human-imperceptible per-

turbations. Extensively studied for the task of image closed-

set classification, this problem can also appear in the case

of open-set retrieval tasks. Indeed, recent work has shown

that we can also generate adversarial examples for metric

learning systems such as re-ID ones. These models remain

vulnerable: when faced with adversarial examples, they fail

to correctly recognize a person, which represents a security

breach. These attacks are all the more dangerous as they

are impossible to detect for a human operator. Attacking

a metric consists in altering the distances between the fea-

ture of an attacked image and those of reference images,

i.e. guides. In this article, we investigate different pos-

sible attacks depending on the number and type of guides

available. From this metric attack family, two particularly

effective attacks stand out. The first one, called Self Metric

Attack, is a strong attack that does not need any image apart

from the attacked image. The second one, called Furthest-

Negative Attack, makes full use of a set of images. Attacks

are evaluated on commonly used datasets: Market1501 and

DukeMTMC. Finally, we propose an efficient extension of

adversarial training protocol adapted to metric learning as

a defense that increases the robustness of re-ID models.1

1. Introduction

Person re-identification (re-ID) is an increasingly popu-

lar field of research due to its application in video surveil-

lance. In general, re-ID is viewed as a retrieval task. The

objective is to rank a gallery of images by order of sim-

ilarity to a query image. With the advent of deep learn-

1The code for the attacks and defenses is available on Github at

https://github.com/qbouniot/adv-reid.

ing, a lot of new approaches using deep convolutional neu-

ral networks (CNNs) have been proposed to achieve this

task [29][10][26].

Szegedy et al. [22] have shown that deep neural net-

works can be easily fooled by adversarial examples,

i.e. human-imperceptible perturbations added to an im-

age. These examples have been extensively studied

[7][12][25][15][6][27][20] for closed-set classification task

(where same classes are used at training and testing). To

the best of our knowledge, very few approaches have been

proposed to tackle attacks and defenses of retrieval models

used for re-ID, an open-set task where identities at training

are different from those at testing.

Previous classification attacks are not exploitable in this

case, as class information is not used in re-ID. In order to

fool a re-ID model, the attacker has to perturb images so as

to modify distances between their features. In this way, fi-

nal ranking based on distance (or conversely, similarity) can

become wrong. Metric attacks depend on a reference fea-

ture (a guide) to distort the distance between the attacked

image and other similar images. It can be a pulling guide

belonging to another identity, which draws the feature away

from its initial identity cluster. Otherwise, it can be a push-

ing guide with same identity, that repels the feature away

from its initial identity cluster.

In this paper, we study the effect of using pushing or

pulling guides, or both to generate metric attacks. We note

that the implementation of metric attacks in practice de-

pends on the availability of guides. While the availabil-

ity of pulling guides (different identity) does not seem a

priori to be a problem, the availability of pushing guides

(same identity) may be more difficult or even impossible to

achieve. Therefore, we propose different attacks that can be

applied depending on the availability of these auxiliary im-

ages. Two effective attacks can be distinguished in the two

extremes, either fully available or not.

We also show how the online adversarial training proto-

col, effective for robustifying classifiers, can be adapted to

defend re-ID models against proposed metric attacks.

Our contributions can be summarized as follows:



• We show that metric attacks can be based on pushing

guides, pulling guides or both.

• We show that attack feasibility depends on availability

of such guides. So, to cope with two extreme situa-

tions of no availability and full availability of guides,

we propose two novel attacks for metric embedding

problems: the Self Metric Attack and the Furthest-

Negative Attack.

• We present a defense to improve the robustness of the

models against proposed metric attacks.

After an overview of previous work on this subject in

Sec. 2, notations are introduced in Sec. 3. We present the

overall framework for metric attacks based on pushing and

pulling guides and propose our new metric attacks in Sec. 4.

They are evaluated and compared with the state of the art

in Sec. 5. Finally, we present, in Sec. 6, a training protocol

based on adversarial training to defend re-ID models against

the proposed attacks.

2. Related Work

In this section we review the previous work on adversar-

ial attacks and defenses for classification as well as metric

learning problems.

2.1. Adversarial Attacks

Classification Attacks Szegedy et al. [22] have been the

first to show the flaws of deep neural networks on a clas-

sification task. Then, a lot of new approaches to generate

adversarial examples have emerged. They can be grouped

into three families:

(i) Unbounded attacks [22][5][27][20] solve a constrained

optimization problem to find the adversarial examples with

smallest perturbations.

(ii) Bounded attacks [7][11][15][6], less time-consuming,

perform several steps of projected gradient descent in order

to keep perturbation smaller than a threshold.

(iii) Gradient Reconstitution attacks [17][16][3] search the

input space by following an approximation of the Jacobian

or by a random walk. They can bypass possible defenses.

These attacks can be White-box or Black-box depending

if they, respectively, have access to the model or not. If

the image is modified to be classified as a targeted class,

the attack is said to be targeted. Otherwise, if the image is

modified to be classified as any other class different from

the original class, the attack is said to be non-targeted.

All these methods try to keep class predictions as far

away as possible from their proper class by attacking mod-

els at the logit level. These types of approaches are therefore

only valid in classification tasks. They can’t be used in the

same way on an open-set ranking task such as re-ID [2][30].

Metric Attacks For ranking or retrieval tasks, the dis-

tance between features of images is used for evaluation. In

this case, metric attacks are based on pushing the features

of an input image away from their identity cluster (non-

targeted attack) or pulling to another cluster (targeted at-

tack) in the embedding space using a reference feature, i.e.

a guide. For person re-ID, an open-set ranking task, the

Opposite-Direction Feature Attack (ODFA) [30] pulls the

feature of the attacked image in the opposite direction with

an artificial guide. Bai et al. [2] extend classification at-

tacks, namely Fast-Gradient Sign Method (FGSM) [7], Iter-

ative FGSM (IFGSM) a.k.a. Basic Iterative Method (BIM)

[12] or Projected Gradient Descent (PGD) [15] and Mo-

mentum IFGSM (MIFGSM) [6], to push away the feature

with a guide instead of misleading the logits.

For other image retrieval tasks than re-ID, Tolias et al.

[23] propose to attack an image retrieval system, so that im-

ages of a wrong targeted class are retrieved for an attacked

query image. Nevertheless, this pulling guide attack has lit-

tle effect on the overall closed-set ranking, as shown by the

small drop in mAP performance. Liu et al. [14] propose

to generate attacks with a given number of iterations. Yet,

no size constraint is considered for the adversarial noise, so

that perturbations can be noticeable.

For any of these metric attacks, the use of guides involves

other images. But once additional images are used, why

not draw more information from them? Otherwise, in the

opposite extreme case, what could the attacker do if he does

not have access to additional images but only to the images

to be attacked?

2.2. Adversarial Defenses

Confronted with these attacks, several approaches have

been presented in the state of the art to make the models

more robust.

Classification Defenses A first type of defense tries to

prevent against misclassification coming from adversarial

examples by obfuscating the gradients [18][13][8]. How-

ever, these defenses are still vulnerable to more specific ad-

versarial attacks [1] [4] [24].

Currently, adversarial training is the most robust way to

defend against adversarial attacks: computing adversarial

versions of each images during training. The model can thus

be trained on the adversarial versions [15] or on a mix of

original and adversarial images [7]. The adversarial images

can also be generated with several models [25].

The adversarial training protocol cannot be used directly

with any metric attacks. Some need a guide of the same

class as the attacked image, which is not always the case in

a random batch of training images.



Metric Defenses To our knowledge, only one defense

protocol [2] has been proposed against metric attacks. This

defense is based on a generation of an adversarial version of

the training set obtained with a frozen version of the trained

model. The defended model is then trained on both origi-

nal and adversarial training sets. As a frozen model is used

to generate attacks, this protocol will be referred to as of-

fline adversarial training. Indeed, in classification tasks,

the adversarial training generates adversarial examples on-

line, i.e., while the defended model evolves. Besides, this

defense was evaluated in a black-box setting only. An eval-

uation in white-box setting is necessary to confirm its effec-

tiveness.

We propose an extension of online adversarial training

protocol for metric attacks, Guide-sampling Online Adver-

sarial Training, as a defense for re-ID models.

3. Re-Identification: an Open-Set Ranking

Problem

In this paper, we consider the task of person re-ID which

goal is to rank a gallery set of images for each image of a

query (or probe) set by order of similarity. This similarity

is derived from the distance between the features relative to

two images of person. Re-ID task protocol uses a training

set of person images X = {xi}i∈J1,NxK and a testing set

subdivided in a query set of images Q = {qi}i∈J1,NqK and

a gallery set of images G = {gi}i∈J1,NgK. Nx, Nq, Ng de-

note respectively the numbers of person images within the

training, query and gallery sets.

Each image xi (resp. qi, gi) in these sets is associated to

a person with identity ℓ(xi) (resp. ℓ(qi), ℓ(gi)). For each

identity l, we define Il the subset of images (from the train-

ing, query or gallery sets) with identity l. Note that identi-

ties in training and testing sets are different, whereas query

and gallery sets share identities.

Due to this open-set problem constraint, re-ID task is

generally coped with as a metric embedding learning prob-

lem. In other words, a mapping f : E → F is learned in

such a way that images of same identity in the space E of

images correspond to close feature vectors in the embed-

ding space F, according to a given/learned metric. Con-

versely, images with different identities correspond to dis-

tant features. Thereafter, f(x) is denoted by fx.

Different mapping functions can be learned, depending

on the dissimilarity metric chosen to train and evaluate re-

ID models. As deep neural networks are state-of-the-art,

we focus on the two main types of loss minimization com-

monly employed in re-ID:

(1) the classification model (C) implicitly learns an embed-

ding space through cross-entropy loss minimization [26];

(2) the triplet model (T) explicitly learns a metric embed-

ding through triplet loss minimization [21][10].

At testing time, feature vectors are ranked according to

the chosen/learned dissimilarity metric (typically, a distance

derived from Cosine similarity or L2).

4. Proposed Attacks for Metrics

4.1. Metric Attacks

In the re-ID context, adversarial attacks cannot mislead a

model to a wrong class, as classes are not known at testing

time in an open-set setting. It rather tries to perturb images

so as to distort the distance D between feature vectors and

reduce overall retrieval performance. To do this, metric at-

tacks use a guide g, i.e. a reference feature. A guide can

induce two kinds of perturbations:

Pulling guide: decreases the distance between features of

images with different identities.

Pushing guide: increases the distance between features of

images with same identities.

Following this terminology, ODFA [30] uses an artifi-

cial pulling guide (in the opposite direction) whereas the

attacks introduced by Bai et al. [2] can either be pushing or

pulling guide attacks. One question that arises at this stage

is whether pushing or pulling guides are equally effective.

On the one hand, a pulling guide moves the perturbed im-

age closer to the guide. The fact that the image is close to

the guide does not necessarily imply that the distances to

images of the same identity increase to the extent that these

images are relegated to the last rows. In some cases, the

pulling guide could affect only very partially the first ranks

of the ranking.

On the other hand, with a pushing guide, using the trian-

gular inequality, we have:

D(fx̂i
, fg) ≤ D(fx̂i

, fxj
) +D(fxj

, fg) (1)

with xi the given image to attack, x̂i the corresponding at-

tacked image and xj and g two images with the same iden-

tity as xi. The pushing guide attack increases D(fx̂i
, fg).

If we assume D(fxj
, fg) is small (which is the case when

ℓ(xj) = ℓ(g)), then D(fx̂i
, fxj

) increases.

This means that in the embedding space, by increasing

the distance between the adversarial image and the guide,

the adversarial image moves away from all other images

similar to the guide. Therefore, the adversarial image ends

up far from its original identity cluster. However, the ad-

versarial feature can be pushed in a direction where there is

no feature with another identity. Thus, a greater distance is

needed to change the ranking.

In addition, the use of a guide generally implies access to

additional images that serve as guides. Yet, can we assume

additional images are available during the attack?

Consequently, we investigate hereafter novel metric at-

tacks that efficiently leverage information from the set A of

images available during the attack. We also propose to use



Algorithm 1 Self Metric Attack

Input : Model f , input image x, number of iterations

N , adversarial bound ǫ, iteration step size α, distance func-

tion D, clip function to project in L∞ ball

Output : Adversarial image x̂

1: Generate random noise η with ||η||∞≤ ǫ

2: x̂← x+ η

3: for n = 0 to N do

4: ∆SMA ← ∂D(f(x̂),f(x))
∂x̂

5: x̂← x̂+ α · sign(∆SMA)
6: x̂← clip(x̂, x, ǫ)
7: end for

multiple guides when possible and show that pushing and

pulling guides can be combined efficiently.

4.2. Self Metric Attack

When we do not have access to additional image (A =
∅) we propose the Self Metric Attack (SMA) that uses the

image itself as a pushing guide. A noisy version of the im-

age under attack is thus used in order to make possible the

computation of the attack. In other words, we push the fea-

ture of the noisy image away from the original image. In

this case, this means replacing fg by fxi
in inequality 1.

As illustrated in Figure 1, the proposed Self Metric At-

tack alters the input image with a random noise η (with

||η||∞≤ ǫ) before pushing the noisy image away from the

original image in the feature space. The constraint on η en-

sures the identity is preserved in the noisy image. This gen-

erates a perturbation in the image space constrained in norm

inside the L∞-ball centered around the original image.

Formally, our Self Metric Attack is defined as the follow-

ing iterative optimization:

x̂(0) = x+ η

x̂(n+1) = Πǫ
x

(

x̂(n) + α · sign(∆SMA
n )

)

∆SMA
n =

∂D(fx̂(n) , fx)

∂x̂(n)

(2)

with x the input image under attack, x̂(n) the resulting ad-

versarial image after the n-th iteration, ǫ the adversarial

bound and α the iteration step size. Πǫ
x is the clip function,

which ensures that ||x̂(n+1) − x||∞≤ ǫ and that x̂ is a valid

image, i.e. the pixels are in the range [0, 1]. The resulting

algorithm is described in Algorithm 1.

4.3. Furthest­Negative Attack

There might also be many images available, even more

for different identities. In this case, we can take advantage

of the information given by all the images. Single-Guide

metric attacks [2], consider a single guide g to find the push-
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Figure 1: Illustration of SMA. Noise η is bounded in norm

to ensure that the noisy image remains in the same identity

cluster. The noisy image x + η is the starting point of the

attack, and the original input image x is the guide for the

attack. The noisy image is then pushed away (red straight

arrow) from the original image in the feature space F. The

red curved arrow shows the resulting movement in the im-

age space E.

Algorithm 2 Furthest Negative Attack

Input : Model f , input image x under attack, number

of iterations N , adversarial bound ǫ, iteration step size α,

distance function D, clip function to project in L∞ ball, set

A of available images

Output : Adversarial image x̂

1: x̂← x

2: lfar ← argmaxi∈ℓ(A) D
(

f(x),
∑

g∈Ii∩A

f(g)
|Ii∩A|

)

3: Pull← Iℓfar
∩A

4: Push← Iℓ(x) ∩A

5: for n = 1 to N do
6: ∆FNA

n ←
∑

gpush∈Push

∂D(f(x̂),f(gpush))

∂x̂

−
∑

gpull∈Pull

∂D(f(x̂),f(gpull))

∂x̂

7: x̂← x̂+ α · sign(∆FNA)
8: x̂← clip(x̂, x, ǫ)
9: end for

ing direction. With a single guide, the direction of the per-

turbation is highly dependent on the guide chosen. When

multiple images of a given identity are available (in a set

A), we propose to use them all to have a better approxima-

tion of the direction.

Furthermore, to be more efficient and induce the biggest

change in the ranking, the attack should ensure the attacked

feature moves closer to another identity cluster. In addi-

tion, the attacked feature should have the highest distance

with features from its initial identity cluster. Therefore, our

proposal is to move the attacked feature toward the furthest

cluster, i.e., the cluster at the highest distance.

Consequently, we propose the Furthest-Negative Attack
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Figure 2: Illustration of FNA. The red curved arrow shows

the perturbation generated in the image space E (on the

left). The perturbation is constrained in a L∞-ball (dot-

ted square) of size ǫ around image x. In the feature space

F (on the right), the red dashed arrows show the direction

to move away from the identity cluster. The blue dotted ar-

rows show the direction to the features of the furthest cluster

Iℓfar
. The purple solid arrow shows the resulting direction.

The direction of the furthest cluster of features is used to

find the direction that will most affect the ranking.

(FNA) which combines multiple pushing guides and pulling

guides from the furthest cluster. Formally, we define the

FNA as the following iterative optimization:

x̂(0) = x

x̂(n+1) = Πǫ
x

(

x̂(n) + α · sign(∆FNA
n )

)

∆FNA
n =

∑

gpush∈Iℓ(x)∩A

∂D(fx̂(n) , fgpush
)

∂x̂(n)

−
∑

gpull∈Ilfar
∩A

∂D(fx̂(n) , fgpull
)

∂x̂(n)

with the same notations as Equation 2. In this case, A is

the set of available images that contains multiple images

of the same identity as the attacked image and others with

different identities.

The identity lfar of the furthest cluster is computed for

each image x under attack:

lfar = arg max
i∈ℓ(A)

D



fx,
∑

g∈Ii∩A

fg

|Ii ∩A|





The attack is described in Algorithm 2 and illustrated in Fig-

ure 2. The furthest cluster of features helps find the direc-

tion that will perturb the ranking the most. However, we

are still pushing the feature away from its cluster by using

guides with the same identity. This allows to head towards

the least similar cluster of features while moving away from

the other similar features.

The higher the norm of the adversarial noise, the greater

the movement in the feature space and the more significant

the heading towards the least similar cluster become.

5. Attack Evaluation

In this section, we detail the evaluation protocol used to

benchmark our attacks and compare them to the state of the

art.

5.1. Experimental Settings

We trained a ResNet-50 [9], following the training pro-

cedure by Xiong et al. [26] to obtain a Classification model

(C) and the training procedure by Hermans et al. [10] to ob-

tain a Triplet model (T) as explained in Section 3. For both

models C and T, we use as mapping f the features after the

average pooling layer, before the last layer. This gives an

embedding size of 2048. We chose the same dimensional-

ity for a fair comparison of the effectiveness of the attacks.

We consider two metrics during the evaluation, L2 or Co-

sine.

The evaluation is done on the Market-1501 dataset [28]

(Market) and DukeMTMC-reID [19] dataset (Duke), two

datasets commonly used in re-ID. Market contains 1501

identities taken by 6 cameras and spread out in 12, 936
bounding boxes for training (750 identities), 19, 732 for the

gallery and 3368 queries (regrouped into 751 identities).

Duke is composed of 36, 411 images taken by 8 cameras,

and representing 1, 404 identities: 702 identities (16, 522
images) are used for training and the other 702 identities

for evaluation, split into 2, 228 query images and 17, 661
gallery images. For all experiments, the pixel values, per-

turbation strength ǫ and perturbation step α are normalized

to [0,1] by dividing by 255.

The overall performance is evaluated with the mean av-

erage precision (mAP). The baseline performance (without

attack) is given in Table 1 in column Original.

We perform the benchmark of the attacks by consider-

ing the Query set as our available images (A = Q). The

benchmarks are carried out on a single Titan X GPU.

5.2. FNA: pushing or pulling?

First of all, we want to compare pulling and pushing at-

tacks. To do so, Figure 3 shows the performance of the at-

tacks with varying strength ǫ for model C on Market, with a

comparison of the pulling and pushing effects in FNA. We

evaluate the performance of FNA without pushing guides

(green dotted curve), without pulling guides (red straight

curve) and with both (light blue dashed and dotted curve).

From the graph, we can see that the pulling effect becomes

more effective than the pushing effect only when ǫ ≥ 5.

However, combining both is always more effective.

To confirm our analysis on the furthest cluster, we also

evaluate the pulling effect when using any random negative



Dataset Model Metric
mAP (%)

Original ODFA [30] SG. IFGSM [2] SMA (Ours) FNA (Ours)

Market

T
L2 67.72 25.65 0.25 0.18 0.06

Cosine 67.22 63.02 0.05 0.05 0.05

C
L2 76.02 43.73 3.20 2.34 0.53

Cosine 77.53 75.65 0.21 0.26 0.07

Duke

T
L2 60.83 23.48 0.40 0.17 0.06

Cosine 60.33 55.94 0.05 0.05 0.04

C
L2 64.85 39.43 3.66 2.53 0.29

Cosine 67.64 65.89 0.16 0.32 0.06

Computing time (s) 80 250 260 250 310

Additional images × X × X

Table 1: Performance (mAP in %) of re-ID models on Market1501 and DukeMTMC under white-box attack of the query

for ǫ = 5 (and α = 1 with 15 iterations for iterative attacks). Rows are the models under attack, evaluated with L2 and

Cosine metrics, while columns are the attacks performed: ODFA [30], Single-Guide IFGSM (SG. IFGSM) [2], SMA and

FNA. Lower is better for the attack. Given a model type and a metric, best attacks are in bold numbers. We report computing

time (in seconds) on a single Titan X GPU to attack the whole Query set (3368 images), and the need for additional images.

Figure 3: Performance (mAP in %) of model C with L2 metric, under attack for varying values of ǫ on Market. Straight

curves use pushing guides and dotted curves use pulling guides. FNA (dashed curve) uses both. In average, FNA uses 4
pushing guides and/or 4 pulling guides. Lower mAP for stronger attack.

cluster (orange dotted curve) instead of the furthest cluster

(green dotted curve). We can see that choosing the furthest

cluster is consistently more efficient. Compared with the

pushing effect of FNA (red straight curve), pulling with a

random cluster is always less effective.

Thus, empirically, pulling guides seem to be effective

when they are part of the furthest cluster of features and

when the perturbation is sufficiently high. Otherwise, push-

ing guides seem to be more efficient. A combination of both

leads to the best results.

5.3. Comparison with the state of the art

We compare our SMA and FNA to the state of the art:

Single-Guide Attacks [2] and ODFA [30]. As shown by Bai

et al. [2], IFGSM (a.k.a. BIM or PGD) is the strongest vari-

ant of Single-Guide (SG.) Attacks. For the sake of clarity,



we did not include FGSM and MIFGSM variants. In order

to assess efficiency of the attacks, Table 1 compares their

computing time and the amount of information they use in

input, alongside their effectiveness. These data are reported

for ǫ = 5 on two types of re-ID models, using L2 or Cosine

metrics on two different datasets. In particular, we study the

impact of the number of additional images used during the

attack.

What stands out in both Table 1 and Figure 3 is that

ODFA is less efficient than the other attacks. Even though

ODFA and SMA both require the smallest amount of infor-

mation (i.e. no additional image) and have same computing

time, SMA is much more efficient. As shown in Table 1, it

leads to a mAP drop difference of about 40 percentage point

(p.p.) for the same computing time.

Of course, using additional images is more efficient.

However, when ǫ ≥ 3, SMA becomes as efficient as SG.

IFGSM for less computing time.

With more available images from the same identity

(pushing guides), FNA without pulling is more efficient

than both SG. IFGSM and SMA for slightly more com-

puting time. But that superiority tends to fade with larger

perturbations (ǫ ≥ 8). If even more images of different

identities (pulling guides) are available, FNA becomes the

strongest option to attack a re-ID model, while being a little

bit slower (typically, 310 s instead of 260 s for SG. IFGSM).

Overall, we can see that the efficiency of the attacks de-

pends on the number of available images used. FNA is

stronger because it uses both types of guides (pushing and

pulling) simultaneously. For instance, for model C with

an L2 similarity on Market, the baseline performance of

76.02% drops to 43.73% after ODFA, to 3.20% after SG.

IFGSM, to 2.34% after SMA, to 0.53% after FNA. We

achieve similar results on Duke.

For greater ǫ, all attacks but ODFA are effective. Yet,

added perturbations become noticeable by a human.

Thus, the two proposed methods are efficient attacks.

Choice between these options will depend on the availabil-

ity of additional images during the attack.

6. Defending Re-ID models

In this section, we detail a protocol for adversarial train-

ing with any metric attacks and compare the robustness of

our models with the defense proposed by Bai et al. [2].

6.1. Guide sampling Online Adversarial Training

As explained in Section 2.2, adversarial training can be

done online or offline, depending on how the adversarial ex-

amples are generated. With offline adversarial training, the

model trains with a single version of adversarial example.

With online adversarial training, the attack uses an updated

version of the model to generate more up-to-date adversar-

Algorithm 3 Guide-sampling Online Adversarial Training

Input : Model f , training set X = {xi}i∈J1,NxK, num-

ber of epochs T , number of pushing guides Npush, number

of pulling guides Npull

Output : Defended model f

1: for t = 1 to T do

2: for batch B ∈ X do

3: for x in B do

4: Sample g1push, . . . , g
Npush

push pushing guides

and g1pull, . . . , g
Npull

pull pulling guides from X;

5: end for

6: Generate adversarial batch B̂ using the guides

sampled;

7: Compute the loss with B̂ and update model f

parameters by back propagation;

8: end for

9: end for

ial examples. We therefore expect online adversarial train-

ing to be more robust than offline.

Furthermore, as shown in previous work [15] [20], the

stronger the attack, the more robust the defense. This

prompts us to consider efficient metric attacks. However, as

commented in Sec. 2.2, it is not straightforward to perform

online adversarial training using any metric attacks. SMA

can be applied but other metric attacks need additional im-

ages from the corresponding identity. Yet, using classical

random batches for training gives no guarantee that several

images have the same identity.

Therefore, to extend the online adversarial training of

Madry et al. [15] with any metric attacks, we propose a

Guide sampling Online Adversarial Training (GOAT) pro-

tocol. We sample additional images from the training set

during training and generate an adversarial example using

these images as guides. Thus, for a batch of training im-

ages, we sample one batch of Npush pushing guides and

another of Npull pulling guides to generate adversarial ex-

amples and use them to update the parameters of the model.

The strength of the attack depends on the chosen Npush

and Npull. Indeed, with Npush = Npull = 0, there will

be no guide. In this case, SMA can be used to generate

adversarial examples. Otherwise, FNA can be used, with

pushing (if Npull = 0), pulling (if Npush = 0) or both

(if Npush 6= 0 and Npull 6= 0). Unlike Bai et al. [2], we

are generating the adversarial examples during training with

the latest iteration of the model. The generated adversarial

examples are then used for training. Algorithm 3 illustrates

the defense with GOAT.

This protocol supports online adversarial training with

any metric attacks and any number of guides.



Dataset Defended Model Metric
mAP (%)

Original SG. IFGSM [2] SMA (Ours) FNA (Ours)

Market

Coff [2]
L2 70.11 2.57 1.66 0.58
Cosine 71.99 1.33 0.09 0.05

C
0,0
GOAT (Ours)

L2 68.08 21.67 25.92 11.77
Cosine 69.99 15.51 22.91 8.7

C
4,1
GOAT (Ours)

L2 69.95 26.33 29.45 16.76

Cosine 71.55 20.24 26.28 13.41

Duke

Coff [2]
L2 60.77 1.32 0.52 0.13
Cosine 63.28 0.09 0.05 0.04

C
0,0
GOAT (Ours)

L2 59.44 19.73 23.59 8.16
Cosine 62.53 11.25 20.12 7.76

C
4,1
GOAT (Ours)

L2 57.07 24.85 28.59 14.12

Cosine 60.47 19.09 26.92 14.09

Table 2: Performance (mAP in %) of the defended re-ID models under white-box attack for ǫ = 5. Rows are the defended

models under attack, evaluated with Cosine and L2 metrics, while columns are the attacks (SG. IFGSM [2], SMA, FNA)

used. For GOAT, Npush, Npull are written in superscript. Higher mAP is better for the defense. Bold numbers are the best

defense, for a given metric and a given model type.

6.2. Comparison of the Defenses

The robustness of the defense depends on the strength of

FNA and therefore on Npull, Npush. Pulling guides must

be sampled in the furthest cluster and pushing guides from

the same cluster than the attacked image. We train two de-

fended models with GOAT. For the first one, C
0,0
GOAT , we

use SMA with Npush = Npull = 0. For the second one,

C
4,1
GOAT , we choose Npush = 4 and Npull = 1 and FNA.

We sample the pulling guide as the furthest image in the

batch.

We consider the same evaluation settings as in Section 5.

We reproduce the offline adversarial training defense [2]

(Coff ) for a white-box comparison with our defended mod-

els.

Table 2 presents the performance of the defended mod-

els for ǫ = 5 on Market and Duke. It can clearly be seen

that, according to our intuition, both models defended with

GOAT are more robust than the respective models defended

with offline adversarial training. For instance, performance

of model Coff drops from 70.11% to 0.58%, C
0,0
GOAT drops

from 68.08% to 11.77% and C
4,1
GOAT drops from 69.95%

to 16.76% when attacked with our FNA and evaluated on

Market with a L2 similarity. In addition, we can see that

using more guides during training leads to a more robust

defense. When trained with Npush = Npull = 0, the per-

formance under attack is globally about 5 p.p. lower than

with Npush = 4 and Npull = 1.

Overall, training with strong metric attacks offers a bet-

ter robustness while keeping competitive re-ID performance

on clean data. Indeed, as shown in Table 2 defending model

C on Market decreases the baseline from about 77% mAP

to about 70%.

7. Conclusion

Person re-ID is a task where security and robustness are

critical. Yet, best models for re-ID are based on deep neural

networks, thus, they are prone to adversarial attacks.

In this work, we investigated the effect of pushing and

pulling guides on metric attacks. We found that the com-

bination of the two gives the best performance. Then, we

proposed two metric attacks for person re-ID depending on

the available images: The Self Metric Attack (SMA) is

self-sufficient and easy to deploy because it computes the

perturbation using only the input image. The Furthest-

Negative Attack (FNA) combines pushing guides with

pulling guides to generate an adversarial image using all the

information available.

These attacks outperform the state of the art of metric

attacks on person re-ID. Choice between them depends on

the availability of images. The more images available the

stronger the attack.

Finally, we studied adversarial defense to improve the

robustness of re-ID models against metric attacks. To use

efficient metric attacks, we proposed an extension of on-

line adversarial training. Guide sampling Online Adversar-

ial Training (GOAT) trains the model by mining pulling and

pushing guides from the training set. The performance of

the defense depends on the guides chosen.
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