
A Cyclically-Trained Adversarial Network for

Invariant Representation Learning

Jiawei Chen

Boston University

garychen@bu.edu

Janusz Konrad

Boston University

jkonrad@bu.edu

Prakash Ishwar

Boston University

pi@bu.edu

Abstract

Recent studies show that deep neural networks are vul-

nerable to adversarial examples which can be generated

via certain types of transformations. Being robust to a de-

sired family of adversarial attacks is then equivalent to be-

ing invariant to a family of transformations. Learning in-

variant representations then naturally emerges as an impor-

tant goal to achieve which we explore in this paper within

specific application contexts. Specifically, we propose a

cyclically-trained adversarial network to learn a mapping

from image space to latent representation space and back

such that the latent representation is invariant to a speci-

fied factor of variation (e.g., identity). The learned map-

ping assures that the synthesized image is not only realistic,

but has the same values for unspecified factors (e.g., pose

and illumination) as the original image and a desired value

of the specified factor. Unlike disentangled representation

learning, which requires two latent spaces, one for spec-

ified and another for unspecified factors, invariant repre-

sentation learning needs only one such space. We encour-

age invariance to a specified factor by applying adversar-

ial training using a variational autoencoder in the image

space as opposed to the latent space. We strengthen this in-

variance by introducing a cyclic training process (forward

and backward cycle). We also propose a new method to

evaluate conditional generative networks. It compares how

well different factors of variation can be predicted from the

synthesized, as opposed to real, images. In quantitative

terms, our approach attains state-of-the-art performance in

experiments spanning three datasets with factors such as

identity, pose, illumination or style. Our method produces

sharp, high-quality synthetic images with little visible arte-

facts compared to previous approaches.

1. Introduction

The performance of machine learning algorithms is usu-

ally related to the quality of internal data representation

(features). Thus, representation learning has been exten-

sively studied in the fields of machine learning and arti-

ficial intelligence (AI). Among the criteria for a “good”
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Figure 1: Diagram of the proposed model (⊕ represents

concatenation): (a) forward cycle in which training alter-

nates between optimizing G and D; (b) backward cycle that

only optimizes G. Note: the label for image synthesis is

denoted by y′s in the forward cycle and y′′s in the backward

cycle.

data representation, invariance to one or more specified fac-

tors of variation while simultaneously preserving other fac-

tors is an important property since it could benefit the end-

task (e.g., classification) by factoring out irrelevant infor-

mation [5]. Immunity against imperceptible perturbations,

which could mislead trained classifiers [19, 2, 33], can be

attained by training a network to generate a representation

that is invariant to such transformations [25]. Invariance to

factors such as gender or race is also useful in applications

where it is desirable that decisions not be biased towards or

against a particular group. In such cases, the data represen-

tation must not contain group-identifying information, but

must preserve other attributes.

Invariant representation learning has been studied in dif-

1



ferent domains, such as fair decision making [15, 6, 41],

privacy-preserving visual analytics [9, 8, 7], and domain

adaptation [31, 23, 16]. It is also closely related to disen-

tangled representation learning, as both attempt to separate

factors of variation in the data. The major difference be-

tween them is that invariant representations eliminate un-

wanted factors in order to reduce sensitivity in the direction

of invariance, while disentangled representations try to pre-

serve as much information about the data as possible [5].

In this work, we are interested in the problem of learning

image representations that are invariant to certain specified

factors of variation, e.g., identity, while preserving other un-

specified factors, e.g., pose, expression, etc., using adversar-

ial training. Our approach also enables us to explicitly set

the value of the specified factor within a synthesized image.

Generative models that are driven by an interpretable la-

tent space, i.e., one where the data representations can be

used to control certain characteristics of the outputs (e.g.,

create images from a particular class), are often prefer-

able. Such models are useful in a variety of applications,

e.g, automatic image editing [7, 26, 28]. Previous stud-

ies [7, 28, 39] combined the generative power of the Varia-

tional Auto-Encoder (VAE) [27] and the Generative Adver-

sarial Network (GAN) [18] to learn an invariant latent space

which enables controlling a specified factor of variation in

the synthesized samples. However, they either require train-

ing labels for both specified and unspecified factors of inter-

est [7, 39] or are limited to binary attributes [28].

Our proposed framework also builds upon VAEs and

GANs. We combine the two by structuring the generator

(G) in a conventional GAN as an encoder-decoder pair (see

Fig. 1a). In order to improve the invariance of data repre-

sentations and quality of synthesized images, we introduce

a forward-backward cyclic training process. During a for-

ward cycle, the generator is given an input image x with a

specified factor label ys. The encoder maps x to a latent

representation z, and the decoder is trained to reconstruct x

based on (z, ys) as well as synthesize a realistic image based

on (z, y′s), that can fool the discriminator into classifying it

to class y′s, where y′s is a generated class code. This encour-

ages the encoder to reduce information about the specified

factor in the latent representation as the specified factor of

a generated sample is determined by the class code. Mean-

while, the encoder is also encouraged to pass information

about the unspecified factors to the latent space to allow an

accurate reconstruction. However, a forward cycle alone

does not prevent a degenerate solution wherein information

about the specified factor still leaks into the latent space, but

the decoder learns to ignore that information. Therefore, in

the backward cycle, we impose a further constraint in the

latent space by explicitly minimizing the distance between

two latent representations one for a real training image x as-

sociated with label ys, and another for a synthesized sample

generated based on (x, y′′s ), where ys 6= y′′s . This forces the

encoder to only encode unspecified factors within the latent

space. The generator is additionally trained to reconstruct

the real image from its synthetic version with the appropri-

ate class code, which could benefit the image synthesis task.

Once trained, our model becomes a conditional image

generator that can synthesize novel images with the abil-

ity to change the specified factor value by tuning the class

code (using the forward cycle only). In order to measure the

quality of our model, we follow previous studies [20, 21]

and conduct a subjective visual evaluation. We also pro-

pose a quantitative method to evaluate conditional genera-

tive models by measuring how well different factors of vari-

ation can be predicted in the synthesized images via pre-

trained attribute estimators.

This paper makes the following contributions:

1. We develop a conditional Variational Generative Ad-

versarial Network for learning a representation that is

invariant to a specified factor, while preserving other

unspecified factors of variation.

2. We empirically verify the effectiveness of the pro-

posed model in learning invariant representations via

a forward-backward cyclic training process on a num-

ber of datasets and tasks.

3. We propose a new quantitative method to evaluate the

quality of conditional generative models and show that

our model consistently produces better quality images

compared to two state-of-the-art methods.

2. Related Work

Invariant Representation Learning: It has been exten-

sively studied in various contexts and the related literature

is vast. For instance, transformation-invariant feature learn-

ing has deep roots in computer vision; features are often

designed for a specific case, e.g., rotation or scale invari-

ance. Early examples include hand-crafted features such

as HOG [14] and SIFT [34]. More recently, deep Con-

volutional Neural Networks (CNNs) have been very ef-

fective in learning transformation-invariant representations

[11, 13, 37]

Another line of research aims at building fair, bias-free

classifiers that also attempt to learn representations invariant

to “nuisance variables”, which could potentially induce bias

or unfairness [32, 41, 15, 40]. One study proposed to obtain

fairness by imposing l1 regularization between representa-

tion distributions for data with different nuisance factors

of variation [32]. The Variational Fair Auto-Encoder [41]

tackles the same task using a VAE with maximum mean dis-

crepancy regularization. Particularly relevant to our work

are the methods proposed in [15, 40], that also incorpo-

rate adversarial training in an auto-encoder framework. Our



method differs in that we apply adversarial training in the

image space instead of the latent space. This creates bet-

ter quality images. Additionally, we improve the quality of

invariance through cyclic training.

Our work is also related to two recent studies [7, 39].

Both studies develop a fully-supervised method with adver-

sarial training in the image space to learn invariant repre-

sentations by factoring out nuisance variables for a specific

task, e.g., identity-invariant expression recognition. How-

ever, both methods can only retain certain factors of vari-

ation (with labels available for training) in the representa-

tions. Another drawback is that in those models a discrim-

inator is trained for each of the factors of variation so the

number of model parameters grows linearly with the num-

ber of factors. In contrast, our model uses a single discrim-

inator which only requires labels of the specified factor of

variation. Moreover, our model is designed to automatically

capture all unspecified factors of the data into the represen-

tation with no need for corresponding labels.

Disentangled Representation Learning: Invariant repre-

sentation learning has a natural connection to disentangled

representation learning, where the goal is to factorize dif-

ferent influencing factors of the data into different parts

of its representation. In an early study, a bilinear model

was proposed to separate content and style for face and

text images [38]. Another method used an E-M algorithm

to discover the independent factors of variation of the un-

derlying data distribution [17]. Later, unsupervised ap-

proaches to learn disentangled image representations were

proposed [10, 24]. A purely-generative model was devel-

oped in [10] but, unlike our model, it has no capacity to

create an invariant representation for a given image. A

method proposed in [24] can learn an image representa-

tion that consists of a pre-defined number of disentangled

factors of variation, but it has no control over which fac-

tors to learn. Recent methods [35, 20] proposed to combine

auto-encoder with adversarial training to disentangle speci-

fied and unspecified factors of variation and map them onto

separate latent spaces. Indeed, the resulting unspecified rep-

resentation is equivalent to an invariant representation that

is disentangled from the specified factor. However, meth-

ods with sole pixel-wise reconstruction objective in the im-

age space tend to produce blurry images. Another recent

work [21] proposed a cycle-consistent VAE to disentangle

the latent space into two complementary subspaces by us-

ing weak supervision (pairwise similarity labels). It is re-

lated to our work in the sense that both methods constrain

the latent space by adding a pair-wise distance between two

latent representations (which are supposed to be close) into

the cost function. The difference is that our method lever-

ages adversarial training based on a single source of super-

vision, enabling training with a single image in each iter-

ation instead of a pair of images. Moreover, we impose

cycle-consistency loss in the image space as opposed to the

latent space in [21]. Such modification, along with the addi-

tional adversarial loss in the image space, promotes genera-

tion of better quality invariant representations and images.

It is also worthwhile to mention that our work is related

to several previous works on image generation [29, 4] in

terms of using auto-encoder and GAN. However, our goals

are very different. The previous works mainly focus on de-

veloping image generation models, whereas our model is

explicitly optimized to create invariant image representa-

tions. Once trained, our model becomes a conditional image

generator.

3. Methodology

Let X denote the image domain and Y = {y1, ..., yK}
a set of K possible factors of variation associated with data

samples in X. Given an image x ∈ X and one specified

factor ys, where ys ∈ {1, ..., Ns} and Ns is the number of

possible classes, our proposed approach has two objectives:

1) to learn a latent representation z which is invariant to the

specified factor but preserves the other unspecified factors

of variation, and 2) to synthesize a realistic sample x̂′which

has the same unspecified factors as x and a desired speci-

fied factor value which is determined by an input class code

c(y′s), where y′s ∈ {1, ..., Ns} is generated from a distri-

bution p(y′s) and c(·) is a one-hot encoding function. For

simplicity, we consider here the case where ys is categori-

cal, but our approach can be extended to continuous ys.

Generator: We structure the generator in the proposed

model as an encoder-decoder pair (Fig. 1). The encoder

(Enc) aims to create a low-dimensional data representa-

tion z = Enc(x) via a randomized mapping z ∼ p(z|x)
parameterized by the weights of the encoder’s neural net-

work θenc. On the other hand, the decoder (Dec) is a neural

network with weights θdec. It is responsible for learning a

mapping function x̂
′ ∼ p(x|z, c(y′s)) that can map the la-

tent representation z in combination with class code c(y′s)
back to the image space. The latent space is regularized by

imposing a prior distribution, in our experiments a normal

distribution r(z) ∼ N (0, I).
Discriminator: Different from the discriminators in con-

ventional GANs, the discriminator D in our model is a

multi-class classifier represented by a neural network with

weights θdis. The outputs of the discriminator D(x) ∈
R

Ns+1 are the predicted probabilities of each class corre-

sponding to Ns different values of the specified factor and

an additional “fake” class for synthesized images.

Forward cycle: First, we sample an image x from the train-

ing set and pass it through the encoder to generate a latent

representation z. The decoder is trained to produce a recon-

struction of the input x̂ ∼ p(x|z, c(ys)) and also to syn-

thesize a new data sample x̂
′ ∼ p(x|z, c(y′s)) that can fool

the discriminator D into classifying it as the specified class



y′s. Specifically, the weights of the generator network are

adjusted to minimize the following cost function:

Lfw
G (G,D) =

− λG
1 Ex∼p(x),y′

s∼p(y′

s)

[

logDy′

s

(

G(x, c(y′s))
)]

+

λG
2 E(x,ys)∼p(x,ys)

[

||x−G(x, c(ys))||
2
2

]

+

λG
3 KL(p(z|x)||r(z)) (1)

where p(x, ys) denotes the joint distribution of the real im-

age and the specified factor in the training data, p(x) is the

corresponding marginal distribution of the real image, p(y′s)
is a distribution of the specified factor used to synthesize

a “fake” image, Di is the predicted probability of the i-th

class, and λG
1 , λ

G
2 , λ

G
3 are weighting factors.

The discriminator aims to correctly classify a real train-

ing sample x to its ground-truth class value ys of the spec-

ified attribute but, when given a synthetic sample x̂
′ from

the generator, it attempts to classify it as fake. This is ac-

complished by adjusting the weights of the discriminator by

maximizing the following cost function:

Lfw
D (G,D) =

λD
1 E(x,ys)∼p(x,ys)[logDys

(x)]+

λD
2 E

x∼p(x),y′

s∼p(y′

s)
[logDNs+1(G(x, c(y′s)))] (2)

where λD
1 and λD

2 are tuning parameters.

The weights of the networks in G and D are updated

in an alternating order. Over successive training steps, G

learns to fit the true data distribution and reconstruct the

input image as well as synthesize realistic images that can

fool D. The generator objective (second term in Eq. (1))

encourages the encoder to pass as much information about

the unspecified factors as possible to the latent representa-

tion. Since the class code c determines the specified factor

value of x̂′, the encoder is also encouraged to eliminate in-

formation about the specified factor of x in the latent rep-

resentation. The encoder may, however, fail to disentangle

the specified and unspecified factors of variation and the de-

coder may still learn to synthesize images according to the

class code c by ignoring any residual information about the

specified factor that is contained within the representation.

To avoid such a degenerate solution, we use a backward cy-

cle to further constrain the latent space.

Backward cycle: This cycle requires a synthesized image

x̂
′′ of class y′′s generated from a real image x of class ys.

We intentionally choose y′′s 6= ys so that x̂′′ and x carry

different specified factor values. Two latent representations

z = Enc(x) and z
′′ = Enc(x̂′′) can be computed by pass-

ing, respectively, x and x̂
′′ through the encoder. If the en-

coder fails to transmit information about unspecified fac-

tors from the input to its latent representation, or if it retains

considerable information about the specified factor in the

latent space, then z and z
′′ are expected to have a large pair-

wise distance. In other words, if the latent space only main-

tains information about the unspecified factors, z should be

equivalent to z
′′. In addition, we would like to encourage

the generator to reconstruct the input x from its synthetic

version x̂
′′ in combination with a class code c(ys) that en-

codes the ground-truth label of the specified factor of x.

These considerations motivate optimizing the generator in

the backward cycle by minimizing the following cost func-

tion:

Lbw
G = E(x,ys)∼p(x,ys),y′′

s ∼p(y′′

s )

[

λbw
1 ||z− z

′′||1+

λbw
2 ||x−G(x̂′′, c(ys))||

2
2

]

(3)

where λbw
1 and λbw

2 are two weighting factors. The first term

in Eq. (3) penalizes the generator if z is not close to z
′′. The

second term encourages the synthesized x̂ to resemble x.

Essentially, the forward cycle translates x to a synthetic

image x̂
′′ = G(x, c(y′′s )) followed by a backward trans-

form x̂ = G(x̂′′, c(ys)), such that x̂ ≃ x. This cyclic train-

ing process assists the model in generating good quality im-

ages and further encourages invariance to the specified fac-

tor in the latent space

4. Experimental Evaluation

We evaluate the performance of the proposed model on

three image datasets: 3D Chairs [3], YaleFace [30] and

UPNA Synthetic [1]. We first conduct a quantitative eval-

uation of the degree of invariance in the latent space by

training dedicated neural networks (one per factor) to pre-

dict the values of the specified and certain unspecified fac-

tors (that have ground-truth labels) from the latent repre-

sentation. The factor prediction accuracies quantify how

much information about each factor has been preserved in

the latent representation. If the model succeeds in eliminat-

ing all information about the specified factor and preserv-

ing all information about unspecified factors, we should ex-

pect the prediction accuracy for the specified factor to be

close to pure chance and the prediction accuracies for the

unspecified factors to be nearly perfect. We also evaluate

the quality of the image generation process. Unlike previ-

ous works [20, 21], which only provide a qualitative eval-

uation through visual inspection of the synthesized images,

we propose a new method to quantitatively assess the ability

of a conditional generative model to synthesize realistic im-

ages while preserving unspecified factors. In Section 4.3,

we present details of the proposed evaluation method and

associated experimental results.

We compare our model with two state-of-the-art meth-

ods [20, 21] that learn to produce, for a given input image,

two latent vectors (as opposed to just one in our method).

One of the latent vectors captures information related to the



unspecified factors of variation and is, in an ideal scenario,

devoid of any information related to the specified factor of

variation. This latent vector is the counterpart of the latent

invariant representation in our method. For synthesizing an

image with a desired value for the specified factor, the meth-

ods in [20, 21] require an additional surrogate image which

has the desired value for the specified factor. They would

then substitute the latent vector of the specified factor in the

original image with that of the surrogate image and then de-

code the result. Our approach, in contrast, uses a class code

(as opposed to a surrogate image) to explicitly set the value

of the specified factor in the synthesized image. In our ex-

periments, we compare the latent vectors for the unspecified

factors from the competing methods and the latent represen-

tation from our method in terms of their ability to predict the

specified and unspecified factors which indicates the quality

of invariance. We used the publicly-available source code to

implement both benchmarks, but slightly modified their net-

work architectures to ensure that all three competing models

have similar numbers of parameters. We also did parameter

tuning for each method for each of the three datasets.

4.1. Datasets

3D Chairs: This dataset includes 1,393 3D chair styles ren-

dered on a white background from 62 different viewpoints

that are indexed by two values of angle θ and 31 values of

angle φ. Each image is annotated with the chair identity in-

dicating its style as well as viewpoint (θ, φ). For each chair

style, we randomly picked 50 images (out of 62) to popu-

late the training set, and used the remaining 12 images in

the testing phase. This gives, in total, 69,650 images in the

training set, and 16,716 images in the test set.

YaleFace: This dataset consists of gray-scale frontal face

images of 38 subjects under 64 illumination conditions. In

our experiments, we randomly chose 54 images (out of 64)

from each subject for training, and used the rest as the test

set for performance evaluation.

UPNA Synthetic: This is a synthetic human head-pose

database. It consists of 12 videos for each of 10 subjects;

120 videos in total with 38,800 frames. Ground-truth con-

tinuous head pose angles (yaw, pitch, roll) are provided for

each frame. We randomly selected 85% of the frames from

each video for each subject for the training and used the

remaining 15% for testing.

For computational efficiency, in our experiments, we re-

sized each RGB image to 64 × 64-pixel resolution for all

three datasets. Table 1 summarizes the specified and un-

specified factors of variation that we investigate across the

three datasets.

4.2. Quality of invariance

We follow previous methodology [21, 20] and train ded-

icated neural network estimators to predict the specified

Table 1: Specified and unspecified factor(s) of variation in-

vestigated in the three datasets.

Dataset Specified factor Unspecified factor(s)

3D Chairs Chair style View orientation (θ, φ)

YaleFace Identity Illumination Cond.

UPNA Synthetic Identity Head pose

and unspecified factors of variation based on the learned

latent representations generated by each competing model.

We use correct classification rate (CCR) and mean absolute

error (MAE) to measure the performance of classification

tasks and regression tasks, respectively. Table 2 summarizes

the performance of each model on the three image datasets.

In the 3D Chairs dataset, we regard chair style as the

specified factor and the viewing orientation angles as the

unspecified factors. Since both orientation angles are dis-

crete, we treat viewing orientation estimation as a classifi-

cation problem. As shown in Table 2, all three competing

models manage to reduce the style information contained

within the latent representation to a large extent (very low

style prediction CCR values). However the proposed model

(with backward cycle) outperforms the benchmark models,

in terms of the ability to predict the viewing orientation an-

gles, by a large margin (about 11–28% CCR improvement

for φ and 9–13% CCR improvement for θ). We also note

that the backward cycle significantly improves invariance,

e.g., style prediction CCR decreases from 3.21% to 0.79%.

For the YaleFace dataset, subject identity is considered

as the specified factor and illumination condition as the un-

specified factor of variation. We first observe that the iden-

tification performance of the three models is comparable

and close to a random guess, which suggests the competing

models perform equally well in creating representations that

are invariant to identity. For the recognition of illumination

condition, the classification CCR for our model is 85.50%,

which again surpasses the two benchmark CCRs by about

8% and 53% in accuracy. Such large performance gaps sug-

gest that the invariant representation learned by our model is

better, than the competing alternatives, in preserving infor-

mation about unspecified factors of variation. Furthermore,

we observe that the backward cycle helps reduce the identi-

fication CCR by about 5%, thus confirming its usefulness.

In the case of UPNA Synthetic dataset, the specified and

unspecified factors of variation used in evaluation are sub-

ject identity and head pose, respectively. Head pose is de-

fined as a three-dimensional angular value (yaw, pitch, roll)

in continuous space. Thus, we train neural-network based

regressors to estimate head pose and report the mean and

standard deviation of the absolute errors for yaw, pitch and

roll angles separately. In terms of identification accuracy,

the performance of the three methods is similar (no more

than 3% difference in CCR or about 2-3 times that of a ran-

dom guess). We also notice that the backward cycle greatly

promotes invariance as it helps to reduce identification CCR



Table 2: Evaluation of the quality of invariance of representations generated by the competing models on 3D Chairs, YaleFace

and UPNA Synthetic datasets. Classification performance is measured using CCR. Regression performance is measured using

MAE and standard deviation. ↑ means higher is better. ↓ means lower is better.

Datasets Factors of variation
Methods

Random guess/
[20] [21] Ours Ours w/o b.w. cycle

Median

3D Chairs

Chair Style ↓ 0.07% 0.77% 0.70% 0.79% 3.21%

θ ↑ 50% 68.92% 64.22% 78.17% 74.37%

φ ↑ 3.22% 50.23% 43.75% 71.90% 69.45%

YaleFace
Identity ↓ 2.63% 4.68% 5.50% 6.97% 12.36%

Illumination Cond. ↑ 1.56% 77.80% 32.36% 85.50% 85.40%

UPNA Synthetic

Identity ↓ 10% 15.80% 18.83% 18.05% 33.40%

Yaw ↓ 5.10◦±6.70◦ 2.77◦±2.00◦ 2.42◦±2.52◦ 2.12◦±2.12◦ 2.10◦±2.08◦

Pitch ↓ 4.98◦±5.02◦ 2.43◦±2.10◦ 2.88◦±2.71◦ 2.23◦±2.10◦ 2.20◦±2.06◦

Roll ↓ 4.68◦±6.88◦ 1.19◦±1.43◦ 1.65◦±2.35◦ 1.16◦±1.24◦ 1.29◦±1.43◦

from 33.40% to 18.05%. As for head-pose estimation, we

use “Median” estimate as a baseline, i.e., the median value

of ground truth across the entire training set. We note that

our model slightly, but consistently, outperforms the bench-

marks, and significantly outperforms the median estimate.

This once again confirms the effectiveness of our model in

preserving information pertaining to the unspecified factors

in the latent representation while discarding information re-

lated to the specified factor.

4.3. Quality of image generation

Many studies have proposed measures to evaluate gener-

ative models for image synthesis. Some of them attempt

to quantitatively evaluate models while some others em-

phasize qualitative approaches, such as user studies (e.g.,

visual examination). However, such subjective assessment

may be inconsistent and not robust as human operators may

fail to distinguish subtle differences in color, texture, etc.

In addition, such a measure may favor models that can

merely memorize training samples. In terms of quantita-

tive methods, some studies proposed to use measures from

image quality assessment literature such as SSIM, MSE

and PSNR. However, they require a corresponding refer-

ence real image for each synthesized one. Other widely-

adopted reference-free quantitative measures like Inception

Score [36] and Fréchet Inception Distance [22] are designed

for generic GANs. Thus, they are not suitable for condi-

tional models that aim to generate samples from a partic-

ular class. Several quantitative evaluation methods have

been proposed for conditional generative models [12, 42].

For example, [42] proposed to feed fake colorized images

(of real grayscale images) to a classifier that was trained on

real color images. If the classifier performs well, this indi-

cates that the colorization is accurate. In contrast to these

works, we evaluate multiple objectives simultaneously: one

to evaluate invariance to a target attribute and others to eval-

uate the preservation of un-specified attributes.

Inspired by the previous studies that use an off-the-shelf

classifier to assess the realism of synthesized data, we pro-

pose a quantitative method that utilizes a number of attribute

estimators to evaluate the quality of conditional genera-

tive models. The intuition is that a good generative model

for learning an invariant/disentangled representation should

have the capability to explicitly and accurately control the

specified factor value when it generates a novel image. Fur-

thermore, it should precisely transfer the other unspecified

factors of variation from the source image to its synthetic

version. Therefore, we can evaluate a model by measuring

how well the different factors of variation in the synthesized

images can be predicted via estimators that are pretrained on

the real images.

Specifically, we train a number of attribute estimators

Fj , where j ∈ {1, ...,K}, on the original training sets of

real images. For each (real) test image x having specified

and unspecified factors of variation yj , j ∈ {1, . . . ,K}, we

synthesize a new version x̂
′ = G(x, c(y′s)) using the gener-

ator, where y′s is sampled at random, independently of x, ys,

from a distribution p(y′s). The image x̂
′ thus synthesized is

passed to the pretrained estimators to obtain a prediction for

each attribute (whether specified or unspecified). If a factor

of variation yj is categorical, then Fj(x̂′) is a probability

distribution over the set of all possible values that factor

can take. In particular, Fj
yj
(x̂′) = p(yj |x̂

′). If yj is contin-

uous, then ŷj := Fj(x̂′) is a numerical value which should

be approximately equal to yj . In order to quantify perfor-

mance, we introduce the following Generator Label Score

(GLS) for both discrete and continuous factors of variation.

For a categorical unspecified factor yj ,

GLS := E(x,yj)∼p(x,yj),y′

s∼p(y′

s)

[

Fj
yj

(

G(x, c(y′s))
)]

whereas for a categorical specified factor ys,

GLS := E
x∼p(x),y′

s∼p(y′

s)

[

Fj
y′

s

(

G(x, c(y′s))
)]

.

For a quantitative unspecified factor yj ,

GLS := E(x,yj)∼p(x,yj),y′

s∼p(y′

s)
||Fj

(

G(x, c(y′s))
)

− yj ||
p



whereas for a quantitative unspecified factor ys,

GLS := E
x∼p(x),y′

s∼p(y′

s)
||Fj

(

G(x, c(y′s))
)

− y′s||
p.

For a good conditional generative model, the value of GLS

should be high for every categorical factor of variation

(specified or unspecified) and low for every quantitative fac-

tor. If the relative importance of each attribute is known,

GLS values can be converted to a single value. Although

quantitative, GLS need not correlate well with the subjec-

tive quality of synthesized images as perceived by humans.

In order to compute GLS, we use the three competing

models to create, separately, synthetic versions of test im-

ages for each dataset. For the proposed model, the input

image x and class code c provide the necessary information

about unspecified and specified factors, respectively. Thus,

we synthesize a new version for each test image by passing

it through the generator in combination with a randomly-

generated class code. For the benchmark methods, we fol-

low the procedure described in the respective papers to gen-

erate new images. In order to generate a new sample, we

combine the unspecified latent representation of a test im-

age and the specified latent representation of another image

randomly picked from the same test set.

Table 3: Comparison of GLS values for the competing mod-

els. ↑ means higher is better. ↓ means lower is better.

Datasets Factors of variation
Methods

[20] [21] Ours Ours w/o b.w. cycle

3D Chairs

Chair Style ↑ 0.02 0.02 0.87 0.77

θ ↑ 0.56 0.61 0.66 0.66

φ ↑ 0.38 0.49 0.57 0.52

YaleFace
Identity ↑ 0.24 0.07 0.98 0.97

Illumination Cond. ↑ 0.17 0.29 0.70 0.68

UPNA

Identity ↑ 0. 88 0.98 1.00 0.99

Yaw ↓ 3.51 2.65 2.55 2.62

Pitch ↓ 4.07 2.84 2.46 2.95

Roll ↓ 3.17 1.47 1.37 1.39

Table 3 reports the GLS for the three datasets. We first

observe that the proposed model consistently achieves bet-

ter scores compared to the benchmark models. We can also

see that the backward cycle does indeed improve the quality

of the synthesized images. In particular, GLS values for the

specified factors (chair style and identity) for our model are

nearly perfect suggesting that our model manages to accu-

rately alter the specified factor value in the generated im-

ages. With respect to unspecified factors of variation, our

model yields a high GLS value for the illumination condi-

tion (0.70) and a low value for head pose (e.g., 1.37 for

roll angle). While the achieved scores on viewing orienta-

tion (θ, φ) for our model are slightly lower than expected,

they are still better than those for the benchmarks. This

is likely because our model occasionally fails to precisely

construct chairlegs or arms (see Fig. 2a), which provide im-

portant cues for recognizing the viewing orientation. It is

worth mentioning that the performance differences are less

significant on UPNA Synthetic dataset. One possible rea-

son is that it has the maximum number of training samples

per class among the three datasets which could benefit the

training of the generator.

As can be seen in Figure 2, our model can change a spec-

ified factor of variation in an input image, such as face iden-

tity or chair style, by adjusting class code c. Meanwhile, the

other unspecified factors such as orientation, illumination

condition or head pose of the input image are largely pre-

served in its synthetic version. Overall, images generated

by our model are realistic although distortions may occur in

image details, e.g., chair legs (see the fifth image in the sec-

ond row of Fig. 2a). In contrast, the benchmark methods can

only combine the specified factors from one source image

and the unspecified factors from another source image to

generate a new image. Therefore, they have less flexibility

to modify a specified factor of variation to a desired value.

Images shown in Figs. 2b and 2c are generated by feeding

the specified representations from images in the first row,

and the unspecified representations from images in the first

column to the decoder. The visual quality of correspond-

ing images is inferior to those from our model; blur and

distortions are clearly visible. Furthermore, the benchmark

methods are less effective in maintaining certain important

factors of variation, e.g., color in the synthesized images

(see the generated chair images in Figs. 2b and 2c).

The remarkable consistency of the quantitative and qual-

itative results confirms the effectiveness of the proposed

model in creating realistic images with a desired value for

the specified factor and the same unspecified traits as the

source images.

Interpolation of synthesis variables: In order to further

evaluate the generative capacity of the proposed model, we

conducted additional experiments wherein we linearly in-

terpolate between latent representations and class codes of

an initial and a final image in order to obtain a series of

new image representations and class codes which are then

combined and fed to a trained decoder to synthesize new

images. Specifically, let zinitial, zfinal and cinitial, cfinal de-

note, respectively, the learned latent representations and

class codes of the initial and a final images and cinterp =
(1− αc)cinitial + αccfinal and zinterp = (1− αz)zinitial +
αzzfinal their interpolated values, where αc, αz ∈ [0, 1]. We

synthesize new images by passing (cinterp, zinterp) into the

decoder. Surprisingly, when this is applied to a face dataset,

our trained model can generate a sequence of face images

that show a seamless transition from one identity into an-

other, i.e., face morphing (3), and also a seamless transition

from one value of an unspecified factor (e.g., illumination,

pose) into another (columns of Fig. 3). This is despite the

fact that the model can only see one-hot codes specifying

discrete identities during training. In Fig. 3, the class code
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Input !(1) !(2) !(3) !(4) !(5)

(a) Image synthesis results for the proposed model

(b) Image synthesis results for the model in [20]

(c) Image synthesis results for the model in [21]

Figure 2: Image synthesis by altering the specified factor of variation for 3D Chairs, YaleFace and UPNA Synthetic datasets

(from left to right).

is constant within each column while the representation is

constant within each rows. We observe that when inter-

polating c, the unspecified factors such as illumination or

head pose are consistent, while the specified factor (iden-

tity) changes gradually. In contrast, when interpolating z

the specified factor remains unchanged but the unspecified

factors transform continuously.
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(b) UPNA Synthetic

Figure 3: Linear interpolation results for the proposed

model in the latent space (z) and class code space (c). The

top-left and bottom-right images are taken from the test set.

5. Conclusion

This paper presents a conditional adversarial network

for learning an image representation that is invariant to a

specified factor of variation, while maintaining unspecified

factors. The proposed model does not produce degenerate

solutions due to a novel cyclic forward-backward training

strategy. Quantitative results from a broad set of experi-

ments show that our model performs better or equally well

compared to two state-of-the-art methods in learning invari-

ant image representations. Once trained, our model is also

generative as it enables synthesis of a realistic image having

a desired value for the specified factor. Both qualitative and

quantitative evaluation results confirm that our model can

produce better quality images than the competing models.
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