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Abstract

Randomized smoothing, a method to certify a classifier’s

decision on an input is invariant under adversarial noise,

offers attractive advantages over other certification meth-

ods. It operates in a black-box and so certification is not

constrained by the size of the classifier’s architecture. Here,

we extend the work of Li et al. [26], studying how the choice

of divergence between smoothing measures affects the final

robustness guarantee, and how the choice of smoothing mea-

sure itself can lead to guarantees in differing threat models.

To this end, we develop a method to certify robustness against

any `p (p 2 N>0) minimized adversarial perturbation. We

then demonstrate a negative result, that randomized smooth-

ing suffers from the curse of dimensionality; as p increases,

the effective radius around an input one can certify vanishes.

1. Introduction

Image classification is vulnerable to adversarial examples.

Given an image classifier f : R
n ! R

m such that the

decision function F = argmaxi fi classifies an input, x,

correctly as F (x) = y, an adversarial example is an input,

x+�, such that F (x+�) 6= y where x and x+� are assigned

the same label by an oracle classifier, O, which is usually

taken to be the human vision system. To preserve oracle

classification, it is common to minimize the perturbation,

�, with respect to an `p norm. Constructing a perturbation

such that k�kp ⌧ kxkp, will result in an input such that

kx+ �kp ⇡ kxkp. With high likelihood x and x+ � will be

visually similar and O will classify both correctly.

The vulnerability to adversarial examples requires a suit-

able defense. Many empirical defenses have been proposed

and subsequently shown to be broken, implying more the-

oretically grounded techniques to measure robustness are

required [1, 6, 7, 16, 34]. Recently, methods from verifica-

tion literature have been used to provide guarantees of an

inputs robustness to adversarial perturbations. These meth-

ods seek the minimum or a lower bound on the amount of

noise required to cause a misclassification. These verifica-

tion methods are most often tailored to a single `p norm

for which the defense guarantees robustness. A number

of defenses certify a neural network is robust to adversar-

ial examples by propagating upper and lower input bounds

throughout the network or by bounding the Lipschitz value

of the network [4, 12, 17, 18, 27, 29, 33, 37].

Recently, randomized smoothing has been proposed

to certify image classifiers to `0, `1, and `2 perturba-

tions [10, 24, 25, 26]. By constructing a classifier that

outputs a label based on a majority vote under repeated

addition of Laplacian or Gaussian noise, Lecuyer et al. [24]

found lower bounds to the amount of noise required for mis-

classification of an input in the `1 or `2 norm, respectively.

Following this, Li et al. [26] and Cohen et al. [10] provided

improved bounds in the `2 norm. As explained by Cohen

et al. [10], randomized smoothing has attractive advantages

over other certification methods: it is scalable to large clas-

sifiers and makes no assumption about the architecture. In

this work, we extend the general framework for randomized

smoothing as proposed by Li et al. [26]. Firstly, we study

how the choice of divergence between inputs smoothed with

noise affects the final certificate, and secondly, we study how

the choice of smoothing measure itself can lead to guarantees

for differing threat models. Concretely, we show how the

choice of smoothing measure allows us to extend random-

ized smoothing to any `p norm (p 2 N>0), showing we can

certify inputs with non-vacuous bounds over a range of `p
norms with small p values. We then show that randomized

smoothing fails to certify meaningfully large radii around

inputs as p increases.

2. Certified defenses

In this section, we discuss related work on certified de-

fenses to adversarial examples, introduce extensions to ran-

domized smoothing approaches to certified defenses, and

provide a method to compute a certified robust area around

an input under any `p norm attack, where p 2 N>0.

2.1. Background on certified defenses

The vulnerability of empirical defenses to adversarial ex-

amples has driven the need for formal guarantees of robust-

ness. We define certified robustness as a guarantee that the



decision of a classifier is preserved within an ✏-ball around

an input, and we refer to size of this ✏-ball as the certified

radius. Formal methods can be separated into complete and

incomplete methods. Complete methods such as Satisfiabil-

ity Modulo Theory (SMT) [8, 15, 20] or Mixed-Integer Pro-

gramming (MIP) [5, 9, 35] provide exact robustness bounds

but are expensive to implement. Incomplete methods solve a

convex relaxation of the verification problem. The bounds

given by incomplete methods can be loose but are quicker to

find than exact bounds [4, 12, 17, 18, 27, 29, 37].

Lecuyer et al. [24] developed the certification technique,

referred to as randomized smoothing, by noticing a connec-

tion between differential privacy [14] and robustness, and

show that robustness can be proven under concentration mea-

sures of classification under noise. This work was expanded

upon by Lee et al. [25], Li et al. [26], and Cohen et al. [10],

who found improved robustness guarantees in the `0, `1, and

`2 norms, respectively. Similarly to this work, Dvijotham

et al. [13] developed a general framework for randomized

smoothing that can handle arbitrary smoothing measures and

so find robustness guarantees in any `p norm. In concurrent

work, Blum et al. [3], Kumar et al. [23], and Yang et al.

[36] also show that randomized smoothing may be unable

to find robustness guarantees in the `1 norm. Most related

to this work are the findings of Kumar et al. [23], who also

use a generalized Gaussian distribution for smoothing and

show that the certified radius in an `p norm decreases as

O(1/d
1
2
� 1

p ), where d is the dimensionality of the data.

2.2. Certification via randomized smoothing

Here, we expand on how robustness guarantees can be

found through randomized smoothing.

Problem statment. Given an input x 2 X such that

argmaxi fi(x) = y, find the maximum ✏ such that 8x0 2 X ,

d(x, x0) < ✏ =) argmaxi fi(x
0) = y, given a distance

function d : X ⇥ X ! R
+.

This can be cast as an optimization problem, given by

max
x02X

d(x, x0)

subject to argmax
i

fi(x
0) = y

(1)

In general, solving the above formulation is difficult, how-

ever randomized smoothing, introduced by Lecuyer et al.

[24], can be used to solve a relaxed version of this problem.

Namely, the aim is to solve

max
x02X

d(x+ ✓, x0 + ✓)

subject to E[argmax
i

fi(x
0 + ✓)] = y,

(2)

where ✓ is a sample from a smoothing measure, µ, and d
is now taken to be a suitable divergence or distance measure

between random variables. For example, Li et al. [26] take

µ to be the centered Gaussian, N (0,�2). Since Gaussians

belong to the location-scale family of distributions, we can

treat x and x0 as constants and so, x+ ✓ and x0 + ✓ can be

treated as random variables from distributions N (x,�2) and

N (x0,�2), respectively. We can use well known properties

of divergences of Gaussians to represent d(x + ✓, x0 + ✓)
in terms of the `2 norm difference of their means. Specif-

ically, d(x + ✓, x0 + ✓) can be represented as a function

of kx � x0k2 and �, for common divergences such as the

Rényi and KL divergences. However, we must still solve

the problem of ensuring E[argmaxi fi(x
0 + ✓)] = y. Given

a chosen divergence, Li et al. [26] approach this problem

by finding a lower bound between two multinomial distribu-

tions, P and Q, in terms of the two largest probabilities of

P , when argmaxi Pi 6= argmaxi Qi. This shows that any

distribution, Q, for which P and Q agree on the index of the

top probability, the divergence between P and Q must be

smaller than this lower bound. We denote this lower bound

by h(p1, p2), where p1, p2 represent the top two probabili-

ties from P . Given this lower bound Li et al. [26], solve the

following problem

max
x02X

d(f(x+ ✓), f(x0 + ✓))

subject to d(f(x+ ✓), f(x0 + ✓))  h(p1, p2)
(3)

This can be efficiently solved by finding an upper bound

to the Lagrangian relaxed problem

max
�0,x02X

d(f(x+ ✓), f(x0 + ✓))

+ �(h(p1, p2)� d(f(x+ ✓), f(x0 + ✓)))
(4)

= max
�0,x02X

(1� �)d(f(x+ ✓), f(x0 + ✓)) + �h(p1, p2)

(5)

= max
��0,x02X

(1 + �)d(f(x+ ✓), f(x0 + ✓))� �h(p1, p2)

(6)

 max
��0,x02X

(1 + �)d(x+ ✓, x0 + ✓)� �h(p1, p2) (7)

= max
��0,x02X

(1 + �)g(kx� x0k2,�)� �h(p1, p2), (8)

where in eq. (7), we use the data processing inequality

property of divergences, and in eq. (8), we use the fact that

for many common divergences, we can represent the diver-

gence between two Gaussians as a function of the `2 norm

of their means and their standard deviation, which we denote

by g(kx� x0k2,�).
By choosing d : X⇥X ! R

+ to be the Rényi divergence,



Table 1: `2 certified radius when using different divergences.

Distance
d(Q,P ) �

d(N (x,�2),N (x0,�2))
Certified radius

(when argmaxi qi 6= argmaxi pi) (for kx� x0k2 < ✏)

dKL(Q,P ) =
Pk

i=1 qi log
qi
pi

� log(2
p
p1p2 + 1� p1 � p2)

1
�2 kx� x0k22

p

��2 log(2
p
p1p2 + 1� p1 � p2)

dH2(Q,P ) = 1
2

Pk
i=1(

p
qi �

p
pi)

2 1�
q

1� (
p
p1�

p
p2)2

2 1� e�
kx�x0k22

8σ2

r

�8�2 log(

q

1� (
p
p1�

p
p2)2

2 )

d�2(Q,P ) =
Pk

i=1
(qi�pi)

2

pi

(p1�p2)
2

(p1+p2)�(p1�p2)2
e

kx�x0k22
σ2 � 1

q

�2 log( p1+p2

(p1+p2)�(p1�p2)2
)

dB(Q,P ) = � log(
Pk

i=1

p
qipi) � log

� (
p
p1+

p
p2)

2+2(1�p1�p2)p
2(2

p
p1p2+2�p1�p2)

�

1
8�2 kx� x0k22

r

�8�2 log
� (

p
p1+

p
p2)2+2(1�p1�p2)p

2(2
p
p1p2+2�p1�p2)

�

dTV (Q,P ) = 1
2

Pk
i=1 |qi � pi|

|p1�p2|
2 2Φ(kx�x0k2

2� )� 1 2�Φ�1( |p1�p2|
2 + 1

2 )

we recover the results of Li et al. [26] with

g(kx� x0k2,�) =
↵kx� x0k22

2�2
(9)

h(p1, p2) = � log
⇣

1� p1 � p2 + 2
�1

2
(p1�↵

1 + p1�↵
2 )

�
1

1�α

⌘

(10)

Thus, for any x0 2 X with kx� x0k2 < ✏ we can guarantee

the classifier, f , will not change it’s decision for any ✏ smaller

than

max
��0

 

sup
↵>1

✓

� �2�2

(1 + �)↵
log
⇣

1� p1 � p2+

2
�1

2
(p1�↵

1 + p1�↵
2 )

�
1

1�α

⌘

◆

!
1
2

(11)

=

 

sup
↵>1

✓

� 2�2

↵
log
⇣

1� p1 � p2+

2
�1

2
(p1�↵

1 + p1�↵
2 )

�
1

1�α

⌘

◆

!
1
2

(12)

Clearly, this framework for certifying inputs is general

and extends to different choices of divergence. In the next

section, we explore divergences beyond Rényi divergence

and show this choice affects the certified radius, given a

Gaussian smoothing measure.

2.3. Certification guarantees against `2 perturba-
tions for common divergences

Li et al. [26] show that, given two distributions, P and Q,

with different indexes for the top probability, a lower bound

of the Rényi divergence (denoted by d↵) is given by eq. (10).

We extend this line of reasoning to find lower bounds for the

KL divergence (dKL), Hellinger distance (dH2), (Neyman)

chi-squared distance (d�2), Bhattacharyya distance (dB),

and total variation distance (dTV ). Proofs of these lower

bounds are given in appendix A. To find a certified radius of

a classifier’s decision around an input, we find the distances

between Gaussian measures with respect to each of these

divergences. These are both represented in table 1 along

with the certification guarantee in the `2 norm. We visualize

the trade-off in certified radius around an input in fig. 1 for

a hypothetical binary classification task as a function of the

classifier’s top output probability, p1. As well as including

the certified radii derived from the aforementioned diver-

gences, we include the certified radii for the `2 norm found

by Lecuyer et al. [24] and Cohen et al. [10] approaches.

Lecuyer et al. [24] find a certified radius against `2 perturba-

tions given by sup0<�min(1, 12 log
p1
p2

)
��

r

2 log
⇣

1.25(1+exp(β))
p1�exp(2β)p2

⌘

,

while Cohen et al. [10] give a tight robustness guarantee for

`2 perturbations of the form �
2

�

Φ
�1 (p1)� Φ

�1(p2)
�

.

Clearly, all choices of distance metrics dominate the cer-

tificates found using the Lecuyer et al. [24] method, and

for values of p1 close to 1/2, dTV is approximately equal to

the tight Cohen et al. [10] guarantee. However, the certi-

fied radius found using dTV is linear with respect to the top

predicted probability, and so becomes a weaker guarantee

for larger probabilities. Robustness guarantees provided by

Rényi and chi-squared divergences are approximately equal;

a finer-grained visualization of the difference between these

two divergences is given in appendix B.

We formalize the trade-offs between different choices of

divergences with the following proposition.

Proposition 1. Let ✏dKL
, ✏d

χ2 , ✏dH2 , ✏dB
, ✏dα

, and ✏[24], de-

note the certificates found using dKL, d�2 , dH2 , dB , d↵, and



Figure 1: Comparison of the certified radius against pertur-

bations targeting the `2 norm, for different divergences, as a

function of the top predicted probability, p1, with � = 1.

the Lecuyer et al. [24] approach, respectively. Then, the

following holds

1. 8p1 2 ( 12 , 1), ✏dα
> ✏d

χ2 .

2. 8p1 2 ( 12 , 1), ✏dχ2 > ✏dKL
.

3. 8p1 2 ( 12 , 1), ✏dχ2 > ✏d
H2 .

4. 8p1 2 [ 12 , 1], ✏dB
= ✏d

H2 .

5. 8p1 2 ( 12 , 0.998), ✏dH2 > ✏dKL
.

6. 8p1 2 ( 12 , 1), ✏dKL
> ✏[24].

Proof. See appendix C.

Proposition 1 defines a strict hierarchy, and so informs us

of the best divergence one can use to certify an input against

`2 perturbations using the Li et al. [26] approach.

2.4. Certification guarantees beyond the `2 based
perturbations via different smoothing mea-
sures

The Gaussian distribution is a natural choice for the

smoothing measure because it naturally leads to robustness

guarantees in the `2 norm. However, it is also a convenient

choice of smoothing measure because it is a member of the

location-scale family of distributions. This means that, fixing

x 2 X , sampling from x +N (0,�2) is equivalent to sam-

pling from N (x,�2). Importantly, addition of a constant, x,

does not change the family of the smoothing measure, and

so we can use well known formula for the distances between

two Gaussian distributions to derive robustness guarantees.

Unfortunately, not all distributions belong to the location-

scale family, and so, in our formulation, we are not free

to choose any distribution for smoothing. Another conve-

nient choice of a location-scale distribution is the generalized

Gaussian distribution [30], denoted GN (µ,�, s), whose den-

sity function is given by

p(x) =
s

2�Γ( 1s )
e�| x�µ

σ
|s (13)

where µ is the mean, � denotes a scaling factor and s
denotes a shaping factor. The Laplacian distribution is recov-

ered when s = 1, the Gaussian N (µ, �2

2 ) when s = 2, and

the uniform distribution on (µ� �, µ+ �) as s ! 1. We

will show that by using this smoothing measure we can find

robustness guarantees to `p perturbations, where p 2 N>0.

We show in appendix D that given inputs x and x0

the Kullback–Leibler (KL) divergence of GN (x,�, s) and

GN (x0,�, s) is given by

s
X

k=1

✓

s

k

◆

(1 + (�1)s�k)Γ( s�k+1
s )kx� x0kkk

2�kΓ( 1s )
(14)

We also show in appendix A that the KL divergence of

two multinomial distributions P and Q (that disagree on the

index of the top probability) is lower bounded by

dKL(Q,P ) � � log(2
p
p1p2 + 1� p1 � p2) (15)

Then we use the data processing inequality to prove ro-

bustness up to kx� x0kp < ✏ if the following holds

dKL(f(x+ GN (0,�, p)), f(x0 + GN (0,�, p))) (16)

 dKL(x+ GN (0,�, p), x0 + GN (0,�, p)) (17)

 ✏p

�p
+

p�1
X

k=1

✓

p

k

◆

(1 + (�1)p�k)Γ(p�k+1
p )kx� x0kkk

2�kΓ( 1p )

(18)

 � log(2
p
p1p2 + 1� p1 � p2) (19)

Table 2 gives examples of the KL-divergence of the gen-

eralized Gaussian distribution for small `p norms. For `p
norms with p = 1 or p = 2, the upper bound to which an

input is certifiably robust is given by

(��p log(2
p
p1p2 + 1� p1 � p2))

1
p (20)

For `p norms with p > 2, p 2 N, the upper bound to

which an input is certifiably robust is given by ✏ satisfying



(a) CIFAR-10, `1 (b) ImageNet, `1 (c) CIFAR-10, `2 (d) ImageNet, `2

Figure 2: Certified accuracy against perturbations targeting the `1 and `2 norms. Given as a function of the certified radius, the

radius around which an input is robust.

Table 2: Examples of the KL divergence between

GN (µ1,�, s) and GN (µ2,�, s) for small s.

s `s dKL(p1, p2)

1 `1
1
�
kµ1 � µ2k1

2 `2
1
�2 kµ1 � µ2k22

3 `3
1
�3 kµ1 � µ2k33 + 3

�Γ( 1
3 )
kµ1 � µ2k1

4 `4
1
�4 kµ1 � µ2k44 +

6Γ( 3
4 )

�2Γ( 1
4 )
kµ1 � µ2k22

✏p

�p
+

p�1
X

k=1

✓

p

k

◆

(1 + (�1)p�k)Γ(p�k+1
p )d1�

k
p ✏k

2�kΓ( 1p )

 � log(2
p
p1p2 + 1� p1 � p2)

(21)

The bound given by eq. (21) is found by noting that

kx�x0kk  d
1
k
� 1

p kx� x0kp, where d is the dimensionality

of the data. We can improve upon this naive bound to prove

robustness for all norms smaller than p in parallel. Without

loss of generality, assume p is even 1, then we can prove

robustness for every 0 < k  p, where k is even, up to

kx� x0kk < ✏k by solving the constrained problem

max ✏2, ✏4, ..., ✏p (22)

subject to

p
X

k=1

✓

p

k

◆

(1 + (�1)p�k)Γ(p�k+1
p )✏kk

2�kΓ( 1p )

 � log(2
p
p1p2 + 1� p1 � p2)

(23)

✏i+2  ✏i  d
1
i
� 1

i+2 ✏i+2 (24)

✏i > 0, 2  i  p� 2, i ⌘ 0 (mod 2) (25)

Note that the certified radius of robustness around an input

is probabilistic because we can only estimate p1 and p2, how-

1A similar statement holds when p is not even.

ever, we can bound the probability of error to be arbitrarily

small. In practice we follow the methods in [10, 24, 26] for

estimating p1 and p2. Prediction error is bounded by collect-

ing n samples of f(x+ ✓), where ✓ is sampled from a gener-

alized Gaussian distribution, and using the Clopper-Pearson

Bernoulli confidence interval to obtain a lower bound esti-

mate of p1 and an upper bound estimate of p2, that holds

with probability 1� � over the n samples, where � ⌧ 1. Al-

ternatively, we can use the Hoeffding inequality which gives

a lower bound of prediction error of 1� ce�2n✏2 , where c is

the number of classes |P |, n is the number of samples and ✏

is the perturbation size. Clearly the error becomes arbitrarily

small as we increase the number of samples.

3. Discussion & experiments

We experimentally validated the certification procedure

on the CIFAR-10 [22] and ImageNet [11] datasets. The

base classifier is ResNet-50 on ImageNet and ResNet-110

on CIFAR-10 [19]. Given an input x and a classifier f the

certification procedure is as follows:

1. Collect n0 Monte Carlo samples of f(x + ✓j) to es-

timate the true class y, where ✓j ⇠ GN (0,�, s) and

j 2 [1, ..., n0], with confidence > 1� �0.

2. Use n1 Monte Carlo samples to estimate, p̂1, a lower

bound of the probability of the most-likely class with

confidence > 1 � �1. We follow Cohen et al. [10]

for estimating p̂2, an upper bound of the probability

of the second most-likely class, who noticed nearly

all probability mass on other classes is placed on the

second most-likely class and so use p̂2 = 1� p̂1.

3. Use p̂1, p̂2 and eq. (20) or eq. (21) to find a certified

radius around x.

For all experiments we use n0 = 100, n1 =
100, 000, �{0,1} = 0.001,� = 0.25 and certify 400 test set

examples for both CIFAR-10 and ImageNet datasets 2. The-

2We perform experiments measuring the effect that various � have on

the certified radius in appendix E.



(a) Certified radius trade-off between ✏3 (`3 norm) and ✏1 (`1 norm). (b) Certified radius trade-off between ✏4 (`4 norm) and ✏2 (`2 norm).

Figure 3: Trade-off in adversarial robustness between different norms, as we vary the noise scale, �. We plot for a data

dimensionality, d, equal to 3⇥32⇥32 (the dimension for CIFAR-10 inputs), and mark the region which gives valid certificates,

assuming p̂1 = 0.99 and p̂2 = 1� p̂1.

oretically, this procedure can certify any classifier, however

in practice, image classifiers are not stable under noise and

so we found it necessary to train classifiers with generalized

Gaussian noise (using the same scale and shape parameters

as is used during certification). Note that this has the same

complexity as standard data augmentation during training

and is less expensive than the Madry et al. [28] defense.

3.1. Comparison to related work

For both CIFAR-10 and ImageNet we certify inputs

against perturbations in `1 and `2 norms and compare against

[10, 24, 26]. Figure 2 shows certified accuracy as a function

of the certified radius. In general, the largest certified regions

come against perturbations targeting the `1 norm. In ap-

pendix F, we show qualitative examples of inputs smoothed

with generalized Gaussian noise and the corresponding ro-

bustness guarantees in the `1, `2, and `3 norms.

While the primary boon of our certification procedure

is its ability to certify inputs to adversarial perturbations

beyond `1 and `2 norms, the method is not substantially

weaker than related work in either norm. In fig. 2a and fig. 2b,

we compare with Lecuyer et al. [24] and Li et al. [26] for

`1 norm certificates. Given estimates p̂1 and p̂2, Lecuyer et

al. [24] find a certified radius against `1 perturbations given

by �
2 log(p̂1/p̂2), while Li et al. [26] find a certified radius

against `1 perturbations given by � log(1� p̂1+ p̂2). Li et al.

[26] and Teng et al. [31] show that this robustness guarantee

is tight for the `1 norm. Our `1 certificates are slightly

weaker than Lecuyer et al. [24], and both are dominated by

Li et al. [26] who obtain the tightest possible certificates.

In fig. 2c and fig. 2d, we compare with Lecuyer et al. [24],

Li et al. [26], and Cohen et al. [10] for `2 norm certificates.

Our `2 certificates strictly dominate Lecuyer et al. [24], and

are approximately equivalent to Li et al. [26]. This equiv-

alence is to be expected since our certificates are closely

related to Li et al. [26] certificates, which are based on the

Rényi divergence between two Gaussians, while ours are

based on KL divergence. Clearly, we could improve upon

this `2 guarantee if we used the chi-squared distance instead

of KL divergence and a standard Gaussian smoothing mea-

sure, as proved by Proposition 1. However, our aim is to

show the general capacity of the generalized Gaussian as a

smoothing measure for certification.

3.2. Robustness trade-offs between different `p
norms.

As described by eq. (21), to obtain robustness guarantees

in `p>2 norms we must factor in required robustness guaran-

tees in smaller `p norms. For example, to prove robustness

up to kx� x0k3 < ✏3 and kx� x0k1 < ✏1 we find ✏1 and ✏3
satisfying

1

�3
✏33 +

3

�Γ( 13 )
✏1  � log(2

p

p̂1p̂2 + 1� p̂1 � p̂2)

^
0 < ✏3  ✏1  d

2
3 ✏3,

(26)
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Figure 4: Certified accuracy on 400 CIFAR-10 test set inputs and 400 ImageNet test set inputs against perturbations targeting

the `3, `4, and `5 norms. Given as a function of the certified radius, the radius around which an input is robust. Inputs were

smoothed under a generalized Gaussian distribution parameterized by GN (0, 0.25, p).

and to prove robustness up to kx� x0k4 < ✏4 and kx�
x0k2 < ✏2 we find ✏2 and ✏4 satisfying

1

�4
✏44 +

6Γ( 34 )

�2Γ( 14 )
✏22  � log(2

p

p̂1p̂2 + 1� p̂1 � p̂2)

^
0 < ✏4  ✏2  d

1
4 ✏4,

(27)

We visualize this trade-off in fig. 3 for `3 and `4 norms.

That is, the trade-off in certified robustness between those

norms and certified robustness in `1 and `2, respectively. We

visualize the trade-off as we vary the noise scale �, assuming

a robust classifier that classifies inputs correctly with p̂1 =
0.99 and p̂2 = 0.01. We can smoothly exchange robustness

in one norm for robustness in another norm. For example,

given � = 1 and a CIFAR-10 input, we can reduce the

guaranteed robustness in the `3 norm from an approximate

certified radius of 0.86 to approximately 0, and increase the

guaranteed robustness in the `1 norm from a certified radius

of 0.86 to 1.44. In fig. 4, we show certified accuracy as a

function of certified radius in the `3, `4, and `5 norms on

the CIFAR-10 and ImageNet datasets. To find the maximum

✏3 we solve eq. (26) such that ✏3 = ✏1. Similarly for ✏4
we solve eq. (27) such that ✏4 = ✏2, and exend this line of

reasoning to find ✏5 = ✏3 = ✏1 for the `5 norm. Clearly, we

can find non-negligible certified radii in norms outside of `1
and `2.

3.3. Robustness guarantees as `p!1.

An immediate question arises when observing our cer-

tification procedure, can we find non-vacuous robustness

guarantees for arbitrarily large `p norms, where p is even 3 4?

Given eq. (23), note that (
p

k)(1+(�1)p�k)Γ( p�k+1
p

)/2Γ( 1
p
) � 1,

81  k  p, where k is even, and as p ! 1, 9k such

that (
p

k)(1+(�1)p�k)Γ( p�k+1
p

)/2Γ( 1
p
) ! 1. We must there-

fore solve the problem given in eq. (22)-eq. (25), where

eq. (23) is given by

c2✏
2
2

�2
+

c4✏
4
4

�4
+ ...+

cp✏
p
p

�p
 � log(2

p
p1p2 + 1� p1 � p2)

(28)

where ck 2 R>1, 1  k  p, k ⌘ 0 (mod 2) (29)

To satisfy eq. (24), we can find ✏2, ✏4, ..., ✏p such that

✏2 = ✏4 = ... = ✏p; we refer to this value as ✏, and eq. (28)

becomes

c2(
✏

�
)2 + c4(

✏

�
)4 + ...+ cp(

✏

�
)p

 � log(2
p
p1p2 + 1� p1 � p2) (30)

where ck 2 R>1, 1  k  p, k ⌘ 0 (mod 2) (31)

For a fixed p1, p2,�, since 8k, ck � 1, and 9k such that

ck ! 1 when p ! 1, to satisfy the inequality in eq. (30),

we must have ✏ ! 0. If we do not fix � then we require

( ✏
�
)k ! 0 as ck ! 1, and so to certify a non-negligible

radius, ✏, we require � ! 1. However, as � ! 1, the

randomized smoothing will cause the input to become too

noisy for any classifier to achieve low prediction error.

Clearly, as p grows the largest possible certified radius

becomes smaller, because our bound requires this robustness

3Equivalent results for this section can be found when p is not even.
4The subject of simultaneous robustness over every `p norm is expanded

upon in appendix G.



guarantee holds for every norm smaller than p. One may

wonder if we can find an `p norm in which we can certify a

non-vacuous radius that approximates the `1 norm arbitrar-

ily well. The difference in volume between a unit ball in the

`p norm and `1 norm is given by Γ(1+1/p)d/Γ(1+d/p), where

d is the data dimensionality. Unfortunately, the error in the

approximation is dependent on the data dimensionality. For

example, for an ImageNet input where d = 3⇥224⇥224, if

we require the ratio of volumes between an `p unit ball

and `1 unit ball to be larger than 0.99, we must take

p = 9⇥ 3⇥ 224⇥ 224.

3.4. How tight is the bound?

The difference between the certified area and the size of

an adversarial perturbation gives a tightness estimate. If the

certified radius is close to the size of an adversarial perturba-

tion this implies the bound is close to optimal. To check how

tight our bound is we ran the PGD attack [28] minimizing

perturbations in the `2 norm. Because the certification pro-

cedure requires the addition of generalized Gaussian noise

to the input, the gradient is highly stochastic, leading to ex-

tremely slow convergence of the PGD attack. We circumvent

this stochasticity by optimizing using the Expectation Over

Transformation [2] – we use 1000 Monte Carlo samples to

estimate the gradient of an input during the attack. Figure 5

gives attack results on CIFAR-10 along with the certified

radius of 400 inputs. We find adversarial examples with

norms within 2� 2.5⇥ the certified radius. Unfortunately,

this does not inform us if our bound is loose or if the attack

is sub-optimal. We leave a more rigorous investigation of

assessing the tightness of our bound for future work.

4. Conclusion

Randomized smoothing has offered a promising approach

to scaling robustness guarantees to large architectures. By

extending the framework developed by Li et al. [26], we

showed how different choices of divergences affects the cer-

tified radius of robustness around an input. We verified that

Rényi divergence is superior to other common f-divergences

in this framework, for certifying an input against `2 per-

turbations. We then showed that a generalized Gaussian

smoothing measure leads to robustness guarantees against

any `p (p 2 N>0) minimized adversarial perturbation, how-

ever, non-negligible certified radii are only available for

small `p norms.

Acknowledgements

Jamie Hayes is funded by a Google PhD Fellowship in

Machine Learning.

Figure 5: The certified radius and size of adversarial pertur-

bations for 400 CIFAR-10 test inputs using a PGD attack
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certified radius is to adversarial perturbation size, we also

display 2⇥ the certified radius of an input.
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