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Abstract

We explore rigorous, systematic, and controlled experi-

mental evaluation of adversarial examples in the real world

and propose a testing regimen for evaluation of real-world

adversarial objects. We show that for small scene/ environ-

mental perturbations, large adversarial performance dif-

ferences exist. Current state of adversarial reporting ex-

ists largely as a frequency count over a dynamic collec-

tions of scenes. Our work underscores the need for either

a more complete report or a score that incorporates scene

changes and baseline performance for models and envi-

ronments tested by adversarial developers. We put forth a

score that attempts to address the above issues in a straight-

forward exemplar application for multiple generated adver-

sary examples. We contribute the following: 1. a testbed

for adversarial assessment, 2. a score for adversarial exam-

ples, and 3. a collection of additional evaluations on testbed

data.

1. Introduction

Now that Deep Learning is an established success [12],

there is a rapidly expanding body of work assessing its lim-

itations [17, 9, 2]. In particular, there has been a large num-

ber of papers published in recent years, interested in finding

new ways to hack deep learning systems with a focus on

manipulating convolutional neural networks into false and

missed classifications [15, 14, 3]. Much of the early work

with so-called adversarial attacks were only successful in

virtual environments, i.e. the adversarial inputs were pro-

duced and evaluated digitally and without consideration of

physical limitations. In the past year, researchers have ex-

panded adversarial attacks to include physically created ob-

jects that can impact classifiers and detector models in real-

world systems [10, 1, 8, 19]. The range and ability of phys-

ical attacks are improving at an impressive rate, accounting

for a variety of real-world considerations including static

scenes, robust angle, and distance changes. Although re-

searchers have established some guidelines for evaluating

the robustness of virtual adversarial attacks [4], the analy-

sis recommendations do not map subjectively onto physical

adversarial attacks where perturbations are difficult to mea-

sure and success varies on a frame by frame basis. The

consistent computational measure of success for physical

attacks is the percent of frames the attack accurately manip-

ulated the classifier or detector [7, 1, 20]. This is separate

from adversarial generation metrics that are often included

in the optimization loss function to improve physical chal-

lenges like imperceptibility and printability. In our work

we propose an evaluation experiment and post-generation,

effectiveness score for testing the robustness of real-world

adversarial examples in different environmental conditions.

In particular, we tested our score on adversarial “patches”,

an idea clearly outlined in work done by Thys et al [19], but

incorporating ideas from Athalye et al. [1], Chen et al. [5],

and Eykholt et al. [7]. The key aspect we wish to address

with our score is the importance of baseline performance

across different environmental conditions when assessing

the effectiveness of a given physical adversarial object.

2. Our Aim

We recognize that it is not always possible to recreate

environments to evaluate adversarial versus non-adversarial

scenarios. However, many of the existing adversarial ob-

jects have the ability to be evaluated in well-controlled sce-

narios that can be reproduced.

We believe that in conjunction with well-controlled ex-

periments, a proper adversarial score must be included

when evaluating adversarial objects. Our proposed score

does so in simple to interpret terms and is aimed at provid-

ing a foundation that can be updated, revised, and enhanced

by others studying the problem of adversarial scoring. The

score is designed to be a relative measure of performance

that considers only those environments studied by the re-

searcher while taking into account the same scenario in a

non-adversarial condition. This is, in one sense, akin to

something like a Bayesian information criterion score that

only measures the model and parameters presented and can-

not explicitly account for non-nested models.
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Experimentally, we studied a single target object with

three differently trained adversarial patches and an occlu-

sion condition in several well-controlled scenarios. To the

best of our knowledge, this is the most systematic assess-

ment of adversarial attacks to date. For comparison, [20]

studied the effectiveness of adversarial attacks in an in-

door environment and outdoor environment. While study-

ing the attacks under similar scenes (across multiple days

and weather conditions), by making changes in angle, dis-

tance, and day, the authors did not control for confound-

ing factors such as other objects being present in the scene

(scene complexity) nor did they report a baseline for the

model. Our work aims at providing a coarse view of adver-

sarial effectiveness using a fine-grained paradigm.

The paradigm in our work can be expanded to include

more scenes/ environments, but we found it important to

have an initial study that avoided confounding factors (such

as patch performance being modulated by distance of the

patch from the camera), while still providing plausible

scene perturbations. For example, using our approach we

can begin to quantify scene appropriateness or complex-

ity, although this question deserves its own dedicated ex-

ploration.

3. Experiments

Many researchers focus on the performance of an adver-

sarial attack in native environmental conditions (e.g. a patch

on the bumper of a vehicle in actual traffic, a patch attached

to a stop sign, or a patch attached to a person’s clothing in an

office space). We assess performance in a well-controlled

environment with little frame-to-frame variability due to

moving objects, novel items entering the scene, changing

lighting, etc. This tight control is necessary to accurately

compare patch performance to a baseline condition where

the model is allowed to detect objects without adversarial

interference. In other words, we needed an environment

that was reproducible and where happenstance occurrences

were not a factor. For reproducibility, below we outline our

experimental equipment and setup.

3.1. Equipment

Equipment for the experiment included scene setting

items and camera hardware. Our scene setting items include

a custom constructed mounting rail measuring roughly 7

feet long with attached platform (4 feet high) with plate

for attaching camera devices and light source with one

40-watt, 390-lumens halogen bulb and one 40-watt, 450-

lumens LED bulb. Camera and GPU devices include Jetson

AGX Xavier, Jetson Xavier Developer Kit with an attached

e-CAM130 CUXVR camera. We tested 3 pre-printed ad-

versarial patches created via different algorithm methods.

3.2. Patch Generation

We generate our patches using the training technique

outlined by Thys et al. [19]. The broad idea can be sum-

marized as follows:

1. Curate a set of training images that your object detector

can recognize.

2. For each image we superimposed a patch (300 × 300
pixels, then scaled accordingly to fit the size of the ob-

ject bounding box) to the image. We use the Expec-

tation over Transformation algorithm to produce our

adversarial patch using the following transformations:

change of location, rotation angle, scale, brightness,

contrast, and noise level [1].

3. We extract a classification score from these altered im-

ages, back-propagate the gradients to the input layer,

and only update the pixels inside the region of the

patch.

We leverage and extend the codebase provided by Thys

et al. [18] to generate adversarial patches for all classes

contained in the output of our model. In our case, these are

all classes in the COCO dataset [13].

We trained three patches for the vase class (our target

object) using images from ImageNet [6] and OpenImages

[11]. Our patches were obtained by minimizing two differ-

ent objective functions: objectness score (O) and the prod-

uct of class probability score and objectness score (CxO).

For our ImageNet patches we triage images from the Word-

netID n04522168, corresponding to the ImageNet “vase”

class. For our Composite patch, we combined our extracted

images from ImageNet with images extracted from Open-

Images corresponding to the “vase” class name.

3.3. Procedure

During piloting we found our patches should be 2 × 2
inches. We manipulated three environmental conditions/ di-

mensions: target item distance (1 inch, 5 inches, 10 inches,

15 inches and 20 inches from a Plexiglas surface), patch

placement location (center and slight right of center), and

lighting (2 bulb types). This brought the total number of en-

vironmental conditions to 5× 2× 2 = 20. There were five

patch conditions including no-patch (baseline), ImageNet

(O), ImageNet (CxO), Composite (CxO), and a white patch,

which was a simple white 2 inch square cut from 8.5 × 11

inches, 92 bright copy paper. All patches were printed on

the aforementioned office paper at 1200 dpi. Section 3.2

describes in detail how the patches where generated. Each

patch type except for the no-patch condition was used in all

environmental conditions. For the no-patch condition, the

target item was always center-placed, but used with all light

source and distance combinations.



Our camera was manually set so that white balance, ex-

posure time, and focus was fixed throughout the experiment

(rather than automatically adjusted by the camera). The fo-

cus was set so that the sticker and vase were in focus from

the camera (focal length: 2.8 mm; F-number: 2.8; Field

of View: 134◦ (D), 73◦ (V)). We were able to position the

camera at closer positions with such a wide field of view

and shorter focal length. All other camera settings were

constant throughout the data collection.

Our camera was placed 5 inches from a Plexiglas surface

affixed to a table. The Plexiglas served as a mounting struc-

ture to ensure consistent placement for each patch. There

was a single light source used at a time and the source was

positioned behind and above the camera, pointed toward the

target placement region. The camera was placed on the rail

platform and fixed for the duration of the experiment. A

large black board was used as background for the experi-

ment. Testing proceeded as follows:

1. For a given distance, the target item (a green vase, see

Figure 2) was placed in one of two positions depending

on the patch placement condition.

2. With the target fixed, the no-patch condition was

recorded first. Then each patch (white patch, Ima-

geNet (O), ImageNet (CxO), and Composite (CxO))

was placed on the Plexiglas. Each time a patch was

placed, it remained untouched through both lighting

conditions. This was to minimize object and patch

shifts across the conditions.

3. Once a scene was established, we allowed 30 seconds

for the bulb to warm-up.

4. We ran a script that captured 500 frames and used each

frame as an independent input to YOLOv2 [16]. We

wanted enough frames for a single scene for a robust

evaluation of that condition in lieu of natural image

variation produced by the camera or by nature.

5. We recorded bounding boxes, confidences, objectness

scores for each frame.

4. Results and Effect Score

4.1. Classifications

Figure 1: Patches Generated for Experiment

Each of the above patches was designed to hide a tar-

get item (i.e. a green vase) from detection for the YOLOv2

classifier. In addition to these patches a simple white square

patch was also used to compare performance with an ob-

struction case. A first evaluation of each patch’s ability to

hide the target was to simply count the number of frames

the classifier was able to detect the target class in each scene

(See Table 1). This is a standard measure. Higher values in

the table indicate the patch was not effective at disrupting

detection of the target.

There are a few conditions that stand out when look-

ing at only frequencies. When the target item was placed

very close to the camera (1 inch condition) and no patch

was present, the classifier had difficulty detecting it. In all

frames with LED lighting, the target was missed, while in

the halogen bulb lighting, the target was detected in less

than 40% of frames. Another stand-out is the LED, 1-inch,

ImageNet (CxO) condition where the number of detections

is higher than 500. In this case, the target is detected twice,

once as a lower identification of the target and an upper

identification of the target (see Figure 2).

Judging from frequency alone, one might conclude that

the Composite (CxO) patch and ImageNet (CxO) patch are

better than the other two patches. This conclusion would

match intuition since one patch had a larger training set and

both patches were trained using an objective function ac-

counting for both class score and objectness. But there is

more to be discovered. For instance, suppose one desired

an all-around effective patch for a variety of physical en-

vironments. Is the Composite (CxO) patch better than the

ImageNet (CxO) patch? A problem with error frequency is

that is does not account for how well the model performs

without adversarial interference. In the LED, 1-inch case,

not having a patch at all is better than adding anything to the

scene. We seek to develop a score that not only accounts for

a variety of environmental changes, but also accounts for

baseline performance in one summary.

Figure 2: In this condition the vase was detected twice in nearly all frames.

Table 3 shows the classifications per patch throughout

the experiment. Because YOLOv2 is an object detector,



Table 1: Number of Vase Detections (and Average Confidence) for Each Condition

Location Bulb Distance None Composite (CxO) ImageNet (CxO) ImageNet (O) White Patch

center Hlgn 1 inch 182 (.856) 7 (.609) 0 500 (.785) 500 (.822)

5 inches 404 (.905) 20 (.828) 0 500 (.869) 500 (.887)

10 inches 500 (.879) 0 0 30 (.795) 0

15 inches 298 (.846) 0 0 1 (.771) 0

20 inches 499 (.823) 0 0 32 (.670) 0

LED 1 inch 0 419 (.818) 955 (.602) 500 (.846) 500 (.834)

5 inches 500 (.928) 500 (.892) 391 (.691) 500 (.938) 500 (.915)

10 inches 500 (.872) 27 (.870) 0 500 (.823) 456 (.766)

15 inches 500 (.872) 0 0 500 (.763) 0

20 inches 500 (.880) 0 0 28 (.694) 0

right Hlgn 1 inch 182* (.856) 0 18 (.835) 499 (.817) 479 (.817)

5 inches 404* (.905) 0 206 (.914) 500 (.904) 313 (.899)

10 inches 500* (.879) 206 (.855) 0 302 (.819) 1 (.715)

15 inches 298* (.846) 0 0 26 (.761) 0

20 inches 499* (.823) 0 0 1 (.551) 0

LED 1 inch 0* 2 (.820) 457 (.851) 500 (.867) 500 (.866)

5 inches 500* (.928) 247 (.928) 500 (.947) 500 (.934) 500 (.931)

10 inches 500* (.872) 500 (.893) 500 (.859) 500 (.840) 500 (.807)

15 inches 500* (.872) 479 (.878) 500 (.860) 500 (.689) 490 (.855)

20 inches 500* (.880) 0 0 0 120 (.727)

*When no patch was present, targets were center located. Only one run of the model at different distances and bulb types was completed without a patch.

multiple objects can be classified in a given frame. As a re-

sult, many classified objects are not misclassifications of the

vase, but misclassifications of other scene objects. While,

we attempted to minimize this effect, we often found that

the table the vase was placed on was classified as a dining

table and the background was classified as a refrigerator.

More consistent misclassifications included classifying the

vase as a bottle or a cup. ‘Bottle’ labels occurred frequently,

even in the absence of an adversarial patch. The patches

themselves were classified in some many instances. The

patches trained to decrease class score and objectness were

classified as a cell phone or remote, while the third patch

(optimized for objectness only) was classified as a wider

range of objects. Here we reemphasize that no patch hid

the vase 100% of the time, but that there are some scenes

where patches performed well and others that it simply did

not work. We did a parameter sweep to pick penalties for

the non-printability and total variation term in the loss func-

tion and trained all patches until we saw no improvement in

the loss function. The question of producing the “optimal”

patch was outside the scope of our work, given that our main

focus was assessing adversarial patches.

4.2. Effectiveness Score

To gain a better understanding of patch performance, we

make the straightforward adjustment of comparing patch

performance for a given scene with model performance in

the absence of an adversary. As noted above, there were

several misclassifications of the vase in the no patch condi-

tion, leading to potential misunderstanding of the effective-

ness of a given adversary. Our proposed score is derived

Figure 3: Depiction of all classifications per patch. These are summed

over all environmental conditions and logged.



for each patch in a given scene/ condition (or conditions).

For a given patch P and a single environmental condition

e (e.g. lighting, distance, patch location), we compute the

frequency of target detection in both an adversary condition

(patch present) and baseline (adversary not present). Let the

fP,e be the frequency for a given patch and environmental

condition (out of the set of tested environmental conditions)

e ∈ E. We let f∅,e denote the frequency of target detection

of baseline. Let n denote the total number of frames cap-

tured. We define the score for a patch conditionally over the

set of environments to be

S(P,E) =
1

|E|

∑

e∈E

(

f∅,e − fP,e

)

n

This is the simply the average difference of detection

probabilities between the no-patch and patch conditions.

For this score function, when the target is detected in all

500 frames of our experiment and the patch successfully

hides the target in all 500 frames, the score will be 1. When

the baseline model is unsuccessful at detecting the target,

the score is lower. Negative scores can be interpreted as the

adversary having the highly undesired effect of helping the

model to detect a target more often, instead of less. Lastly,

the score is averaged across all conditions run to provide a

simple summary of performance. The scores for our patches

are given in Table 2. A current limitation is that the score

cannot distinguish between poor baseline versus poor ad-

versary.

Note: It is interesting to note that the white patch outscores

the patch trained using only the ImageNet corpus with ob-

jective function only utilizing the objectness score from

YOLOv2. A further investigation is needed to rule out or

help validate the causes of the observation. Nonetheless,

our goal is to highlight issues like this that would only show

up when doing a systematic robust evaluation. Furthermore,

we are not making generalized claims about the specific al-

gorithms used in this investigation but are advocating for

more systematic studies as exemplified through our meth-

ods.

Table 2: Patch Scores

Patch Condition Score

No-Patch 0

Composite (CxO) 0.536

ImageNet (CxO) 0.424

ImageNet (O) 0.135

White Patch 0.241

We also computed scores for each condition independent

of the other conditions (each E is a singleton). The analysis

in the next section dives into the pattern of results on these

dimensions.

4.3. Dimension Impacts

Recall that for a 1 inch distance, baseline model perfor-

mance was particularly poor. However in the ImageNet and

white patch conditions model performance increased sig-

nificantly, regardless of lighting or center/ right patch place-

ment. This may indicate that pre-trained YOLOv2 is not

robust to large-scaled objects. Somehow, more generic oc-

clusions provide YOLOv2 with enough context to make an

accurate identification.

Figure 4: Image capture of YOLOv2 detection at 5 distances with white

patch under LED lighting.

In addition to poor model/ patch performance for close

distances, the scores dip when the target item is 15 inches

from the Plexiglas. The dip could be driven by either low

baseline model performance at 15 inches, or by poor patch

performance. A quick look at Table 1 reveals that baseline

model performance also decreases at 15 inches (number of

correct detections without the patch is 298 out of the pos-

sible 500 for halogen bulbs). When this occurs, the model

score decreases since the score is relative to baseline.

Figure 5: Mean Confidence per Distance

We also recorded confidence scores for each condition

to study if there was a relationship with patch perfor-

mance. Confidence scores did not influence patch perfor-

mance across the distances. Figure 5 displays the aver-

age confidence for each distance and each patch condition.

Baseline and ImageNet are the only two patch conditions



that decrease from 5 inches to 20 inches. The two other

simulated patches are consistently high for 5 to 15 inches

and then effectively hide the target at 20 inches, while the

white patch telescopes in performance. One might expect

lower confidence scores leading to fewer detection. How-

ever, confidence scores are constructed independently of

probability of detection within YOLOv2. The model de-

tects a target when the objectness score is above 0.5 and

to prevent multiple detections of the same object, the NMS

threshold is set to 0.4. The two patch conditions with con-

sistently high confidences when the target was detected are

also the two models that are unable to detect the target the

most. At 15 inches (where all simulated patches have a sud-

den decrease in score), the highest scoring patch, Composite

(CxO), has a higher confidence when the target is detected

than the baseline model. This provides some experimental

evidence that confidence score alone and without context to

other class scores are not a clear predictor of success for

patches designed to hide a target.

Figure 6: [Score by Distance for Each Patch] Points are averaged values

for each distance.

An alternative explanation for model performance be-

yond 10 inches is that the target itself is mostly occluded

from camera view at further distances. More than 97%

of all frames at this distance were successfully either mis-

classified or not identified considering all patches. The

sub-condition with the highest detection frequency occurred

with the white patch placed slightly right of the target under

LED lighting. Further testing is required to confirm occlu-

sion is the main reason for poor performance. A counter

condition is the ImageNet patch. When that patch was used

there were 60 correct detections across lighting at center

location, but only a single correct detection when the tar-

get was slightly right of the patch. The white patch, LED,

right-position condition led to 120 of the 500 frames having

correct detections at 20 inches.

Lighting was also a significant factor for patch scores.

Figure 7 displays the difference in lighting used for this

experiment. We predicted that for the LED condition, the

patches would be more effective at hiding the target. How-

ever, the LED condition resulted in fewer disappearances

(more correct detections) than the halogen condition. This

is surprising given the LED is more luminescent.

Figure 7: Image capture of YOLOv2 detection at 2 light configurations

with white patch at 10 inches.

(a) LED Lighting (b) Halogen Lighting

Considering only changes in this factor, we find that

across the two lighting conditions, the Composite (CxO)

and ImageNet (CxO) patches outperform the other two

patches. In addition, the white patch has higher scores than

the ImageNet (O) patch in both lighting conditions. Per-

formance in the halogen bulb condition is limited to 0.7

by the fact that we are averaging scores across the other

dimensions (location and distance) and there are cases in

which the baseline model had missed detection occurrences

in these conditions.

Figure 8: [Score by Light for Each Patch] Points are averaged values for

each lighting source.

The same trend, although on a smaller scale, occurs

when marginalizing over location values. We computed

68% (roughly two standard deviations) confidence intervals

by a bootstrapping procedure. Across the two target lo-

cations, the confidence intervals have high overlap which

is an indicator that performance is likely equal regardless

of target location. The Composite (CxO) and ImageNet

(CxO) patches are the only two that had confidence inter-

vals that did not overlap with a score of 0, indicating that for

both location conditions, these patches had some effect on



YOLOv2. However, after running one-way ANOVA’s, even

these patch scores were not significantly different from 0 (p

=[0.323, 0.219, 0.969, 0.595] for Composite (CxO), Ima-

geNet (CxO), ImageNet, and white patch respectively).

Figure 9: Image capture of YOLOv2 detection at 2 location configurations

(center and right) with white patch at 10 inches under LED lighting.

5. Conclusion and Future Work

This paper makes two contributions. First, we propose

a score for adversarial attacks in the physical world. The

score compares attack performance to a baseline. We com-

pute the score in a controlled environment with reproducible

environmental conditions. We include two potential use

cases for the proposed score. The second contribution is

that, to the best of our knowledge, this is the most sys-

tematic assessment of adversarial attacks to date. Chen et

al. [5] had an indoor systematic assessment of sticker at-

tacks but did not investigate varying controlled lighting and

placement, rather distance and angle. While many of the

current papers highlight that their methods and patch gen-

eration methods work well in the real world, it is of im-

portance to account for the weaknesses in any method to

not only prevent other researchers from making the same

mistakes, but to advance scientific understanding of deep

learning models in general. Moreover, we can empirically

conclude that camera aspects and model training are inter-

acting with environmental conditions to produce odd model

results (such as the baseline model not detecting a vase five

and fifteen inches in front of the camera). Our aim with the

approach taken was to strive towards a full report of both

the model and the adversarial object in the real-world and

to highlight in detail the challenges researchers face when

evaluating adversarial objects.
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