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Abstract

Recent advancements in CNNs have shown remarkable

achievements in various CV/AI applications. Though CNNs

show near human or better than human performance in

many critical tasks, they are quite vulnerable to adversarial

attacks. These attacks are potentially dangerous in real-life

deployments. Though there have been many adversarial at-

tacks proposed in recent years, there is no proper way of

quantifying the effectiveness of these attacks. As of today,

mere fooling rate is used for measuring the susceptibility of

the models, or the effectiveness of adversarial attacks. Fool-

ing rate just considers label flipping and does not consider

the cost of such flipping, for instance, in some deployments,

flipping between two species of dogs may not be as severe as

confusing a dog category with that of a vehicle. Therefore,

the metric to quantify the vulnerability of the models should

capture the severity of the flipping as well. In this work

we first bring out the drawbacks of the existing evaluation

and propose novel metrics to capture various aspects of the

fooling. Further, for the first time, we present a comprehen-

sive analysis of several important adversarial attacks over

a set of distinct CNN architectures. We believe that the pre-

sented analysis brings valuable insights about the current

adversarial attacks and the CNN models.

1. Introduction

Machine learning (ML) models are observed (e.g. [1, 2])

to be unstable to addition of structured noises known as ad-

versarial perturbations. These perturbations, despite being

mild, tend to severely alter the inference of the ML mod-

els, generally referred to as fooling the models. Over the

time, number of different adversarial attacks (algorithms to

fool) were proposed (e.g. [23, 13, 3, 15, 16]) to demonstrate

the vulnerability of the current ML systems, particularly

the deep neural networks (DNNs). In case of a recognition

model, it is understood that an adversarial attack is success-

* contributed equally

ful when the model predicts a different label upon adding

the perturbation. Thus, all the existing works treat this label

flipping as fooling the model. Therefore, they quantify the

effectiveness of the underlying attack in terms of its fooling

or success rate, which is the percentage of successful flips.

However, fooling rate is a weak metric which fails to

capture various important aspects of fooling and ends up

giving only partial picture about the attack or the target

model. Specifically, it does not consider what the ‘post-

attack’ label is, and therefore fails to quantify the severity of

the attack on either semantic or visual scale. Consequently,

the fooling rate becomes apathetic to different flippings of

the label and treats them identical. Though, from the ro-

bustness perspective, all label flippings should be treated

equally, and a robust ML system should avoid any such

susceptibility, in practice, different flippings (misclassifica-

tions) may inflict in different costs. For instance, in certain

deployments, confusion between a pair of dog breeds is ac-

ceptable and not as severe as wrongly recognizing the stop

sign on a highway.

Particularly, datasets with unwanted bias towards a set

of semantically similar categories (e.g. ImageNet [20] has

12% dog categories) need sophisticated metrics for better

analysis of the attacks and models. In such cases, weak

metrics such as fooling rate could be misleading by provid-

ing only an incomplete picture of the models’ vulnerability.

Existing evaluation (e.g. [19, 10, 12]) to compare various

adversarial attacks is based solely on their fooling rate per-

formance. However, the spectrum of existing attacks should

be understood and analysed from not only the fooling rate

perspective but also various other aspects of fooling, for in-

stance, the actual semantic damage incurred due to the ad-

versarial attack, etc. Moreover, fooling rate alone fails to

bring out useful insights about the learning and the classi-

fication hyper-planes learned by these models. Therefore,

the metric to quantify the effectiveness of the adversarial

attacks should apprehend the severity of the flipping and

provide better information about both the model and the un-

derlying attack.

Hence, in this work, we present various important as-
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Figure 1. Fooling rate does not measure the extent of confusion caused by an adversarial attack. First column is the input image presented

to GoogLeNet [22] below which the pre-attack label is mentioned in green. The subsequent columns show the representative images

for the predicted post-attack labels for 7 different adversarial attacks. Note that the attacks are mentioned on top of the corresponding

representative images taken from the ILSVRC dataset.

pects of fooling caused by adversarial attacks. Specifically,

we consider the Convolutional Neural Networks (CNN)

trained for visual object recognition. The major contribu-

tions of this work can be listed as:

• We present the shortcomings of the existing evaluation

in order to emphasize the need for more sophisticated

tools for analysis

• We propose a set of useful metrics (as baselines) to

understand the attacks and models more comprehen-

sively

• We present a detailed analysis and comparison of sev-

eral important adversarial attacks over a set of distinct

CNN architectures

The paper is organized as follows: section 2 discusses the

shortcomings in the existing evaluation and proposes multi-

ple novel metrics to bring out the various important aspects

of the adversarial fooling, section 3 presents comprehen-

sive empirical analysis on several important image agnos-

tic and image specific adversarial attacks, section 4 narrates

some of the important observations, and finally section 5

concludes the paper.

2. Fooling beyond Flipping

In this section we demonstrate how fooling rate fails to

capture various important aspects of confusing a DNN and

present a set of useful metrics to better understand it.

2.1. Shortcomings of Fooling Rate (FR)

Fooling rate, by definition is the percentage of success

for an adversarial attack, i.e., expected number of times the

attack is able to flip the label because of the added perturba-

tion. For the rest of the paper, we define the label predicted

on a clean image as pre-attack label and that predicted on

the corresponding adversarial image as post-attack label.

Thus, the fooling rate (FR) is defined as

∑N

i=1 1(pre-attack label(i) 6= post-attack label(i))

N
(1)

where 1 is the indicator function that returns 1 if the argu-

ment is true, else returns 0, and N is the total number of

samples on which the attack is evaluated.

Clearly the fooling rate ignores what the post-attack la-

bel is. All that it matters is, if it is different from the pre-

attack label or not. Thus, it does not measure the extent

of the confusion caused by the adversarial attack. Since,

some of the categories in the underlying dataset can be vi-

sually very close compared to others, not all mistakes are

similar. For example, Figure 1 shows the post-attack labels

predicted by GoogLeNet [22] for 7 different adversarial at-

tacks. The input image is shown in the first column, who’s

pre-attack label is mixing-bowl. Note that the subsequent

columns show (hand-picked) representative images for the

predicted post-attack labels mentioned below them in red.

Also, the corresponding adversarial attacks are mentioned

above the representative images.

It is important to note that, though all the post-attack la-

bels are different from the pre-attack label, visual patterns

in some of the representative images are closer to the input

image than others. For instance, eggnog and thimble will

have bowl-like object patterns. On the other hand, wool and

viaduct are visually very dissimilar to the pre-attack label,

mixing-bowl. However, fooling rate treats them all as suc-

cessful fooling without considering the perceptual distance.

In the following subsections, we present multiple metrics

that reveal more information about the adversarial fooling.

2.2. FR@K

We know that the fooling rate does not consider the rank

of the pre-attack label after the attack. However, it would

be interesting to know how strong an attack can demote the

pre-attack label from rank-1, for instance, to compare dif-

ferent attacks or to understand the nature of the attack, etc.

Therefore, we extend the definition of existing fooling rate

in order to consider the rank of the pre-attack label using

“Fooling rate at rank K” (FR@K). This means, for a given

rank K, an attack is considered successful only if it assigns

a rank > K to the pre-attack label. Therefore, after the at-

tack, there will be at least K-1 other labels with greater con-



fidence than the pre-attack label. Intuitively, the FR@K

metric quantifies the extent of damage caused to the visual

features discriminative to the pre-attack label due to the at-

tack. Thus, FR@K is defined as

∑
N

i=1
1(pre-attack label(i) 6∈ {top-K post-attack labels(i)})

N
(2)

Note that when K=1, FR@K becomes the fooling rate. A

similar metric in spirit has been proposed by Ganeshan et

al. [5] where they quantify the shifts in the ranks of pre and

post-attack labels during the attack.

2.3. Mean semantic confusion: QI­Wup

Existing evaluation completely ignores to measure the

“semantic damage” caused by the adversarial attacks. This

is because the fooling rate is apathetic to different flippings

by adversarial attacks. However, there exist various at-

tacks that are designed with very different objective func-

tions though the ultimate goal is to fool the target model.

Thus, it is quite possible that a given model incurs varying

levels of confusion for different adversarial attacks. For in-

stance, in Figure 1, GoogLeNet confuses Mixing-bowl to a

range of different labels from wine bottle to viaduct. Note

that the post-attack labels resulted by different attacks lie

at different semantic distance to the pre-attack label. Also,

different deployment environments (e.g. household, com-

mercial, military, etc.) would work with varied levels of

acceptable confusion. It is beneficial to have a useful metric

that can quantify the actual semantic damage incurred by a

given model for various attacks.

In this subsection we introduce an intuitive metric named

“Mean semantic confusion”, that can quantify the semantic

damage caused by an adversarial attack (or in other words,

the semantic damage incurred by a given model). We adapt

the familiar word similarity metrics such as Wu-Palmer [24]

to measure the severity of the flipping on a semantic scale.

We define the Quantized Inverse Wup similarity (QI-Wup)

as

QI-Wup =

{

1, if Wup(pre-attacklabel, post-attacklabel) < Ts.

0, otherwise.
(3)

where Wup(x, y) is the Wup similarity between the words

x and y and Ts is a threshold chosen based on the target

deployment environment. Note that the proposed QI-Wup

metric deems a flipping as fooling only when the semantic

similarity is less than an acceptable threshold Ts. Different

thresholds can be chosen for various deployment scenarios

based on the acceptable semantic confusion.

Therefore, the mean semantic confusion can be com-

puted as the average QI-Wup score over a set of evalua-

tion samples. Note that Wup measure is one choice of word

(semantic) similarity and we can chose any other similarity.

2.4. Mean visual confusion: QI­Vis

Another very important aspect of adversarial fooling is

to understand if the CNN models get confused only among

“visually” closer labels or even the dissimilar ones (refer to

section 4.1). For instance, as shown in Figure 1, GoogLeNet

gets confused to recognize the Mixing-bowl to various la-

bels. The Deepfool [13] attack flips the label to eggnog.

Note that the eggnog images always have a bowl like con-

tainer to hold it. Therefore, in this case the attack tries to

fool the model to predict another class that has similar vi-

sual patterns. While in case of other attacks, particularly the

image-agnostic attacks such as UAP [12], GD-UAP [14] it

is less observed.

In case of measuring the semantic damage, we have a

hierarchical structure (graph) such as WordNet [11] to un-

derstand how the labels are semantically related. However,

such a data structure for ‘visual’ relations does not exist.

It is very difficult to collect the visual similarities among

the categories via human annotations given large number of

classes and intra class variations. Thus, (similar to [18])

we collect these visual similarities from the learned model

itself. The final layer of any classification layer will be

a fully connected (fc) layer with a softmax nonlinearity.

Each neuron in this layer corresponds to a class (c) and its

activation is treated as the confidence/probability (Sc) pre-

dicted by the model to that class. The weights connecting

previous layer to this neuron (Wc) can be considered as the

template of the class (c) learned by the network. This is be-

cause, the confidence predicted (Sc) is proportional to the

alignment of the previous layer’s output with the template

(Wc). It becomes maximum when the previous layer’s out-

put is a positive scaled version of this template (Wc). On the

other hand, if the output of the previous layer is misaligned

with the template Wc, the confidence Sc is reduced.

Therefore, we compute the visual similarity (as per-

ceived by the target model) between a pair of classes i and

j as

V is(i, j) =
Wi

TWj

‖Wi‖ ‖Wj‖
(4)

Using this similarity score, we define the Quantized In-

verse Visual Similarity (QI-V is) as

QI-V is =

{

1, if V is(pre-attack label, post-attack label) < Tv.

0, otherwise.
(5)

Where Tv is a threshold chosen in order to impose a desired

tolerance in terms of visual confusion. Note that V is(i, j)
may not lie in [0, 1] unlike the Wup measure. Also, V is is

one of the possible visual similarity measures, and QI-V is

can be computed over any such measure. Further, for a

given dataset, our visual similarities are model specific,

however it is still a valid candidate for visual similarity since



we observe that multiple models closely agree upon these

similarities. For the 4 models considered in our experi-

ments, the variance of class similarities computed across the

1000 ILSVRC categories is very small with a mean value of

6× 10−4(±5.95× 10−4).

3. Experiments

In this section we present the experimental analysis to

show the effectiveness of the aforementioned metrics. We

performed all our experiments on the models trained for

object recognition on ILSVRC [20] dataset. To be com-

prehensive, we considered models from different architec-

ture families, namely, CaffeNet [8], GoogLeNet [22], VGG-

19 [21], ResNet-152 [7]. Note that the evaluation is per-

formed on 10000 correctly classified images from the vali-

dation set. We considered a range of adversarial attacks that

include image specific, image agnostic and iterative vari-

ants. Specifically, we evaluated on the following

• Fast Gradient Sign Method (FGSM) [6]

• Projected Gradient Descent (PGD) [10]

• DeepFool [13]

• Carlini and Wagner (CW) [3]

• Univeral Adversarial Perturbations (UAP) [12]

• Generalizable Data-free UAP (GD-UAP) [14]

We briefly introduce these attacks along with the required

notation for the ease of reference.

• X : clean image from the dataset.

• Xadv : potential adversarial image crafted from X .

• ytrue : ground truth label corresponding to X .

• ypred : prediction of the neural network for X .

• f : mapping function that represents neural network

• ǫ : strength of perturbation added to the clean image.

• J : loss function used to train the neural network.

• ∇J : gradient of the loss J with respect to image X .

Fast Gradient Sign Method (FGSM): is a simple way to

craft adversaries. They linearly approximate the loss func-

tion and compute the gradient as the adversarial direction to

perturb the input:

Xadv = X + ǫ.sign(∇J(X, ytrue)) (6)

I-FGSM-LL is a variety of the FGSM attack, in which

we iteratively (with small steps) compute the perturbation

in order to decrease the loss for predicting a ‘least-likely’

label.

Projected Gradient Descent (PGD): One can think

of FGSM attack as a single-step scheme to maximize

the loss function within the ǫ ball around X , which is

represented by S . A powerful attack would be an iterative

variation, FGSMk, which is essentially performing

Projected Gradient Descent on the negative loss function:

Xt+1 = ΠX+S(X
t + α.sign(∇J(X, ytrue))) (7)

where t is the iteration, and α is the maximum perturbation

at each iteration.

DeepFool: defines an adversarial perturbation as the

minimal perturbation v that is sufficient to change the

inference of the classifier:

minv subject to f(X + v) 6= f(X) (8)

Their algorithm is a greedy method that approximates the

non-linear class boundaries as hyper-planes and in practice

(generally) yields a small and effective perturbation.

Carlini and Wagner attack (CW): makes the pertur-

bations quasi-imperceptible by minimizing the lp norm.

This is achieved by solving the following optimization

problem:

minimize ||v||p + c.g(X + v) (9)

such that X + v ∈ [0, 1] (10)

Here g is a surrogate objective function such that

g(x+ v) ≤ 0 ⇐⇒ f(x+ v) = t. Here v is the adversarial

perturbation, c is a constant, t is the target label and f is a

mapping function that represents the neural network.

Universal Adversarial Perturbation (UAP): presented an

algorithm to compute a perturbation agnostic to the input

samples, known as ‘Universal’ Adversarial Perturbation

(v).

||v||p ≤ ǫ (11)

PX∼µ(f(X + v) 6=f(X)) ≥ 1− Th (12)

where, Th quantifies the desired fooling rate. Their algo-

rithm simply accumulates the individual sample specific

DeepFool [13] adversarial perturbations and regularly

projects into the feasible ball of the perturbations.

Generalized Data-free UAP (GD-UAP): presented a

data-free ‘activation’ loss that is generalizable across

various vision tasks to compute a UAP. They attempt

achieve an objective similar to eqn. (12) without utilizing

any data samples via optimizing the following loss:

Loss =− log(

K∏

i=1

||li(v)||2) (13)

such that ||v||p ≤ ǫ (14)



CaffeNet GoogLeNet VGG−19 ResNet−152
Figure 2. FR@K computed for various CNN models for multiple adversarial attacks. Note that the attacks are mentioned in the legend and

the model name is provided below the corresponding plot.

where, li(v) is the response of ith layer, and K is the total

number of layers in the model.

We chose the best hyper-parameters for all the attacks

(e.g. number of iterations, etc.) as mentioned in the corre-

sponding works or via conducting ablation. Also, we con-

sider l∞ norm of 10 for restricting the strength of the per-

turbation (ǫ). However, note that the CW and DeepFool at-

tacks because of their nature, do not impose the same max-

norm restriction on the perturbations. In case of CW attack,

we use a relatively large value of 15 for binary-search steps,

which helps in determining the trade off-constant c.

In summary, we consider the best operating parame-

ters for all the attacks in order to ensure the comparison

is fair. We present some useful ablations over these hyper-

parameters (e.g. CW) in the supplementary material.

3.1. FR@K

Fooling rate at rank K (FR@K) gives the success rate

of an attack to demote the pre-attack label beyond the first

K ranks after the attack. Figure 2 shows FR@K for var-

ious attacks computed on multiple models. We computed

the results for K = 1, 2, 5, 10, 20, 50, and, 100. Note that

K can take a maximum value of 999 since the total number

of categories in ILSVRC is 1000. We can notice that, as ex-

pected, the FR@K falls with K, since it gets more difficult

for the attack to demote the pre-attack label further.

However, we make a very important observation about

the DeepFool [13] and CW [3] attacks. They could not de-

mote the pre-attack label further. FR@K becomes zero

for all the higher values of K. Specifically, in all the 10000
correctly classified validation images that we considered for

evaluation, the highest rank DeepFool could successfully

demote to is 3. In almost all the cases, it makes the model

to simply swap the first and second labels. Note that this be-

haviour is consistent across all the models. This behaviour

can be explained from the design of the attack. The Deep-

Fool algorithm searches for the nearest decision boundary

to the input sample and finds a contamination in order to

move the sample across that boundary. Therefore, it ends

up fooling the model to predict the nearest class to the pre-

attack label which is top-2 (or top-3) label before the at-

tack. For the CW attack, we used a variant in which the

adversary is crafted to make the pre-attack label least-likely

CaffeNet GoogLeNet VGG-19 ResNet-152

FGSM 0.7 0.4 0.44 0.19

IFGSM-LL 0.66 0.61 0.59 0.43

PGD 0.79 0.83 0.68 0.71

DeepFool 0.02 0.02 0.02 0.02

CW 0.02 0.02 0.02 0.02

UAP 0.33 0.28 0.4 0.32

GD-UAP 0.58 0.5 0.42 0.29

Table 1. Area under the FR@K curves for multiple models under

various adversarial attacks.

(i.e. poorly ranked after the attack). We observed that the

resulting attack’s behaviour is similar to the ‘best case’ sce-

nario proposed by the authors in which the post-attack label

is the second most probable label before perturbing. Please

note that the CW attack doesn’t guarantee the lp norm of the

perturbation to be smaller than a predefined value, rather, it

only minimises through the objective (eq. 9). Hence, we

chose a variant whose average perturbation is comparable

to the other attacks in order to provide a fair comparison.

Please refer to the supplemental material for a stronger ver-

sion of the CW attack.

Apart from extracting such hidden details about the at-

tacks, we can also convert these graphs into metrics such

as the area under the curve (AuC), which can be used for

a direct quantitative comparison. For instance, if one looks

for an attack that can demote the pre-attack label strongly, it

should have a high AuC for the FR@K plot. Similarly a ro-

bust model would have a low AuC for multiple attacks. Ta-

ble 1 shows the AuC computed for the curves shown in Fig-

ure 2. In terms of performance with respect to AuC metric,

attacks such as PGD and I-FGSM-LL inflict the maximum

disruption to the visual features discriminative to the pre-

attack label. Notice that the AuC generally decreases as the

models get sophisticated from left to right. This increased

robustness can be attributed to the advanced network ar-

chitectures with efficient regularizers such as dropout and

batchnorm.

3.2. QI­Wup

Figure 3 presents the QI-Wup measure computed for

multiple models over various attacks. For all these exper-

iments we have used a threshold (Ts) of 0.7 on the Wup



CaffeNet GoogLeNet VGG−19 ResNet−152
Figure 3. QI-Wup computed for various CNN models for multiple adversarial attacks. Note that the attacks are mentioned in the legend

and the model names are provided below the corresponding plot.

similarity.

It can be observed that image agnostic attacks such as

UAP [12], GD-UAP [14] consistently result in a strong

semantic damage compared to the image specific counter-

parts. This can also be explained from the fooling patterns

of these attacks. In case of image agnostic attacks, the exis-

tence of ‘dominant’ post-attack labels is observed. That is,

after the attack, the pre-attack labels are generally mapped

to a small set of sink classes. For instance, in case of UAP,

post-attack labels computed for all the 50000 validation im-

ages on GoogLeNet comprise only 17% of the total cate-

gories. It is hypothesized [12] that the dominant labels oc-

cupy large space and hence represent good candidates for

these attacks to fool the models. However, this is not the

case with the image specific attacks. It is observed that the

DeepFool and CW attacks generally inflict the smallest se-

mantic damage compared to the others. Note that this is

consistent with the observation in section 3.1 that they re-

sult in least FR@K.

Among the image specific attacks, I-FGSM-LL inflicts

maximum semantic confusion. This is understandable,

since this attempts to make the model predict the least-likely

label which is generally (visually) far away from the pre-

attack label. Hence, in general, the two labels should also

be semantically very far away. However, it is interesting to

note that PGD and FGSM attacks also inflict stronger se-

mantic damage.

We experimented with different threshold values (Ts)
for the Wup measure. Figure 4 shows the QI-Wup val-

ues for different threshold values computed for the VGG-19
model. Note that as threshold value decreases it becomes

difficult for the attacks to cause severe semantic confusion

and the metric becomes close to indiscernible. On the other

hand, higher value of Ts will bring out the subtle differences

among the attacks.

3.3. QI­Vis

Figure 5 shows the QI-V is metric computed for vari-

ous adversarial attacks over multiple CNN models. Note

that we have used visual similarities extracted from the cor-

responding CNN models as detailed in section 2.4 and a

threshold (Tv) value of 0.1. That means, a flipping is con-

sidered ‘visually fooling’ only if the visual similarity be-

Figure 4. Mean semantic confusion (QI-Wup) caused by various

attacks on VGG-19 computed with different threshold values for

Wup similarity.

tween the pre-attack label and post-attack label is less than

0.1. Note that this threshold is very small compared to Ts.

This is because the Wup similarity scores in general are high

even for a trivial case of semantically dissimilar labels. For

e.g. Brain Coral and Jack fruit (Figure 6) have a Wup sim-

ilarity of 0.46. On the other hand, the visual similarities

computed from the network (sec. 2.4) are very low. Supple-

mental document provides the percentile graph computed

for GoogLeNet visual similarities. We observe that 95% of

the similarities are less than 0.1. Thus, we chose Tv = 0.1
for our analysis.

Due to the presence of dominant labels in the post-attack

labels, the image agnostic attacks (UAP, GD-UAP) cause

more visual confusion compared to the image specific at-

tacks. Image specific attacks such I-FGSM-LL also inflict

significant visual confusion to the models. Also, note that

the visual confusion caused by FGSM and PGD is signifi-

cantly higher than that by CW and DeepFool.

In summary, iterative attacks remove most evidence for

the pre-attack label and cause severe demotion. Image ag-

nostic, and targeted attacks can do severe damage with re-

spect to all the three metrics on most of the CNN models.

Interestingly, simple FGSM based attacks also cause signif-

icant damage (which is non-trivial given only their fooling

rate performance) with respect to proposed metrics.

Among the models, ResNet-152 has the least AuC fol-

lowed by VGG-19. Further, ResNet-152 has smallest
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Figure 5. QI-Vis computed for various CNN models for multiple adversarial attacks. Note that the model is mentioned below the corre-

sponding plot.

Tennis ball Granny Smith

Brain Coral Jackfruit
Figure 6. Similar ‘object’ patterns can cause severe semantic con-

fusion. First column shows input samples and their pre-attack la-

bels and the second column shows the representative images from

the predicted post-attack labels.

QI-Wup followed by GoogLeNet. In terms of QI-vis,

GoogLeNet incurs least damage followed by VGG-19. In-

terestingly, ResNet-152 demonstrates the highest QI-V is.

4. Discussion

In this section, we present some interesting observations

that we have come across while analysing the attacks.

4.1. Visual vs Semantic similarity

It is as challenging as it is interesting to discuss ‘if the vi-

sual similarity correlates to the semantic similarity’ or vice

versa. In computer vision, it is often taken for granted that

they both are correlated [4]. While analysing the confusion

of the CNN models to adversarial attacks, we have come

across interesting examples about the visual and semantic

similarity. Figure 6 shows a pair of example images pre-

sented to a trained GoogLeNet under the DeepFool adver-

sarial attack. The first column shows the original images

with the ground truth label mentioned in green below them.

In the second column we show the representative samples

Alp

Mixing-bowl Eggnog

Yurt

Figure 7. Similar context can also cause models to easily confuse

across classes. First column shows input samples and the corre-

sponding pre-attack labels and the second column shows the rep-

resentative images from the predicted post-attack labels.

for the post-attack labels predicted by the model. Note that

the post-attack labels are mentioned below them in red.

We intentionally chose the DeepFool attack for it causes

the least semantic confusion. However, in this case it is very

clear that the post-attack labels are semantically far away

(Wup similarities are 0.35 and 0.46) from the pre-attack la-

bels. However, upon investigating, we found that the vi-

sual patterns of the post-attack labels are similar to those

of the pre-attack labels. Their visual similarities given by

the model (refer to sec. 2.4) are 0.17 and 0.23 respectively.

Please note that they are large compared to the 95% per-

centile similarity of 0.1. In both the cases, the post-attack

labels are ranked 2 before the attack. It can be explained

with the learning procedure. The only input that the CNN

model has received about the object categories is the images

belonging to those categories. Therefore, the model tries

to learn the discriminative visual patterns for each category

from the corresponding samples. Visually similar patterns

thus can cause the model to confuse across categories that

are semantically far apart, though such cases are not very

common. In case of the examples presented in Figure 6, due



Figure 8. Confusion among fine-grained categories. Figure shows

the % of dog samples that are misclassified as another dog cate-

gory. Note that the analysis is performed on GoogLeNet for 800

validation images from 117 dog categories of ILSVRC dataset.

to the similar visual patterns DeepFool attack could suc-

cessfully inflict a severe semantic confusion. However, in

general we observe the top ranked labels to be both visually

and semantically similar.

4.2. Influence of context

As an extension to the previous subsection, we present

the confusion caused by visual patterns from the context.

Figure 7 shows the images and corresponding ground truth

labels on the left. On the right, the representative image for

the predicted post-attack labels corresponding to them are

shown. In the first case, presence of sky region, landscapes

makes the model to consider the two classes to be visually

closer. In case of other samples of Yurt category, we ob-

serve that the shape of the Yurt being very similar to that of

the Alp. The visual similarity given by the model for the two

classes (sec. 2.4) is 0.137. Similarly, in the second exam-

ple, presence of the bowl(s) in the eggnog sample makes the

model to confuse between the two classes. Almost all the

samples from eggnog class have a very close context as that

of mixing-bowl. In this case, the visual similarity is 0.25.

4.3. Confusion among the fine­grained categories

In this subsection, we analyse the confusion of a CNN

model among the fine-grained visual categories under vari-

ous adversarial attacks. In particular, we chose the 117 dog

breed categories and GoogLeNet for this analysis. We con-

sider 800 validation samples belonging to these categories

and compute the percentage of intra-dog category confu-

sions. Figure 8 shows the % of samples that are confused

among these fine-grained categories, i.e., foolings in which

a dog sample is misclassified as another dog category. Note

that the confusion caused within the fine-grained categories

by the image specific attacks is significantly high. Also, in

spite of the existence of ‘dominant labels’, image agnos-

tic attacks also fool the CNN among the fine-grained cate-

gories.

5. Conclusion

In this paper, we challenge the current consensus in the

field of using fooling rate alone as a metric for evaluating

the quality of an adversarial attack. We introduce three ad-

ditional metrics FR@K, QI-Wup, and QI-V is that cap-

ture three different aspects of the fooling. They helped in

bringing out previously unknown strengths and weaknesses

of these attacks which would be helpful while deploying the

CNN models in real-world environments. To the best of our

knowledge, none of the existing works evaluates with met-

rics other than ‘fooling rate’. We list some of the important

inferences drawn from our work:

• Our experimental results bring out the usefulness of

the new metrics by clearly differentiating attack be-

haviours. For instance, AuC computed from the

FR@K graphs (Tab. 1) reveal that the attacks vary

in their ability to reduce the confidence assigned to

the pre-attack label. PGD demonstrates significantly

higher AuC values suggesting its superiority over the

others. This is interesting and in line with the observa-

tion that PGD attack is the most robust against current

adversarial defenses [10], which might be attributed to

its ability to reduce the confidence to the pre-attack

label. Similarly, the observation that Deep Fool (and

CW) attack generally swaps the top 2 labels is non-

trivial with only ‘fooling rate’.

• QI-Wup metric (Fig. 3) reveals that some of the attacks

(e.g. FGSM based) that are less effective with respect

to ‘fooling rate’, are comparatively more severe on a

semantic scale than their counter parts. On the other

hand, attacks such as Deep Fool while achieving a high

‘fooling rate’ inflict least amount of semantic damage.

Clearly, when analysing the semantic damage inflicted

by the attacks (or incurred by models), fooling rate can

not serve the need.

• Our experiments reveal (Sec. 4.3, Fig. 3) that some of

the strongest adversarial attacks such as PGD achieve

significant fooling (> 85%) via confusing the models

among visually similar, fine-grained categories which

are only ∼ 12% of the total categories. Without this

information, higher fooling rates achieved by these

attacks may project the classifiers as unsophisticated

to the community and more importantly to the policy

makers. Similarly, attacks such as CW and DeepFool,

in spite of resulting a very high (top-1) fooling rate,

cause significantly lesser visual and semantic confu-

sion. On the other hand, relatively simple attacks such

as FGSM and FGSM-LL cause higher visual and se-

mantic damage. These aspects throw new light on the

attacks and the way they achieve the fooling.
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