
Probing for Artifacts: Detecting Imagenet Model Evasions

Jeremiah Rounds

jeremiah.rounds@pnnl.gov

Addie Kingsland

addie.kingsland@pnnl.gov

Michael J. Henry

michael.j.henry@pnnl.gov

Kayla R. Duskin

Pacific Northwest National Laboratory

902 Battelle Blvd, Richland, WA 99354

kayla.duskin@pnnl.gov

Abstract

While deep learning models have made incredible

progress across a variety of machine learning tasks, they

remain vulnerable to adversarial examples crafted to fool

otherwise trustworthy models. Previous work has proposed

examining the internal activation of Imagenet models to de-

tect adversarial examples. Our work expands the scale and

scope of previous research by simultaneously probing every

activation within an Imagenet model using a novel probe

block. This probe block model is trained against multiple ad-

versarial algorithms to create a more robust detector. Param-

eterization of the probe block and adversarial classification

networks that utilize probe block output are examined in an

ablation experiment with probes of Resnet-50, Inception-v3

and Xception. Considered adversarial classification net-

works include examples built with Mobilenet-v2 which is

shown to be better than a VGG alternative for detecting

adversarial artifacts. Results are compared to logistic re-

gression feature squeezing results, which we suggest is an

improvement to feature squeezing.

1. Introductions

Deep Neural Networks (DNNs) have proven to be effec-

tive models for a number of challenging tasks, such as com-

puter vision [16, 41], machine translation [5], and speech

recognition [3]. However, DNNs are also known to be vulner-

able to adversarial perturbations — inputs to the model that

have been subtly perturbed from their original state in order

to change the output of the model. While often demonstrated

in image classification paradigms [48], these adversarial ex-

amples have been shown to exist across a variety of machine

learning applications and data modalities [8, 30, 52] and in

high-impact topics, such as malware detection [28, 45].

Adversarial examples take advantage of the fact that rel-

atively small changes to input can drastically change DNN

outputs. Perturbations too small to be detected by the human

eye can successfully alter the output of an otherwise highly

accurate DNN model. The imperceptibility of adversarial

changes to model inputs is cause for concern for institutions

that rely on DNN models to make decisions.

Image classification DNN models trained on Imagenet

[41], in particular, now have extensive literature docu-

menting this vulnerability[17]. These include Inception,

Resnet, Inception-Resnet-v2, Xception, as evaluated in this

work[11, 16, 47, 51], but additional Imagenet-based models

such as Faster RCNN variants[39], etc. have all been shown

to be vulnerable to adversarial attacks.

To date, there have been three primary strategies for mit-

igating the threat of adversarial examples. The first is to

increase model robustness so that a model will still perform

reliably in the presence of adversarial input. The second is to

inhibit the creation of successful adversarial examples. The

third is to train an adversarial detector to be ran in parallel to

the model during inference.

Adversarial examples are hypothesized to reflect a lack

of robustness in model features[21]. One method to de-

crease model sensitivity to small changes in pixel values is

to utilize lower RGB input dimensionality; however, that has

been proven insufficient to remove the threat of adversar-

ial perturbations[9]. Robustness may be addressed directly

with feature manipulations or feature matching[37, 53, 56].

Various forms of feature transformations continue to be

explored as a possible defense, for example,[38, 46]. Ro-

bustness may be built into a model through more elaborate

training strategies[24, 50] or efforts to create more gener-

alized models[25]. While these research areas are promis-

ing, it remains that there is not yet a general solution or

plan that can create adversarially robust DNN models that

does not sacrifice performance and is immune to adversarial

perturbations[23, 44].

Another method of safeguarding against adversaries is

to prevent their creation in the first place. Since many tech-

1

niques for constructing adversarial examples use the gradient

of the model they are attacking, it was hypothesized that con-

cealing or masking the gradient of the model would impede

the creation of successful adversaries]. However, due to the

transferability of adversarial examples [48], gradient mask-

ing has been shown to be defeated by determined adversaries

[36].

In addition to the difficulty of building completely ro-

bust DNN models, adversarial research is now increas-

ing the ease and efficiency of attacking a model. Re-

cent research has greatly increased throughput[55], in-

creased transferability[22], lowered information used in or-

acle attacks[2, 10, 20, 49], and restricted image regions of

the input to achieve the adversarial goal[31].

The issues of robustness and defensibility have proven

extremely challenging for the research community to solve,

while more and more successful adversarial input schemes

have been demonstrated. This presents a worrisome outlook

for operators of machine learning models and justifies contin-

ued research into the third approach: detection. Essentially,

this third approach is to have super-human perception, so

that if a small change in an RGB pixel value is not seen by

a human, it is still noticed by an algorithm. Imperceptible

perturbations cannot be discovered by the human eye, so

they must be discovered by computer examination.

This paper considers a DNN model-based strategy for

detecting artifacts of adversarial perturbations to Imagenet-

trained models. We create a training corpus for the investi-

gation of adversarial models and suggest a novel detection

scheme based on probing a DNN model’s activations at mul-

tiple stages of the model. We show our method achieves

higher detection rates than several alternatives. We also

suggest a practical improvement to feature squeezing called

Logistic Regression Feature Squeezing.

2. Related Work

Related work in detection may be divided into two broad

categories: those methods that look for characteristic arti-

facts of adversarial perturbation in an input as a classification

problem[26, 32, 33] and those that examine model response

to further perturbations of the input[18, 19, 29, 54]. The

two catagories are commonly called artifact detection and

feature squeezing based on early work in the subject.

Ma et al. [32] and Katzir [26] use the distribution of ac-

tivations within a model to perform artifact detection. Prin-

cipal component analysis (PCA) may be used on model

activations to uncorrelate features [26]. Metzen originally

suggested using activation within a DNN as input into an-

other DNN for artifact detection[33] . In [33], VGG16 model

is probed for unusual activation values by routing one of its

hidden layers to a Convolution Neural Network classifier. A

limitation of [33] is that it only considered probing the model

at a single depth. The depth at which the model activation

was passed to the classifier was chosen via grid search opti-

mizing accuracy of detection. In our work, we expand upon

this artifact detection technique by probing the model at mul-

tiple depths and treating the weights assigned to the probed

activations as learnable parameters in the probe model. In

contrast to [33], this new model attaches at each hidden layer

of the model and uses a dimension-reducing fully connected

layer with ReLU activation to make computation feasible.

Alternatives to direct classification of artifacts include

looking at the response of a model to various transforma-

tions of the input. Feature squeezing detects adversarial

examples by using transformations that reduce the number

of free bits utilized by the input image[54]. Logit or fea-

ture differences between paired or noised images can also

be useful[19, 29]. It has been hypothesized that there is a

sub-manifold explanation for examining feature response

to perturbation[18]. Another effort in this family varies the

model, instead of the input, and uses rules based on feature

response to different model weights[40].

Finally, no review of related work would be complete

without stating that a determined researcher, with knowl-

edge of detection techniques, may craft adversarial inputs

that are evasive to both a defended model and the detection

algorithm[6].

3. Adversarial Algorithms

In this section, we provide a summary of the adversar-

ial attack algorithms referenced in our experiments. All

algorithms herein create perturbations on floating-point rep-

resentations of RGB images (96 bits per pixel). Many novel

adversarial algorithms exist and new methods are proposed

frequently; thus, while we selected a representative sub-

sample of important algorithms, it is by no means exhaus-

tive.

Input images are scaled down (or occasionally up) in

height and width to target model resolution with nearest

neighbor pixel values in 24-bit RGB and then model prepro-

cessing is applied to the input. An adversarial image is only

considered a successful adversary if it can saved as a 24-bit

RGB image, with all model preprocessing inverted, prepro-

cessed for a target model again, and remain evasive in a final

check. The average size of successful evasive perturbations

from an algorithm is measured with the average L1-norm of

a perturbation on the 24-bit RGB images:

L1-norm =
1

S

1

C

∑

i

∑

(h,w,d)

|x′

i,(h,w,d) − xi,(h,w,d)| (1)

where x′

i and xi are adversarial and non-adversarial pairs

of images, i indexes S successful adversarial images and

(h,w, d) indexes C color channel values within those im-

ages.

Many algorithms are parameterized with ǫ as a param-

eter that controls the scale of an added perturbation. For

Algorithm Iv3 R50 Xcep IRv2 VGG16 10-Iv3 10-VGG16

FGSM (Recall in Table 5) 1.960 1.961 1.959 1.959 1.963 1.963 1.969

CWL2 (Recall in Table 6) 1.655 1.602 1.594 1.840 1.559 2.690 2.459

DeepFool (Recall in Table 7) 0.089 0.024 0.100 0.183 0.054 0.226 0.349

Table 1. Mean L1-norm of a perturbation on a 24-bit RGB image for different adversarial algorithms (rows) crafted against classification

models (columns). Adversarial images are cast to 1 byte per color channel (24-bit), re-transformed for target model, filtered for successful

evasion, and a mean L1-norm over successful distortions over the 1-byte color channel difference is reported. FGSM is parameterized

k = 2.0. CWL2 has learning rate = 0.001 and confidence = 0.10. DeepFool is modified and parameterized with confidence value = 0.10.

From top to bottom adversarial artifacts are progressively more difficult to detect. Abbrevations of columns are Inception v3(Iv3), Resnet50

(R50), Xception(Xcep), Inception-Resnet-V2 (IRv2), VGG16, 10-class Inception v3 (10-Iv3), 10-class VGG16 (10-VGG16). Resnet-50

DeepFool produces particularly small perturbations.

consistency, we express ǫ as k of 255 possible RGB values

in a unsigned byte 24-bit image, where k is an integer, but

ǫ is scaled to the dynamic range of the target model input

in application. For example with Inception and Inception

Resnet models, input is scaled between [−1, 1], so

ǫ =
2

255
k, (2)

but we report k. For Resnet50, ǫ is simply the k. This

adjustment explains why the FGSM L1-norms reported in

Table 1 are nearly constant across models.

Fast Gradient Sign Method (FGSM): FGSM is a non-

iterative, non-optimized, fast adversary [14]. An image is

perturbed toward a classification boundary based on gradient.

x = x+ ǫ sign(∇J(L,x)) (3)

where x is model input and ∇J(L,x)) is the gradient of the

loss with respect to the input. In a high-dimensional space,

sign(∇J(L,x)) is an approximate direction of a decision

boundary. This method, while fast, results in a characteristi-

cally splotchy distortion on most successful attacks.

Carlini and Wagner L2 (CWL2): CWL2 crafts adver-

sarial perturbations by optimizing a loss function that fa-

vors target model evasion [4, 6, 7, 27]. With CWL2, if a

researcher can express a differentiable loss function that

achieves adversarial goals against a defense, an optimizer

(such as Adam) can find perturbations that defeat defense[4].

For our experiments, we use a reference implementation

from the cleverhans project to create CWL2 adversaries[35].

CWL2 has a confidence hyper-parameter that specifies how

much greater the logits should be in the adversarial label than

the original label. Confidence is 0.1 for our experiments. In

its untargeted form, CWL2 produces adversarial images that

are usually invisible to the human eye, having perturbations

averaging less than 2/255 RGB change per color pixel in

24-bit images.

Modified DeepFool: DeepFool is an iterative algorithm

that minimizes the L2 norm of a perturbation necessary to

reach a decision boundary[34]. We modify the DeepFool

direction decision and stopping criteria by inserting a confi-

dence parameter.

As previously stated, adversarial algorithms perform per-

turbations on floating point RGB images, which assign 96

bits per pixel. However, in practice all final perturbed images

are saved as unsigned integer RGBs, which assign 24-bits

per pixel as is necessary for saving the image to disk with

common file formats. This is important because not all

adversarial algorithms persist to the unsigned integer repre-

sentation of the images.

In its original form, DeepFool will often craft a mathemat-

ical adversary at 94-bit precision (32-bits per color channel)

that do not result in any differences for 24-bit RGB images

(L1-norm = 0) after casting from floating point to unsigned

byte. The overshoot parameter recommended by [34] is not

usually helpful in avoiding this issue on Imagenet models.

To overcome this early stopping, we add an additional hyper-

parameter to the model logits of the class that DeepFool

is evading. This parameter changes DeepFool’s selected

iterative direction, step size, and willingness to stop. Per-

turbations remain very small. We selected confidence= 0.1,

and describe the use of this parameter in the supplement, the

average L1-norm of a perturbation on a 24-bit RGB image

is approximately 0.10 (Table 1).

4. Detection by Model Probing

Our model detects adversarial artifacts by probing a base

model for unusual activations in hidden layers. Experimental

base models are Resnet50, Inception-v3 and Xception mod-

els, and their weights are never unlocked for any training.

We view the entirety of internal activation of base models to

be extremely high-dimensional feature vectors, as such all

layer outputs besides batch normalizations within the base

model are used as feature vectors to be fed to a classifier

network.

A base model’s layers emit activation tensors

v = v1, ...,vN where N is the number of layers in

the model (minus the batch normalization layers). Due

to the presence of topologies like residual networks, all

considered target models have multiple activations that

Figure 1. Illustration of probe blocks on Inception-v3. All tensor output in Inception-v3 is routed through a probe block with weights specific

to the probed layer. Probe output is concatenated and routed through a final classification unit for artifact detection. The size of probe block

output and the form of the classification unit is varied in ablation experiment.

Probe

Layer

Index

Input

Layer

Index

Operation Output

Shape

1 Varied vi
Probe

Input (h,w,d)

2 1 GlobalMaxPool (d)

3 1 GlobalMeanPool (d)

4 2,3 Concatenate (2d)

5 4 Dense K

6 5 BatchNormalization K

7 6 ReLU K

Table 2. fi(vi|θi,K) probe block defined in terms of Keras layer

operations. K output dimension varies in experiment while input

dimensions (h=height,w=width,d=depth) are determined by the

probed layer.

occur at the same depth. In that case, the order in which the

tensors are presented in v is ad-hoc, but always the same.

We describe the first layers that operate on elements of

v as a probe block, which is a functional block of opera-

tions that takes as input the activation tensor of a model’s

ith hidden layer, vi, and produces an output of length K,

where K is chosen by grid search experiment. We define the

ith probe output, ui, as ui = fi(vi|θi) where θi is unique

weights learned for each probe block. The internal compu-

tation of a probe block is described in Table 2. One task

of the probe block is to resize output from all feature map

activations within a base model to one standard dimension

to be used downstream in the adversary detection classifier.

Name Adversarial Classification Unit

Model-Probe-16-

FC1

Dense(512, activation=ReLU)

BatchNormalization()

DropOut(rate=0.50)

Dense(2, activation=ReLU)

Softmax()

Model -Probe-32-

MobileNet-v2

Reshape(N, K, 1)

Conv2D(filters=3, shape=(1,1))

MobileNet-v2(α = 1.0)

Dense(512, activation=ReLU)

BatchNormalization()

DropOut(rate=0.50)

Dense(2, activation=ReLU)

Softmax()

Table 3. Subsequent classifier construction on r probed fea-

tures constructed by concatenating fi(vi|θi,K) from Table 2.

Model-Probe-16-FC models are the use of probe output into

fully connected layers for adversarial classification. Model-Probe-

32-MobileNet-v2 is the use of probe output into an unlocked

MobileNet-v2 for adversarial classification.

We employ a global pooling operation as the first layer of

the probe block because that operator is well-defined for any

shape input, and the probe block ends with a dense layer

with ReLU activation. The probe block’s construction and

optimization make it a dimension reduction operator.

The outputs of the probe blocks are next reshaped into

one tensor to be used as input for the classification net-

work that classifies the original input as adversarial or non-

adversarial. Depending on classification network design, the

u = u1, ...,uN probe outputs are either concatenated into

an N ∗K length vector for fully connected operators or re-

shaped into an (N,K, 1) tensor for convolutional operators.

The concatenation of all probe block outputs, called r, is then

passed to the classification network. Possible architectures

for the classification network are described in Table 3 and

include options for either a fully connected (FC1) or convo-

lutional network architecture, Mobilenet-v2(α = 1.0) [42].

For the FC1 architecture K is 16 while for the Mobilenet-v2

architecture K is 32.

During training, the trained weights of the base model

are kept frozen and only the weights of the probe blocks and

classification network are trained. The loss function is cate-

gorical cross-entropy for the binary classification problem

where 1 indicates the input is adversarial perturbed and 0

indicated the input is not adversarial. The probe block and

classification weights are optimized with Adam optimizer

using mini-batch training (batch size = 32)[27] in Keras[12]

with a Tensorflow backend[1]. The learning rate is set to

0.001 and decayed by multiplying by 0.75 every time there

are four epochs without validation loss improvement.

5. Experiments

5.1. Data

We create a corpus of training, validation, and test data

in which to search for adversarial artifacts. This data corpus

contains the ten Imagenet classes selected at random by [33]

for experimentation: palace, joystick, bee, dugong, cardigan,

modem, confectionery, valley, Persian cat, and stone wall.

The resulting 12849 Imagenet images are divided at random

into training, validation (development), and test sets with an

80%, 10%, 10% split.

Each adversarial algorithm we introduced in Section 3

requires knowledge of the target model in order to create

adversaries. Therefore, to create each adversarial example

necessary for training and testing our model, we must de-

fine the following triplet: source data, target model, and

adversarial algorithm. Given the above subset of Imagenet

as the source data, we select several mainstream models

from the Imagenet family of image classifier as target mod-

els (Inception-v3, Resnet50, Xception, VGG16 [43] and

Inception-Resnet-v2).

Additionally we introduce 10-class versions of Inception-

v3 and VGG16 target models. The 10-class models are

modified to only emit probabilities for the classes within our

training corpus by slicing the logit layer down to only the

10 relevant classes before applying the softmax activation.

By creating the 10-class models we have two types of non-

targeted Inception adversaries in the training data: a type

that builds adversaries on the 1000-class Imagenet models,

and a type of adversary that builds perturbations on the 10-

FPR FGSM CWL2 DeepFool

xception-probe-16

FC1

0.01 0.92 0.43 0.13

xception-probe-32

mobilenet-v2

0.01 0.92 0.46 0.18

xception-probe-16

FC1

0.05 0.99 0.56 0.32

xception-probe-32

mobilenet-v2

0.05 0.98 0.58 0.40

xception-probe-16

FC1

0.10 1.00 0.65 0.45

xception-probe-32

mobilenet-v2

0.10 0.99 0.65 0.50

Table 4. Recall results for the Xception probe model. The K = 32
probe into a Mobilenet is more powerful than the lower capacity

models for diffiult-to-detect perturbations such as DeepFool, which

were, on average, an order of magnitude smaller than CWL2.

class Imagenet models. Adversarial images built against the

10-class variant result in larger perturbations on average for

algorithms with stopping criteria (Table 1; DeepFool and

CWL2).

We created adversaries using FGSM, CWL2, and the

modified version of DeepFool discussed in Section 3. We

experimented with, but ultimately abandoned, probe models

specialized to detect one type of adversary at a time. Spe-

cializing weights to a single adversarial algorithm has been

discussed in [33], and elsewhere. We found that special-

ized detectors show higher recall at lower false-positive rates

than detectors trained against a variety of adversariesr. How-

ever, we favor more generalized models which may perform

better under circumstances where the type of adversary is

unknown. To promote robustness, our models were trained

simultaneously against multiple adversaries and so have to

learn perturbation artifacts of everything in our training data.

5.2. Ablation Study

Several model design decisions were considered in an

ablation study with the two most successful probe models

highlighted in Table 4. Supplemental results indicate there is

an advantage to using more probe units from the base model

but no advantage to using a second fully connected layer

in the classification network. The higher capacity K = 32
probe into Mobilenet-v2 has a consistent advantage over the

FC probe in recall in the difficult detections of CWL2 and

DeepFool. Based on this ablation experiment, the rest of

results in this section focus on probe models that are inputs

to Mobilenet.

5.3. Sensitivity to Adversarial Model Architecture

We examine the relative importance of the probed base

model to adversarial detection against three adversarial algo-

Model Iv3 R50 Xcep IRv2 VGG16 10-Iv3 10-VGG16

inception-v3-probe-32-mobilenet-v2 0.98 0.65 0.68 0.71 0.64 0.96 0.67

resnet50-probe-32-mobilenet-v2 0.62 0.83 0.62 0.72 0.71 0.61 0.73

xception-probe-32-mobilenet-v2 0.83 0.79 0.98 0.86 0.74 0.85 0.77

Metzen (Our Retrain) 0.41 0.52 0.39 0.45 0.69 0.38 0.69

LRFS Inception 0.23 - - - - - -

LRFS Xception - - 0.21 - - - -

Table 5. FGSM (k = 2.0) recall for three types of probe detectors at FPR=0.05. Column indicates model adversary used in generating

perturbation. Abbrevations of columns are Inception v3(Iv3), Resnet50 (R50), Xception(Xcep), Inception-Resnet-V2 (IRv2), VGG16,

10-class Inception v3 (10-Iv3), 10-class VGG16 (10-VGG16). Reported values are recall. Bold indicates best detection on an adversarial

model. Xception generalizes to the best overall detector, but performance can be targeted as needed. Metzen is a VGG16 probe described in

related literature and considered further in a comparison section. Logistic Regression feature squeezing (LRFS) was not presented with

black-box scenarios in the interest of shortening run-time. LRFS Inception was trained on and applied to Inception-v3 features. LRFS

Xception was trained on and applied to Xception features.

Model Iv3 R50 Xcep IRv2 VGG16 10-Iv3 10-VGG16

inception-v3-probe-32-mobilenet-v2 0.53 0.25 0.25 0.35 0.24 0.91 0.58

resnet50-probe-32-mobilenet-v2 0.26 0.32 0.24 0.36 0.27 0.63 0.60

xception-probe-32-mobilenet-v2 0.38 0.32 0.58 0.51 0.32 0.79 0.67

Metzen (Our Retrain) 0.18 0.18 0.16 0.24 0.26 0.49 0.54

LRFS Inception 0.59 - - - - - -

LRFS Xception - - 0.51 - - - -

Table 6. CWL2 (confidence=0.1) recall for three types of probe detectors at FPR=0.05. Columns are as in Table 5.

Model Iv3 R50 Xcep IRv2 VGG16 10-Iv3 10-VGG16

inception_v3-probe-32-mobilenet-v2 0.49 0.06 0.08 0.13 0.07 0.82 0.19

resnet50-probe-32-mobilene-v2 0.07 0.06 0.06 0.09 0.06 0.14 0.17

xception-probe-32-mobilenet-v2 0.21 0.06 0.38 0.21 0.07 0.44 0.28

Metzen (Our Retrain) 0.07 0.05 0.05 0.08 0.06 0.12 0.22

LRFS Inception 0.68 - - - - - -

LRFS Xception - - 0.68 - - - -

Table 7. Modified DeepFool (confidence=0.1) for three types of probe detectors at FPR=0.05. Columns are as in Table 5. Resnet50 had no

detection rates significantly above the controlled FPR.

rithms — FGSM (Table 5), CWL2 (Table 6), and DeepFool

(Table 7). Recall results are reported with thresholds con-

trolled at a false postive rate (FPR)= 0.05. Results are

reported for each adversaries generated by each adversarial

model in our corpus (columns). The detector base model

varies as one of: Xception, Inception-v3, Resnet50 (rows).

As shown in Table 6, we find that each detector model

displays higher recall when the target model used to create

the adversaries is the same as the architecture used in the

detector’s base model. All detectors are trained using the

same dataset and training regime, making it clear that the

matching architecture produces the increased performance.

This is an intuitive, but not easily explained result because

each model has the same training set and approximately

the same capacity, yet persists in holding a performance

advantage in their own baseline model.

The conclusion from this experiment is that if it is possi-

ble to anticipate the architecture used to generate adversaries,

better performance can be expected by using the same or

similar architecture as the base model in the detector.

5.4. Comparison to Other Detectors

We compare probe detection to original work in artifact

detection and feature squeezing.

5.4.1 Artifact Detection

The most directly related artifact detection model in liter-

ature is from Metzen [33]. In Metzen, a VGG16 model is

probed with a convolutional model at one specific activa-

tion in VGG16. For comparison to our work, we retrain

a Metzen et al. VGG16 model on this experimental cor-

pus, but according to published instructions from the author.

Therefore, reported recalls here are different from original

author. The task in this work is harder: these artifact detec-

tors have to simultaneously detect artifacts across a variety of

model sources and algorithms. In every case, our proposed

alternative shows greater recall than original VGG artifact

detection model. Based on these results, the higher capacity

"xception-probe 32-mobilenet-v2" introduced in this work

is the superior artifact detector.

5.4.2 Feature Squeezing

In feature squeezing[54](FS), Imagenet model inputs are ma-

nipulated via smoother-like functions that reduce, in some

way, the pixel degrees of freedom. For example, one fea-

ture squeezer may reduce the number of bits available to

a pixel by forcing low-order bytes to be zero, or another

feature squeezer may run a local median smoother across an

image. The intent is to reduce the complexity of the input

in a known manner. In contrast to artifact detection, which

detects signatures for adversaries directly from model input,

feature squeezing uses the resulting change to model output

after applying a squeezer to the input as the signature of an

adversary.

Feature squeezers are used as sets or as ensembles. Each

of the squeezer operations induces a change in the model

probability output, f(x) = p, where f(x) is a CNN. We

calculate the L1 distance between the original model output

and new model output as

D(f(x), f(s(x)) =
∑

k

|fk(x)− fk(s(x)|, (4)

where x is an image input, s(x) is a squeezer on image

input, and k indexes Imagenet class probabilities. We denote

the particular difference of probability output created by a

squeezer function, s(x′), as Ds(x
′).

A critical conjecture for feature squeezing is that there

are squeezer functions such that the distributions of L1 dis-

tances tend to be higher for adversarial modifications than

for images that have not undergone adversarial perturbation.

However, appropriate s(x) may vary by subject matter and

may not be robust to small changes of images or adversaries;

that is, with one image set, a particular squeezer is good, but

in another, it may not be useful at all. In practice, classifica-

tion of an image as adversarial or non-adversarial is based

on a threshold rule for squeezer distance, Ds(x) > t, where

t is a chosen threshold. [54] suggests the use of a maximum

statistic

M(x) = max(D1(x), ..., Dn(x)). (5)

This is the maximum of all L1 distances induced by an

ensemble of squeezers and defines a decision rule for adver-

sarial input, as M(x) > t0.05 where t0.05 is a threshold that

controls false-positive rate at 0.05 on non-adversarial input.

Figure 2. Distribution of all feature squeezers used in [54] on a

1000 image random sample of Xception adversaries. BD 1, 3,

5 are bit-depth 1, 3, and 5 feature squeezers, respectively. MF

2,2 and 3,3 are Median Filter on a 2 by 2 and 3 by 3 moving

window. NLMC are parameterizations to a non-local Guassian

smoothing algorithm. [54] recommends the maximum of BD 5,

MF 2,2 and NLMC 13,3,2 for detecting adversarial modifications.

From these boxplots, BD 3, MF 2,2 and MF 3,3 have the least

overlap between adversarial and non-adversarial, thus they appear

to be more useful feature values than NLMC values. However, if

we were to use [54]’s approach, they would rarely factor into the

decision boundary because NLMC is so often larger. MF 2,2 itself

appears to be a startlingly efficient feature. A simple rescale of the

features does not make the maximum much better.

[54] recommends the maximum of bit-depth 5 (BD 5), me-

dian filtering 2,2 (MF 2,2), and a non-local means smoother

(NLMC 11, 3, 4), which we applied to our own adversarial

images corpus. Overall, the distributions of the squeezer

L1 distances appears to be useful for detecting adversaries

(Figure 2). However, we found that using the simple max-

imum over those three squeezers did not fairly represent

the method as it performed so poorly we could not report

the results. Reviewing the probability L1 distances, D(x),
showed the maximum of squeezer features unnecessarily

favored a poor-performing NLMC feature. To avoid the ad-

verse effect of using the maximum operator, we introduce a

modification we call Logistic Regression Feature Squeezing

(LRFS).

The original FS decision rule can be written as:

I(x) = (α0.05 +max(D1(x), ..., Dn(x)) > 0 (6)

where α is a false positive rate controlling offset, α = −t0.05
from above. The use of a maximum operator over the Dk(x)
values overemphasizes the conjecture that a squeezer results

in extreme values only on adversarial images. In contrast, in

LRFS we train a logistic regression model to assign weights

to each Dk(x) and then base the classification decision off

of the weighted sum of the Dk(x). We express this updated

decision rule as

I ′(x) = (α′

0.05 + β̂1D1(x) + ...β̂nDn(x)) > 0. (7)

The false positive rate controlling the shift of the classifica-

tion threshold is estimated using the training data.

The log-odds of an image being adversarial are modeled

as

LO(x) = log(p(x;β)/(1−p(x;β)) = β0+
∑

j

βjDj(x),

(8)

where LO(x) is log-odds and p(x;β) is the probability of

being adversarial in a balanced training set [15]. β̂1, ..., β̂n

are estimates that minimize the objective function;

l(x;β) =

−
∑

i

[yi log(p(xi;β)) + (1− yi) log(1− p(xi;β)]

+ c
∑

j

β2
j , (9)

where p(xi;β) = 1− exp(−β0 −
∑

j βjDj(xi)), and c is

a penalty constant.

Unlike with the maximum operator, this log-linear op-

timization may find βj near 0 when a feature is large but

unimportant, or give features relative importance. The max-

imum operator cannot ignore a feature that is unimportant,

which can be quite bad if an included squeezer is not partic-

ularly well-suited to the data at hand.

5.4.3 Logistic Regression Feature Squeezing Results

We trained two LRFS models for comparisons. One was

trained on Inception-v3 adversaries and the other was trained

on Xception adversaries. Each model estimated coefficients

with an L2-penalized objective function. The penalty value

c is selected by grid search in a 10-fold cross-validation on

the training data.

For Inception-v3 the squeezer coefficients are: LO(x) =
α′

0.05 + 1.19D1(x) + 3.69D2(x) + 0.61D3(x), where

LO(x) is the log-odds of an image being adversarial and

D1, D2, and D3 are the L1 distances in model output in-

curred by bit-depth 5 (BD 5), median filtering 2,2 (MF 2,2),

and a non-local means smoother (NLMC 11, 3, 4) squeezer

functions, respectively. A final LRFS decision rule that

controlled FPR at 0.05 is I ′(x) = −3.25 + 1.19D1(x) +
3.69D2(x) + 0.61D3(x) > 0. The logistic regression em-

phasizes the distribution of the median smoother over non-

local means which is consistent with the gestalt of Figure

2. There were no measured advantages to scaling or us-

ing PCA on this feature set, but this method may theoret-

ically be extended to many more squeezers, and then di-

mension reduction may become more valuable. We only

used the three recommended squeezers from [54] because

we wanted the minimum adaption to make FS work as LRFS.

For the Xception model the decision rule is similar, but with

even more emphasis placed on the MF 2,2 feature: I ′(x) =
−3.73 + 0.12D1(x) + 6.43D2(x) + 0.55D3(x) > 0

The resulting recall performance of the LRFS models are

reported in Tables 5, 6, and 7. From this work we corrobo-

rate two generalities from [54]. First, feature squeezing is

very poor at detecting FGSM adversaries, and second, com-

pared to artifact detection, feature squeezing is very good at

detecting DeepFool adversaries. What is interesting about

that statement is that FGSM is typically an easier artifact to

detect, and modified DeepFool makes very small perturba-

tions that are difficult to detect as artifacts. This may indicate

that feature squeezing and artifact detection may be best de-

ployed as complementary systems rather than as competitive

systems.

6. Conclusions

In this work we found that probing base models at mul-

tiple depths to detect adversarial artifacts, along with train-

ing adversarial detectors on a variety of adversarial attacks

produces effective and reasonably generalizable detection

models. We also illustrate the connection between creating

and detecting adversarial examples using the same model

architecture and show that some presumed knowledge of

potential adversaries will always be valuable (Section 5.3).

We suggest a generalized improvement to the feature

squeezing detection method: to view the squeezers L1 dis-

tance as a feature vector in a classifier, in this case, Logistic

Regression. The use of artifact detection and Logistic Re-

gression Feature Squeezing are complementary because each

has scenarios in which they are the strongest detector (Tables

5,6,7). When an adversarial perturbation is too small, for

example, average perturbation L1-norm ≈ 0.10, switching

to a feature model response, rather than input inspection,

makes intuitive sense.

We have observed artifact detection is dependent on train-

ing corpus. Future work is to use techniques such as Domain

Adversarial Training to reduce that dependence[13]. Also,

the approaches demonstrated through this work could be

combined by integrating the feature squeezing inputs into

the probe model artifact detection via concatenating probe

activations from each squeezed input. These new research

directions would be an exciting continuation of probing for

artifacts.

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis,

Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale

machine learning on heterogeneous distributed systems. arXiv

preprint arXiv:1603.04467, 2016.
[2] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan

Zhang, Cho-Jui Hsieh, and Mani B Srivastava. Genattack:

Practical black-box attacks with gradient-free optimization.

In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 1111–1119. ACM, 2019.
[3] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl

Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike

Chrzanowski, Adam Coates, Greg Diamos, et al. End to end

speech recognition in english and mandarin. In International

Conference on Machine Learning (ICML), 2016.
[4] Anish Athalye, Nicholas Carlini, and David Wagner. Ob-

fuscated gradients give a false sense of security: Circum-

venting defenses to adversarial examples. arXiv preprint

arXiv:1802.00420, 2018.
[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and

translate. In Yoshua Bengio and Yann LeCun, editors, 3rd

International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings, 2015.
[6] Nicholas Carlini and David Wagner. Adversarial examples are

not easily detected: Bypassing ten detection methods. In Pro-

ceedings of the 10th ACM Workshop on Artificial Intelligence

and Security, pages 3–14. ACM, 2017.
[7] Nicholas Carlini and David Wagner. Towards evaluating the

robustness of neural networks. In 2017 IEEE Symposium on

Security and Privacy (SP), pages 39–57. IEEE, 2017.
[8] Nicholas Carlini and David Wagner. Audio adversarial ex-

amples: Targeted attacks on speech-to-text. In 2018 IEEE

Security and Privacy Workshops (SPW), pages 1–7. IEEE,

2018.
[9] Jiefeng Chen, Xi Wu, Vaibhav Rastogi, Yingyu Liang, and

Somesh Jha. Towards understanding limitations of pixel

discretization against adversarial attacks. In 2019 IEEE Euro-

pean Symposium on Security and Privacy (EuroS&P), pages

480–495. IEEE, 2019.
[10] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan

Zhang, and Cho-Jui Hsieh. Query-efficient hard-label black-

box attack: An optimization-based approach. arXiv preprint

arXiv:1807.04457, 2018.
[11] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

1251–1258, 2017.
[12] François Chollet et al. Keras. https://keras.io, 2015.
[13] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal

Germain, Hugo Larochelle, François Laviolette, Mario Marc-

hand, and Victor Lempitsky. Domain-adversarial training of

neural networks. The Journal of Machine Learning Research,

17(1):2096–2030, 2016.
[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In Inter-

national Conference on Learning Representations (ICLR),

2015.
[15] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The

elements of statistical learning: data mining, inference, and

prediction. Springer Science & Business Media, 2009.
[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.
[17] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt,

and Dawn Song. Natural adversarial examples. arXiv preprint

arXiv:1907.07174, 2019.
[18] Shengyuan Hu, Tao Yu, Chuan Guo, Wei-Lun Chao, and

Kilian Q Weinberger. A new defense against adversarial

images: Turning a weakness into a strength. In Advances in

Neural Information Processing Systems, pages 1633–1644,

2019.
[19] Bo Huang, Yi Wang, and Wei Wang. Model-agnostic adver-

sarial detection by random perturbations. In Proceedings of

the 28th International Joint Conference on Artificial Intelli-

gence, pages 4689–4696. AAAI Press, 2019.
[20] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy

Lin. Black-box adversarial attacks with limited queries and

information. arXiv preprint arXiv:1804.08598, 2018.
[21] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan

Engstrom, Brandon Tran, and Aleksander Madry. Adversarial

examples are not bugs, they are features. arXiv preprint

arXiv:1905.02175, 2019.
[22] Nathan Inkawhich, Wei Wen, Hai Helen Li, and Yiran Chen.

Feature space perturbations yield more transferable adver-

sarial examples. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 7066–7074,

2019.
[23] Saumya Jetley, Nicholas Lord, and Philip Torr. With friends

like these, who needs adversaries? In Advances in Neural

Information Processing Systems, pages 10749–10759, 2018.
[24] Guoqing Jin, Shiwei Shen, Dongming Zhang, Feng Dai,

and Yongdong Zhang. Ape-gan: Adversarial perturbation

elimination with gan. In ICASSP 2019-2019 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pages 3842–3846. IEEE, 2019.
[25] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adver-

sarial logit pairing. arXiv preprint arXiv:1803.06373, 2018.
[26] Ziv Katzir and Yuval Elovici. Detecting adversarial perturba-

tions through spatial behavior in activation spaces. In 2019

International Joint Conference on Neural Networks (IJCNN),

pages 1–9. IEEE, 2019.
[27] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.
[28] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide

Maiorca, Giorgio Giacinto, Claudia Eckert, and Fabio Roli.

Adversarial malware binaries: Evading deep learning for

malware detection in executables. In 2018 26th European

Signal Processing Conference (EUSIPCO), pages 533–537.

IEEE, 2018.
[29] Jinkyu Koo, Michael Roth, and Saurabh Bagchi. Hawkeye:

Adversarial example detector for deep neural networks. arXiv

preprint arXiv:1909.09938, 2019.
[30] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-

sarial examples in the physical world. 2016.
[31] Hyun Kwon, Hyunsoo Yoon, and Daeseon Choi. Restricted

evasion attack: Generation of restricted-area adversarial ex-

ample. IEEE Access, 7:60908–60919, 2019.
[32] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee,

and Xiangyu Zhang. Nic: Detecting adversarial samples with

neural network invariant checking. In NDSS, 2019.
[33] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and

Bastian Bischoff. On detecting adversarial perturbations.

arXiv preprint arXiv:1702.04267, 2017.
[34] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pas-

cal Frossard. Deepfool: a simple and accurate method to

fool deep neural networks. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2574–2582, 2016.
[35] Nicolas Papernot, Ian Goodfellow, Ryan Sheatsley, Reuben

Feinman, and Patrick McDaniel. cleverhans v2. 0.0:

an adversarial machine learning library. arXiv preprint

arXiv:1610.00768, 10, 2016.
[36] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh

Jha, Z Berkay Celik, and Ananthram Swami. Practical black-

box attacks against machine learning. In Proceedings of the

2017 ACM on Asia conference on computer and communica-

tions security, pages 506–519, 2017.
[37] Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan,

Krishnamurthy Dvijotham, Alhussein Fawzi, Soham De,

Robert Stanforth, and Pushmeet Kohli. Adversarial robustness

through local linearization. In Advances in Neural Informa-

tion Processing Systems, pages 13824–13833, 2019.
[38] Edward Raff, Jared Sylvester, Steven Forsyth, and Mark

McLean. Barrage of random transforms for adversarially

robust defense. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 6528–6537,

2019.
[39] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015.
[40] Yibin Ruan and Jiazhu Dai. Twinnet: A double sub-network

framework for detecting universal adversarial perturbations.

Future Internet, 10(3):26, 2018.
[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015.
[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018.
[43] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.
[44] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu

Chen, and Yupeng Gao. Is robustness the cost of accuracy?–a

comprehensive study on the robustness of 18 deep image clas-

sification models. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 631–648, 2018.
[45] Octavian Suciu, Scott E Coull, and Jeffrey Johns. Exploring

adversarial examples in malware detection. In 2019 IEEE

Security and Privacy Workshops (SPW), pages 8–14. IEEE,

2019.
[46] Bo Sun, Nian-hsuan Tsai, Fangchen Liu, Ronald Yu, and Hao

Su. Adversarial defense by stratified convolutional sparse

coding. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 11447–11456, 2019.
[47] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In Thirty-First

AAAI Conference on Artificial Intelligence, 2017.
[48] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.

Intriguing properties of neural networks. 2014.
[49] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan

Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng.

Autozoom: Autoencoder-based zeroth order optimization

method for attacking black-box neural networks. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 742–749, 2019.
[50] Jianyu Wang and Haichao Zhang. Bilateral adversarial train-

ing: Towards fast training of more robust models against

adversarial attacks. In Proceedings of the IEEE International

Conference on Computer Vision, pages 6629–6638, 2019.
[51] Yutong Wang, Kunfeng Wang, Zhanxing Zhu, and Fei-Yue

Wang. Adversarial attacks on faster r-cnn object detector.

Neurocomputing, 2019.
[52] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou,

Lingxi Xie, and Alan Yuille. Adversarial examples for seman-

tic segmentation and object detection. In Proceedings of the

IEEE International Conference on Computer Vision, pages

1369–1378, 2017.
[53] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L

Yuille, and Kaiming He. Feature denoising for improving ad-

versarial robustness. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 501–509,

2019.
[54] Weilin Xu, David Evans, and Yanjun Qi. Feature squeez-

ing: Detecting adversarial examples in deep neural networks.

arXiv preprint arXiv:1704.01155, 2017.
[55] Zhewei Yao, Amir Gholami, Peng Xu, Kurt Keutzer, and

Michael W Mahoney. Trust region based adversarial attack

on neural networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 11350–

11359, 2019.
[56] Haichao Zhang and Jianyu Wang. Defense against adversarial

attacks using feature scattering-based adversarial training. In

Advances in Neural Information Processing Systems, pages

1829–1839, 2019.

