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Abstract

Backdoor data poisoning attacks have recently been

demonstrated in computer vision research as a potential

safety risk for machine learning (ML) systems. Traditional

data poisoning attacks manipulate training data to induce

unreliability of an ML model, whereas backdoor data poi-

soning attacks maintain system performance unless the ML

model is presented with an input containing an embedded

“trigger” that provides a predetermined response advanta-

geous to the adversary. Our work builds upon prior back-

door data-poisoning research for ML image classifiers and

systematically assesses different experimental conditions

including types of trigger patterns, persistence of trigger

patterns during retraining, poisoning strategies, architec-

tures (ResNet-50, NasNet, NasNet-Mobile), datasets (Flow-

ers, CIFAR-10), and potential defensive regularization tech-

niques (Contrastive Loss, Logit Squeezing, Manifold Mixup,

Soft-Nearest-Neighbors Loss). Experiments yield four key

findings. First, the success rate of backdoor poisoning at-

tacks varies widely, depending on several factors, including

model architecture, trigger pattern and regularization tech-

nique. Second, we find that poisoned models are hard to

detect through performance inspection alone. Third, regu-

larization typically reduces backdoor success rate, although

it can have no effect or even slightly increase it, depending

on the form of regularization. Finally, backdoors inserted

through data poisoning can be rendered ineffective after just

a few epochs of additional training on a small set of clean

data without affecting the model’s performance.

1. Introduction

As deep learning models become more ubiquitous we

must assess the safety of the machine learning model devel-

opment process. Machine learning attack scenarios can be

broadly split into two types [19]. In a causative attack an ad-

versary embeds flaws into model behavior by design during

model development. In contrast, in an exploratory attack an

adversary develops or discovers inputs on which the model

will make unexpected errors. Exploratory attack scenarios

dominate the research publications [5, 31, 4], while back-

door data poisoning is a recently introduced causative attack

that can allow adversaries to induce specific model errors.

Backdoor data poisoning is an adversarial manipulation of

training data and labels, to create a backdoor which allows

the model to respond to a trigger-pattern, but otherwise op-

erate normally. Backdoor poisoning can be introduced by

modifying not only the training data [17], but also the train-

ing procedure [1], or by direct manipulation of the model

weights or architecture [13]. This work assesses computer

vision classifiers across a range of modeling choices and

backdoor data poisoning strategies that manipulate training

images and labels, and provides suggestions for defense and

mitigation.

Threat Model Deep learning models are being used to

solve a wide range of problems including image recognition

[27, 39], machine translation [2, 35], and speech recognition

[16, 9]. The current prevailing trend in deep learning de-

velopment cycles is to pre-train models from a large public

dataset and then fine-tune on a smaller internal proprietary

dataset. Deployed systems using classification models built

from public data with uncertain provenance may pose safety

risks due to potential data poisoning [17].

In this research, we use the scenario of a potentially poi-

soned public dataset to evaluate model development choices.

This scenario is designed around a trigger-pattern in a subset

of images in the public dataset. These training images, em-

bedded with trigger patterns, are re-labeled to the adversary’s

chosen prediction label. A successful attack occurs when a

deployed model, trained on the poisoned dataset, behaves

normally when encountering natural images but produces

the adversary’s chosen label when presented images with

embedded triggers.
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Figure 1: Factors systematically varied in our experiments.

Contributions Backdoor methods have been demon-

strated on numerous datasets and model architectures. Typi-

cal domains include face recognition [8, 24, 20], self-driving

cars [17, 23, 3, 24], medical applications [20], and standard

benchmarks [17, 33, 29, 1, 32]. Because a common poison-

ing methodology has not been established, it is not possible

to directly compare results for attack demonstrations across

datasets and architectures from different research publica-

tions. Our current work addresses this limitation by per-

forming experiments across a broad matrix of conditions.

We systematically evaluate key factors which may affect

the success and persistence of the backdoor attack. These

key factors include the model architecture, the adversary’s

trigger pattern, poisoning strategy, the dataset and associ-

ated classification task. Our experimental results show these

factors can greatly impact backdoor data poisoning attacks.

Defense and mitigation of backdoor data poisoning is

also assessed through both regularization during training

and a series of experiments where small amounts of clean

data are used to fine-tune a trained (poisoned) model. We

demonstrate that, across a range of models, without specific

knowledge of poisoning methods, a defender can signifi-

cantly diminish backdoor attack effects by fine-tuning the

model on a trusted source of known, clean data.

2. Experiment Matrix

There are a wide range of factors and associated values

that may affect the success of backdoor data poisoning at-

tacks. Some factors are directly under the control of the

model developer, whereas others are associated with the ad-

versary’s poisoning method. Figure 1 shows the factors and

range of associated values used in our experiments. This

section describes each factor and associated values and moti-

vates their selection for the present study.

2.1. Dataset

We assess backdoor data poisoning strategies on two

datasets to compare possible effects of dataset selection on

attack success. First is the Flowers dataset1 containing 4,242

224× 224 pixel images from five different types of flowers.

Second is the CIFAR-10 dataset [22] containing 50,000 32×
32 pixel thumbnail images across ten classes. By employing

these two datasets we can compare results on CIFAR-10 to

results on higher resolution images which are typical for

image classification systems.

2.2. Model Architectures

For this study, we choose three state of the art computer

vision classifiers that are widely used in deployed settings

across application domains; namely, ResNet-50 [18], NasNet

[39], and NasNet-Mobile [39]. We initialize each model with

publicly available ImageNet [12] weights. We then fine tune

them with Flowers and CIFAR-10 data during training.

2.3. Regularization Techniques

The success of recent backdoor detection methods [7,

36, 30] and exploratory attack defensive measures [15, 26]

which analyze the latent space of deep learning models sug-

gest that latent space regularization may have significant

effect on backdoor attack success. With image height and

width (H , W ), a generic classifier can be defined as a com-

position of functions f = g ◦ h : RH×W×3 → R
n, map-

ping an image to a class distribution over n classes. The

intermediate function h maps the image to the final hidden

representation of the classifier, and g is a multinomial logis-

tic regression classifier that maps hidden representations to

class probabilities. We also define fL(x) as the logit output

(non-normalized log probabilities) of the network prior to

the final softmax activation. Our experiments compare back-

door attack performance on models trained using one of four

regularization methods designed to constrain the latent space

of the final hidden layer or classification logits of the image

classifier.

Logit squeezing [21] introduced logit-squeezing regular-

ization as a method to provide model robustness to adver-

sarial examples. For a training image, x, Logit-squeezing

adds LLS = ||fL(x)||2 to the loss function to minimize the

l2 norm of the logit vector.

Manifold Mixup Introduced in [34], Manifold mixup

(MIXUP) attempts to fill in gaps in the latent space manifold

by interpolating the latent representations and correspond-

ing predictions. Pairs of image hidden representations from

the minibatch (h(x), h(x′)) are averaged according to a ran-

domly sampled mixing weight γ ∼ Uniform(0, 1). The

loss function to train the classifer is then the cross-entropy,

H, between the network’s prediction for interpolated hidden

1https://www.kaggle.com/alxmamaev/flowers-recognition



state pairs and the γ weighted average of true one-hot class

label distributions (y,y′):

Lmix = H(g(hmix),ymix) (1)

hmix = (1− γ)h(x′) + γh(x) (2)

ymix = (1− γ)y′ + γy (3)

Contrastive Loss Contrastive loss [10] encourages hid-

den representations from the same object class to be close

together, and hidden representations from different object

classes to be far apart. Let x and x′ be two images. The

contrastive regularization Lcontrast is:

1

n
‖h(x)− h(x′)‖2 (4)

if x and x′ are the same class, and otherwise:

n− 1

n
max(0, c− ‖h(x)− h(x′)‖2) (5)

Soft Nearest Neighbors Loss Soft Nearest Neighbors

Loss (SNNL) [14] regularization was introduced to im-

prove hidden space representations in many settings. SNNL

weights the contribution of a pair of samples in a batch rela-

tive to the probability of being picked randomly as a nearest

neighbor. With batch samples (x(i),y(i)), i = 1, ..., b. and

temperature T , the SNNL regularization term is:

Lsnn = − log

(

∑

j 6=i,y(i) 6=y(j) e−
‖h(x(i))−h(x(j))‖2

T

∑

k 6=i e
−

‖h(x(i))−h(x(k))‖2

T

)

(6)

2.4. Trigger Patterns

In this work, the backdoor is embedded in a model via

data poisoning with trigger patterns embedded in adversari-

ally re-labeled images. Let x ∈ R
H×W×3 be a training set

image, let α ∈ [0, 1] be the transparency of the trigger, and

let m ∈ {0, 1}H×W×3 be a mask with 1’s in pixel positions

the trigger will not alter. We introduce a trigger function T
which returns a trigger t. T may be constant, draw a random

sample from a distribution of triggers (e.g., augmentation or

perturbation of a trigger template), or depend on x in the case

of an adaptive trigger. The general form for constructing a

poisoned sample image, p, with an embedded trigger is then:

p = ((1− α)x + αT (x))⊙ (1− m) + x ⊙ m (7)

where ⊙ is the elementwise multiplication and boldface 1 is

an all-ones tensor of the same dimension as the image.

Four trigger types are experimentally evaluated, low-

variance (LV), sine-wave (SIN), black square (BS), and ran-

dom square (RS). Within a single experiment scenario, the

same trigger type is applied to all poisoned samples. The

black square trigger pattern is a 22 pixel square, located 22

pixels from both the top and left sides of the image. This

is similar to the triangle checkerboard trigger used in [17].

The random square trigger is the same as the black square

but placed at a random rather than fixed location in the im-

age. The low-variance trigger pattern introduced in [32]

is constructed with reference to a particular dataset to be

poisoned. First a PCA decomposition is performed on the

training data. Then an image not present in the training data

is projected onto the last principal components that explains

≥ 0.5 percent of the variance in the dataset. This projection

is then mapped back into the original image space to form

the trigger pattern. The sine trigger, introduced in [3], con-

sists of gray scale pixel intensities which vary horizontally

across the image according to a sine function. In particular

the value for all three channels at pixel (i, j) for the sine

trigger is 0.4 sin(0.05πj).

Trigger patterns that overlay the entire image such as

sine and low variance in particular are easy to detect if their

α values are too high. Considering this, we pay particular

attention to a set of experimental runs with α values of 0.5

and 0.1 for the low variance and sine triggers respectively.

These α values were selected as the highest alpha value

before the image alteration becomes completely apparent.

For the black square trigger we use an α value of 1 since it

is relatively inconspicuous, covering a small portion of the

image. Figure 2 shows an image from the flowers dataset

with triggers embedded with these particular α values.

2.5. Poisoned Samples

In addition to choice of trigger pattern, an adversary also

has control over which images from the training dataset to

poison (embed the trigger pattern). The source-class is the

true class of an image upon which a trigger is embedded,

and the poison-class is the class label given by the adver-

sary. In the poisoning procedure we investigate, samples

are drawn from the set of source-classes, embedded with a

trigger pattern, and these poisoned samples then supplant

clean samples from the poison-class. The untampered ver-

sions of the poisoned images remain in the source-classes.

This method of poisoning ensures the number of images with

each class label remains the same after poisoning, thereby

eliminating class distribution shift due to data poisoning.

An important factor which may affect the success of data

poisoning is the distribution of poisoned images within the

poisoned dataset. We define the poison-rate as the percent-

age of the poison-class images replaced by poisoned samples.

Let N1, N2, ..., Nn, be the number of images from each class

in the training set, and t be the index of the poison-class.

Given poison-rate λ, ⌊λNt⌋ is the total number of samples

to be replaced in the poison-class. For a set of source-classes

K ⊂ {1, ..., n} \ {t}, the expected number of samples, Pc,



(a) Square α =

1

(b) Random

Square α = 1

(c) Sine α =

0.1

(d) Sine α =

0.5

(e) Low Vari-

ance α = 0.1

(f) Low Vari-

ance α = 0.5

Figure 2: Trigger patterns applied to an image from the Flowers dataset.

N1 N2 N3 N4 N5

710 980 734 675 904

t ⌊λNt⌋ P1 P2 P3 P4 P5 p

1-daisy 71 0 21.1 15.8 14.6 19.5 0.018

2-dandelion 98 23.0 0 23.8 21.9 29.3 0.025

3-rose 73 15.9 21.9 0 15.1 20.2 0.018

4-sunflower 67 14.3 19.7 14.8 0 18.2 0.017

5-tulip 90 20.6 28.5 21.3 19.6 0 0.023

Table 1: Poison class statistics with λ = 0.1 for many-to-one

poisoning on the Flowers dataset.

drawn from each source-class, c, is:

Pc = ⌊λNt⌋
Nc

∑

k∈K Nk

(8)

The effective-poisoning-rate, p, is defined as the percentage

of the total number of training samples which are poisoned:

p =
⌊λNt⌋
∑n

k∈K Nk

(9)

The choice of source-classes has a direct effect on the

distribution of poisoned images and so in addition to test-

ing the effectiveness over various poison-rates we consider

poisoning strategies which draw from a single source-class

(one-to-one) or multiple source classes (many-to-one). In

one-to-one poisoning, poisoned images from a single source-

class supplant images from a single poison-class. In many-

to-one poisoning, all classes excluding the poison-class are

source-classes. Table 1 shows class distribution and poison

sample distribution statistics for the Flowers dataset with the

many-to-one poisoning strategy and a poison-rate λ = 0.1.

3. Experimental Setup

Data Partitioning Because the goal of this research is to

assess the overall safety of a model, we partition the data

to allow performance evaluation from both adversary and

model developer perspectives. Adversarial success rate (the

fraction of poisoned images predicted to be the poison-class)

is used to evaluate the adversary’s success, while model ac-

curacy is used to assess the model developer’s. The dataset

Figure 3: Dataset partitions, where all (adversarial), some

(poisoned) or no (clean) images have been poisoned.

partitioning is shown in Figure 3. The original dataset is par-

titioned into a 76/19/5 split. In our experiment, the largest

partition (76%), which we call the poison-set plays the role

of a larger, publicly available dataset that the adversary has

tampered with, and that the model developer uses to train

their first-pass computer vision model. The next largest

partition (19%), which we call the clean-set, simulates a

smaller internal dataset curated by the model developer to

fine-tune the first-pass computer vision model. Note that

the clean-set is 1/5th the size of the poison-set. Both the

clean-set and poison-set are further split into respective 80/20

train/validation sets. We use the remaining 5% of the orig-

inal dataset, which we call adversarial-test to evaluate the

success rate of the adversary. Accordingly, all images in the

adversarial test set are poisoned.

Poisoning details Preliminary results showed higher ad-

versarial success rate when poison-class samples were not

corrupted, thus when constructing the poison-set, the trig-

ger pattern is not embedded onto samples drawn from the

poison-class (i.e., the poison-class is never one of the source-

classes). The adversarial test set also contains no images

from the poison-class, since the purpose of the adversarial

test set is to gauge the adversary’s ability to change a pre-

diction. To eliminate performance effects associated with

changes in class distributions, we maintain the same number

of samples from each class prior to and post poisoning. To

ensure this consistent class size across all experimental runs,

poisoned samples are exchanged for samples in the poison-

class, but their non-poisoned counterparts are not removed

from source-class which they are drawn from.



State-of-the-art accuracy Due to the data splits needed

to conduct our study (Fig. 3), our models only have access

to around 60% of the original data for training. As expected,

these models do not achieve the state-of-the-art of models

trained on the full training set. Ultimately, our goal is not

state-of-the-art performance, but a systematic comparison of

data poisoning; that said, we do tune each model to achieve

as competitive of performance as possible. As a sanity check

on the correctness of our training process, we successfully

replicated publicly reported results for each of our models

using the full training set.

Training procedure Our procedure simulates the scenario

where a model developer trains a base model on poisoned

public data until the early stopping criterion (5 epochs with

no improvement on validation accuracy) and then fine-tunes

on an internal clean training set for a fixed number of epochs.

During training, we monitor the model prediction accuracy

on the clean and poison validation sets, and the adversarial

success rate on the adversarial test set. For each experimen-

tal run we perform independent random splits and poison

samples at the specified rate randomly.

4. Experimental Results and Analysis

In this section we analyze experimental results to an-

swer several questions about backdoor attack success rate,

backdoor persistence, and backdoor effects on model vali-

dation accuracy. Unless otherwise stated, the experiments

described below use the “many-to-one” poisoning strategy,

set poison-rate λ = 0.1, trigger pattern transparency α = 1
for the Square and RS triggers patterns, α = 0.1 for sine and

α = 0.5 for low variance.

4.1. Effect of Trigger Pattern and Model

We first analyze the effect of trigger patterns on different

model architectures for backdoor poisoning. On the Flowers

and CIFAR-10 datasets, we range over all trigger patterns,

classes as poison-class, and architectures (180 runs total).

We report average adversarial success rate and validation

accuracy (over all classes) at early stopping after training on

the poisoned training set. The average early stopping epoch

for ResNet50, NasNet, and NasNet-Mobile was 14.6, 17.35,

and 26.5, respectively. The resulting adversarial successes

are shown in Table 2 (see “Retrained? No” rows). It reveals

that the square and random square triggers are the most ef-

fective for the Flowers dataset, while the sine and square

triggers are the most effective for CIFAR-10. It also shows

that NasNet-Mobile is by far the most robust to poisoning on

Flowers, while NasNet-Mobile and NasNet are both slightly

more robust on CIFAR-10. Alarmingly, multiple combina-

tions of model and trigger pattern yield adversarial success

rates exceeding 60%.

Table 3 shows the model accuracy on the poisoned and

clean validation sets (again see “Retrained? No” rows). For

the models trained on Flowers, there is a negative correla-

tion between model accuracy and robustness to poisoning,

but for CIFAR-10 same models yield top performance on

both. It is important to note that while the particular trigger

pattern makes a significant difference in adversarial success,

it has very little effect on the accuracy of the trained model,

regardless of dataset. Lastly, the minimal gap between per-

formance on the poisoned and clean validation sets is an

unfortunate finding for the model developer’s perspective,

because it suggests that poisoned data may be hard to detect

by inspection of model performance.

4.2. Effect of Retraining on Persistence

We next look at the extent to which different architec-

tures retain the backdoor even after retraining on clean data.

We take each of the models described in the previous ex-

periments and fine-tune (“retrain”) them on the smaller,

untampered-with clean training set. The results are aggre-

gated analogously and reported in the “Retrained? Yes” rows

of Tables 2 and 3. These results show that clean retraining

is an effective method for unlearning adversarial features.

ResNet50, NasNet and NasNet mobile’s adversarial test ac-

curacy decrease significantly while model accuracy (on ei-

ther clean or poisoned) is not affected. However, even after

retraining NasNet still has almost 20% adversarial success

on square trigger pattern, far above ResNet50 and NasNet-

Mobile. Therefore, the model developer’s decision on archi-

tecture may have significant implications on performance as

well as safety of the model.

4.3. Effect of Regularization

For all regularization experiments we use the simple black

square trigger pattern and the Flowers dataset (the most effec-

tive pattern for the dataset). For each of five regularization

strategies and for each of the five possible poison-classes

in the Flowers dataset we train 10 ResNet50 models with

different random samples of poisoned images, holding all

hyperparameter choices constant. The initial weights of the

models are pre-trained on the ImageNet image classifica-

tion task provided from Pytorch model zoo [11]. We use a

learning rate of 0.00001, mini-batch size of 32, and Adam

optimization to train all models.

Figure 4 shows two tables of results: (a) accuracy on

the clean validation set, which both the developer and ad-

versary would like to maximize and (b) adversarial success

rate, which the adversary would like to maximize but the

developer would like to minimize. The columns of the ta-

bles correspond to the regularization strategy employed and

the rows correspond to the poison-class. The color of each

cell indicates the difference regularization has relative to no

regularization (column 1). Blue indicates that regulariza-



ResNet50 NasNet NasNet Mobile

Dataset Split Retrained? Square RS Sine LV Square RS Sine LV Square RS Sine LV

Flowers Adversarial Test No 0.75 0.64 0.24 0.26 0.65 0.58 0.18 0.06 0.33 0.15 0.14 0.12

Flowers Adversarial Test Yes 0.08 0.09 0.06 0.05 0.18 0.14 0.06 0.04 0.05 0.05 0.06 0.06

CIFAR-10 Adversarial Test No 0.74 0.61 0.90 0.55 0.74 0.53 0.63 0.06 0.67 0.43 0.79 0.16

CIFAR-10 Adversarial Test Yes 0.04 0.04 0.06 0.05 0.09 0.08 0.08 0.02 0.05 0.03 0.08 0.05

Table 2: Adversarial success before and after clean retraining, for Flowers and CIFAR-10.

ResNet50 NasNet NasNet Mobile

Dataset Split Retrained? Square RS Sine LV Square RS Sine LV Square RS Sine LV

Flowers Poisoned No 0.89 0.87 0.85 0.87 0.87 0.87 0.85 0.85 0.81 0.80 0.79 0.80

Flowers Clean No 0.88 0.87 0.87 0.89 0.87 0.87 0.87 0.87 0.83 0.83 0.81 0.83

Flowers Poisoned Yes 0.86 0.85 0.86 0.86 0.86 0.87 0.87 0.86 0.80 0.79 0.80 0.80

Flowers Clean Yes 0.89 0.89 0.89 0.90 0.87 0.88 0.89 0.89 0.81 0.82 0.82 0.84

CIFAR-10 Poisoned No 0.73 0.74 0.69 0.74 0.93 0.92 0.92 0.92 0.86 0.85 0.86 0.85

CIFAR-10 Clean No 0.74 0.74 0.69 0.74 0.93 0.92 0.93 0.93 0.87 0.86 0.87 0.86

CIFAR-10 Poisoned Yes 0.74 0.73 0.73 0.73 0.91 0.91 0.91 0.91 0.85 0.85 0.85 0.85

CIFAR-10 Clean Yes 0.74 0.74 0.74 0.74 0.93 0.93 0.93 0.93 0.86 0.86 0.86 0.86

Table 3: Accuracy before and after clean retraining, for Flowers and CIFAR-10.

(a) Clean validation accuracy (b) Adversarial success rate

Figure 4: Average clean validation accuracy and adversarial

success rate over 10 experimental runs, with many-to-one

poison-class strategy. The color bar shows the difference

relative to no regularization (column 1).

tion decreases the value. We see in Fig. 4a a marginal drop

in clean validation accuracy for all regularization strategies

except for Manifold Mixup which does not affect perfor-

mance on the validation set. The largest drop in validation

accuracy comes from using the contrastive loss with Rose

as the poison-class. Fig. 4b shows that SNNL, Contrastive,

and Logit Squeezing regularization strategies all have the

effect of lowering average adversarial success rates. How-

ever, SNNL has a more dramatic effect, dropping the overall

average adversarial success rate across all poison-classes

by 31% absolute (from 82% to 51%). Note also that the

poison-class has little effect on accuracy, but significantly

affects adversarial success.

To get a sense of the consistency of these findings, Fig. 5

(a) Clean validation accuracy (b) Adversarial success rate

Figure 5: Validation accuracy and adversarial success rate

as a function of regularization strategy.

shows the spread of validation accuracy and adversarial suc-

cess rate across the 50 experimental runs for each regular-

ization strategy, as a box-and-whiskers plot. We see that

all regularization strategies besides Manifold Mixup have a

more dramatic affect on adversarial success rate than vali-

dation accuracy. The variance for adversarial success rate

with SNNL loss is quite a bit larger compared to the other

regularization methods. We conclude that regularization can

be used to defend a model without significantly degrading

the baseline performance on the validation set.

4.4. Effect of Trigger Pattern Transparency

Here we address effect of the trigger pattern transparency

parameter, α. Because square and random square use α = 1,

we limit this analysis to the sine and low variance triggers.

We concentrate the range of tested α values on the lower

range, since higher α’s are less realistic. We also only target



Accuracy Poisoned Clean

Model Dataset 1-to-1 M-to-1 1-to-1 M-to-1

ResNet50 Flowers 0.87± 0.01 0.89 0.90± 0.01 0.88

NasNet Flowers 0.86± 0.02 0.89 0.85± 0.01 0.86

NasNet-M Flowers 0.78± 0.02 0.82 0.81± 0.03 0.84

ResNet50 CIFAR-10 0.71± 0.03 0.70 0.71± 0.02 0.69

NasNet CIFAR-10 0.92± 0.01 0.92 0.93± 0.00 0.93

NasNet-M CIFAR-10 0.85± 0.01 0.85 0.85± 0.01 0.86

Table 4: Accuracy for one-to-one vs many-to-one.

the most robust poison-classes, truck and rose, for CIFAR-

10 and Flowers, respectively. These experiments compare

poison-rates of λ = 0.05 and λ = 0.1, with a total of 432

runs. Our results are shown in Fig. 6, the top row using

Flowers and the bottom row CIFAR-10.

We find that higher α values can increase the trigger’s

effectiveness significantly, although the most effective perfor-

mance comes when the trigger pattern is clearly perceptually

detectable to humans. However, safety concerns remain be-

cause high α but low poison-rate attacks may be feasible in a

big dataset where manual inspection of even a fraction of the

samples is impractical. Figs. 6c and 6f show performance

after retraining with clean data, finding that retraining is not

always effective against full image trigger patterns at suffi-

ciently high α. A comprehensive defensive strategy should

include a mechanism to detect "obvious" samples perturbed

with high alpha triggers. We attribute the 0% adversarial

success at α = 1.0 in Fig. 6d to two factors: 1) at α = 1, all

poisoned samples are identical and thus 0% and 100% are

the only valid outcomes, and 2) noise in the training process

at the particular early stopping point.

4.5. Effect of Poison­rate

We next study the effect of poison-rate, λ. We used

CIFAR-10 as it has more samples per class than the Flowers

dataset, providing us finer granularity for the poison-rate.

Once again, we only target truck (the most robust poison-

class on CIFAR-10) and focus primarily on small λ values

because they are more practical. Here we use only NasNet,

since it has the highest clean and poisoned validation ac-

curacy on CIFAR-10 using our standard hyper-parameters

with a total of 44 runs. Unsurprisingly, Fig. 7a shows that

accuracy on poisoned validation steadily decreases as the

poison-rate increases (as the poison-rate increases, the num-

ber of actual training samples in the target class decreases).

Fig. 7b plots the adversarial success rate as a function of

poison-rate for different trigger patterns. Sine requires the

least poisoning, as it is extremely effective even with 2%

poisoning. Random square requires the most poisoning, only

finding middling success with impractically high poisoning

rates.

Adversarial Success Adversarial Test

Model Dataset 1-to-1 M-to-1

ResNet50 Flowers 0.54± 0.02 0.72

NasNet Flowers 0.37± 0.02 0.71

NasNet-M Flowers 0.13± 0.14 0.35

ResNet50 CIFAR-10 0.58± 0.18 0.97

NasNet CIFAR-10 0.27± 0.07 0.73

NasNet-M CIFAR-10 0.40± 0.11 0.85

Table 5: Adversarial success for one-to-one vs many-to-one.

4.6. One­to­one vs Many­to­one

Lastly, we evaluate whether the one-to-one (“1-to-1”) or

many-to-one (“M-to-1”) poisoning strategy is more effective.

Table 4 compares the accuracies of these two strategies for

all models on both datasets. Square is used to poison Flowers

while Sine is used to poison CIFAR-10 (the most effective

patterns for them, respectively). Recall that one-to-one and

many-to-one use the same number of poisoned samples for

a given poison-rate; the only difference is the source of the

poisoned samples. The table reveals that these poisoning

strategies do not have a significant impact on either the poi-

soned or clean validation set accuracies. In contrast, Table 5

shows that many-to-one is significantly more effective than

one-to-one in terms of adversarial success. We hypothesize

this is because the model incorporates the adversarial fea-

tures better when the trigger pattern is spread across many

classes, all pointing to the same target class.

5. Conclusions and Future Work

This paper presents a systematic study of backdoor poi-

soning attacks on image classifiers. We evaluate the effect

of design decisions within the model developer’s control,

including model architecture, regularization scheme, and

any additional fine-tuning on a smaller, clean dataset, as well

as those within the control of an adversary, including the

trigger pattern and the rate and strength of the poisoning.

We evaluate these on two datasets, Flowers and CIFAR-10,

to assess the sensitivity to the particular training task. We

report four key findings:

1. Adversarial success rate varies widely depending on

several factors, including model architecture, trigger

pattern and regularization technique.

2. While one would expect model performance and adver-

sarial success to be negatively correlated, we find this

rarely to be the case, suggesting poisoned models are

not detectable through performance inspection alone.

3. Regularization typically reduces backdoor success rate,

although it can have no effect or even slightly increase

it, depending on the form of regularization.

4. Backdoors inserted through data poisoning can be ren-



(a) Low Variance, Flowers (b) Sine, Flowers (c) After clean retraining, Flowers

(d) Low Variance, CIFAR-10 (e) Sine, CIFAR-10 (f) After clean retraining, CIFAR-10

Figure 6: Effect of α.

dered ineffective after just a few epochs of additional

training on a small set of clean data without affecting

the model’s performance.

We intend our current assessment to serve as a resource

for safe and effective model development practices in face

of adversity. However, adversarial machine learning is a

rapidly evolving field of research. Backdoor data poisoning

assessment can be characterized as the analysis of a two

player zero-sum game with emerging innovative actions for

the roles of adversary and developer, and so a complete

analysis is beyond the scope of any single research study.

For future work, one could extend our assessment along

three complementary dimensions. First, one could explore a

greater range of values for studied factors (Fig. 1); e.g., as-

sessing with a larger dataset such as ImageNet. Recent work

also motivates additional regularization methods, such as

Gaussian mixture loss [37] and ℓ2 regularization [6], which

can also partially mitigate data poisoning attacks. Second,

there are further factors of model developer decisions in-

fluencing model behavior which should be explored. To

our knowledge, the choice of optimizer (e.g., SGD, Adam,

AdamW [25]) has not been evaluated in the context of back-

door data poisoning. Lastly, one could extend our assess-

ment of adversarial exploits. For instance, in this work we

assess attacks which falsely label images, but clean-label

backdoor attacks without label alteration have recently been

demonstrated [3, 33, 28, 38].

(a) NasNet’s accuracy on CIFAR-10 as a func-

tion of poison-rate, ranging over all trigger pat-

terns.

(b) NasNet’s adversarial success on CIFAR-10

as a function of poison-rate.

Figure 7: Effect of poison-rate.
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