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Abstract

Deep Neural Networks (DNNs) are vulnerable to adver-

sarial attacks, especially white-box targeted attacks. This

paper studies the problem of how aggressive white-box tar-

geted attacks can be to go beyond widely used Top-1 at-

tacks. We propose to learn ordered Top-k attacks (k ≥ 1),

which enforce the Top-k predicted labels of an adversar-

ial example to be the k (randomly) selected and ordered

labels (the ground-truth label is exclusive). Two methods

are presented. First, we extend the vanilla Carlini-Wagner

(C&W) method and use it as a strong baseline. Second, we

present an Adversarial Distillation (AD) framework con-

sisting of two components: (i) Computing an adversarial

probability distribution for a given ordered Top-k targeted

labels. (ii) Learning adversarial examples by minimizing

the Kullback-Leibler (KL) divergence between the adver-

sarial distribution and the predicted distribution, together

with the perturbation energy penalty. In computing adver-

sarial distributions, we explore how to leverage label se-

mantic similarities, leading to knowledge-oriented attacks.

In experiments, we test Top-k (k = 1, 2, 5, 10) attacks in

the ImageNet-1000 val dataset using three representa-

tive DNNs trained with the clean ImageNet-1000 train

dataset, ResNet-50 [11], DenseNet-121 [14] and AOGNet-

12M [21]. Overall, the proposed AD approach obtains the

best results, especially by a large margin when computation

budget is limited. It reduces the perturbation energy con-

sistently with the same attack success rate on all the four

k’s, and improve the attack success rate by a large margin

against the modified C&W method for k = 10.

1. Introduction

Despite the recent dramatic progress, deep neural net-

works (DNNs) [20, 18, 11, 36] trained for visual recognition

tasks (e.g., image classification) can be easily fooled by so-

called adversarial attacks which utilize visually impercep-

tible, carefully-crafted perturbations to cause networks to

misclassify inputs in arbitrarily chosen ways in the close set

∗T. Wu is the corresponding author.

Figure 1. Comparisons of Top-k at-

tack success rates (ASR, higher is

better) between the modified C&W

method (CWk) and the proposed Ad-

versarial Distillation (AD) method

(k = 1, 2, 5, 10). The thickness of

plotted lines represents the reverse

ℓ2 energy of the learned perturbation

(thicker is better). 9×30 and 9×1000
represent the computing budgets in

learning (see Section 4 for experi-

mental settings).

of labels

used in train-

ing [25, 38, 2, 4],

even with one-

pixel attacks [35].

The existence of

adversarial at-

tacks hinders the

deployment of

DNNs-based visual

recognition systems

in a wide range of

applications such as

autonomous driving

and smart medical

diagnosis in the

long-run.

In this paper,

we are interested in

learning visually-

imperceptible

targeted attacks

under the white-

box and limited

computing budget setting in image classification tasks.

In the literature, most methods address targeted attacks

in the Top-1 manner, in which an adversarial attack is

said to be successful if a randomly selected label (not the

ground-truth label) is predicted as the Top-1 label with the

added perturbation satisfying to be visually-imperceptible.

One question arises,

• The “robustness” of an attack method itself : How far is

the attack method able to push the underlying ground-

truth label in the prediction of the learned adversarial ex-

amples?

Table 1 shows the evaluation results of the “robust-

ness” of different attack methods. The widely used C&W

method [4] does not push the GT labels very far, especially

when smaller perturbation energy is aimed using larger

search range (e.g., the average rank of the GT label is 2.6
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Figure 2. Learned adversarial examples of ordered Top-10 adversarial attacks for ResNet-50 [11] pretrained with clean images. The

proposed AD method has smaller perturbation energies and “cleaner” (lower-entropy) prediction distributions than the proposed modified

C&W method (CWk). Note that for Top-10 attacks, the 9× 30 search scheme does not work (see Table. 2). See text for detail.

Method ASR
Proportion of GT Labels in Top-k (smaller is better) Average Rank of GT

Labels (larger is better)
Top-3 Top-5 Top-10 Top-50 Top-100

C&W9×30 [4] 99.9 36.9 50.5 66.3 90.0 95.1 20.4

C&W9×1000 [4] 100 71.9 87.0 96.1 99.9 100 2.6

FGSM [10] 80.7 25.5 37.8 52.8 81.2 89.2 44.2

PGD10 [24] 100 3.3 6.7 12 34.7 43.9 306.5

MIFGSM10 [7] 99.9 0.7 1.9 6.0 22.5 32.3 404.4

Table 1. Results showing where the ground-truth (GT) labels are in

the prediction of learned adversarial examples for different attack

methods. The test is performed in ImageNet-1000 val dataset

using ResNet-50 [11] pretrained with clean images. The subscripts

of methods indicate the computing budgets used. See Section 4 for

experimental settings.

for C&W9×1000). Consider Top-5, if the ground-truth labels

of adversarial examples still largely appear in the Top-5 of

the prediction, we may be over-confident about the 100%

ASR, especially when some downstream modules may rely

on Top-5 predictions in their decision making. On the con-

trary, the three untargeted attack approaches are much bet-

ter in terms of pushing the GT labels since they usually

move against the GT label explicitly in the optimization, but

the energies of learned perturbation are usually much larger

since no explicit constraints are posed. As we shall show,

more “robust” attack methods can be developed by harness-

ing the advantages of the two types of attack methods. In

addition, the targeted Top-1 attack setting could limit the

flexibility of attacks, and may lead to less rich perturbations.

To facilitate explicit control of targeted attacks and en-

able more “robust” attack methods, one natural solution,

which is the focus of this paper, is to develop ordered Top-

k targeted attacks which enforce the Top-k predicted la-

bels of an adversarial example to be the k (randomly) se-

lected and ordered labels (k ≥ 1, the GT label is exclusive).

In this paper, we present two methods of learning ordered

Top-k attacks. The basic idea is to design proper adver-

sarial objective functions that result in imperceptible per-

turbations for a testing image (whose original prediction by

a model is correct) through iterative gradient-based back-

propagation. First, we extend the vanilla Carlini-Wagner

(C&W) method [4], denoted by CWk, and use it as a strong

baseline. Second, we present an Adversarial Distillation

(AD) framework consisting of two components: (i) Com-

puting an adversarial probability distribution for any given

ordered Top-k targeted labels. (ii) Learning adversarial

examples by minimizing the Kullback-Leibler (KL) diver-

gence between the adversarial distribution and the predicted

distribution, together with the perturbation energy penalty.

The proposed AD framework can be viewed as apply-

ing the network distillation frameworks [12, 3, 28] for “the

bad” induced by target adversarial distributions. To com-

pute a proper adversarial distribution for a given ordered

Top-k targeted labels, the AD framework is motivated by

two aspects: (i) The difference between the objective func-

tions used by the C&W method and the three untargeted

attack methods (Table 1) respectively. The former maxi-

mizes the margin of the logits between the target and the

runner-up (either GT or not), while the latter maximizes the

cross-entropy between the prediction probabilities (softmax



of logits) and the one-hot distribution of the ground-truth.

(ii) The label smoothing methods [37, 30], which are often

used to improve the performance of DNNs by addressing

the over-confidence issue in the one-hot vector encoding of

labels. We explore how to leverage label semantic simi-

larities in computing “smoothed” adversarial distributions,

leading to knowledge-oriented attacks. We measure la-

bel semantic similarities using the cosine distance between

some off-the-shelf word2vec embedding of labels such as

the pretrained Glove embedding [29]. Along this direction,

another question of interest is further investigated: Are all

Top-k targets equally challenging for an attack approach?

The answer is no (as intuitively perceived), and we observe

some meaningful “blind spots” in experiments.

In experiments, we test Top-k (k = 1, 2, 5, 10) in the

ImageNet-1000 [33] val dataset using three representative

DNNs trained with clean ImageNet-1000 train dataset,

ResNet-50 [11], DenseNet-121 [14] and AOGNet-12M [21]

respectively. Overall, the proposed AD approach obtains

the best results. It reduces the perturbation energy con-

sistently with the same attack success rate on all the four

k’s, and improve the attack success rate by a large margin

against the modified CWk method for k = 10 (Fig. 1 and

learned adversarial examples in Fig. 2). We observe that

Top-k targets that are distant from the GT label in terms of

either label semantic distance or prediction scores of clean

images are actually more difficult to attack. In summary, not

only can ordered Top-k attacks improve the “robustness” of

attacks, but also they provide insights on how aggressive ad-

versarial attacks can be (under limited computing budgets).

2. Related Work and Our Contributions

The growing ubiquity of DNNs in advanced machine

learning and AI systems dramatically increases their capa-

bilities, but also increases the potential for new vulnerabil-

ities to attacks [39, 17, 34, 9, 31, 22]. This situation has

become critical as many powerful approaches have been

developed where imperceptible perturbations to DNN in-

puts could deceive a well-trained DNN, significantly alter-

ing its prediction. Such results have initiated a rapidly pro-

liferating field of research characterized by ever more com-

plex attacks [27, 23, 41, 8] that prove increasingly strong

against defensive countermeasures [10, 16, 24, 40]. Please

refer to [1] for a comprehensive survey of attack methods in

computer vision. We review some related work that mo-

tivate our work and show the difference. Assuming full

access to DNNs pretrained with clean images, white-box

targeted attacks are powerful ways of investigating the brit-

tleness of DNNs and their sensitivity to non-robust yet well-

generalizing features in the data, and of exploiting adversar-

ial examples as useful features [15].

Distillation. The central idea of our proposed AD

method is built on distillation. Network distillation [3, 12]

is a powerful training scheme proposed to train a new, usu-

ally lightweight model (a.k.a., the student) to mimic another

already trained model (a.k.a. the teacher). It takes a func-

tional viewpoint of the knowledge learned by the teacher as

the conditional distribution it produces over outputs given

an input. It teaches the student to keep up or emulate by

adding some regularization terms to the loss in order to

encourage the two models to be similar directly based on

the distilled knowledge, replacing the training labels. La-

bel smoothing [37] can be treated as a simple hand-crafted

knowledge to help improve model performance. Distilla-

tion has been exploited to develop defense models [28, 26]

to improve model robustness. Our proposed adversarial dis-

tillation method utilizes the distillation idea in an opposite

direction, leveraging label semantic knowledge for learning

ordered Top-k attacks and improving attack robustness.

Adversarial Attack. For image classification tasks

using DNNs, the discovery of the existence of visually-

imperceptible adversarial attacks [38] was a big shock in

developing DNNs. White-box attacks provide a powerful

way of evaluating model brittleness. In a plain and loose ex-

planation, DNNs are universal function approximator [13]

and capable of even fitting random labels [43] in large scale

classification tasks as ImageNet-1000 [33]. Thus, adversar-

ial attacks are generally learnable provided proper objec-

tive functions are given, especially when DNNs are trained

with fully differentible back-propagation. Many white-box

attack methods focus on norm-ball constrained objective

functions [38, 19, 4, 7, 32]. The C&W method investigates

7 different loss functions. The best performing loss func-

tion found by the C&W method has been applied in many

attack methods and achieved strong results [6, 24, 5]. By

introducing momentum in the MIFGSM method [7] and the

ℓp gradient projection in the PGD method [24], they usually

achieve better performance in generating adversarial exam-

ples. In the meanwhile, some other attack methods such as

the StrAttack [42] also investigate different loss functions

for better interpretability of attacks. Our proposed method

leverages label semantic knowledge in the loss function de-

sign for the first time.

Our Contributions. This paper makes three main con-

tributions to the field of learning adversarial attacks: (i) The

problem in study is novel. Learning ordered Top-k adver-

sarial attacks is an important problem that reflects the ro-

bustness of attacks themselves, but has not been addressed

in the literature. (ii) The proposed adversarial distillation

framework is effective, especially when k is large (such as

k = 5, 10). (iii) The proposed knowledge-oriented ad-

versarial distillation is novel. It worth exploring the ex-

isting distillation framework for a novel problem (ordered

Top-k adversarial attacks) with some novel modifications

(knowledge-oriented target distributions as “teachers”).



3. Problem Formulation

In this section, we first define the white-box attack set-

ting and the widely used C&W method [4] under the Top-1
protocol, to be self-contained. Then we present the ordered

Top-k attack formulation. To learn ordered Top-k attacks,

we present details of the modified C&W method, CWk, as

a strong baseline and the proposed AD framework.

3.1. Background on White-Box Targeted Attack
and the Top-1 Setting

We focus on image classification tasks using DNNs. De-

note by (x, y) a clean input, x ∈ X and its ground-truth

label y ∈ Y . For example, in the ImageNet-1000 classifi-

cation task, x represents a RGB image defined in the lattice

of 224 × 224 and we have X � R3×224×224. y is the cat-

egory label and we have Y � {1, · · · , 1000}. Let f(·; Θ)
be a DNN pretrained with clean training images where Θ
collects all estimated parameters and is frozen in learning

adversarial examples. For notation simplicity, we denote by

f(·) a pretrained DNN. The prediction for an input x from

f(·) is usually defined using softmax function by,

P = f(x) = softmax(z(x)), (1)

where P ∈ R|Y| represents the estimated confidence/prob-

ability vector (Pc ≥ 0 and
∑

c Pc = 1) and z(x) is

the logit vector. The predicted label is then inferred by

ŷ = argmaxc∈[1,|Y|] Pc.

The traditional Top-1 protocol of learning targeted at-

tacks. For an input (x, y), given a target label t �= y, we

seek to compute some visually-imperceptible perturbation

δ(x, t, f) using the pretrained and fixed DNN f(·) under the

white-box setting. White-box attacks assume the complete

knowledge of the pretrained DNN f , including its parame-

ter values, architecture, training method, etc. The perturbed

example is defined by,

x′ = x+ δ(x, t, f), (2)

which is called an adversarial example of x if t = ŷ′ =
argmaxc f(x

′)c and the perturbation δ(x, t, f) is suffi-

ciently small according to some energy metric.

The C&W Method [4]. Learning δ(x, t, f) under the

Top-1 protocol is posed as a constrained optimization prob-

lem [2, 4],

minimize E(δ) = ||δ||p, (3)

subject to t = argmax
c

f(x+ δ)c,

x+ δ ∈ [0, 1]n,

where E(·) is defined by a ℓp norm (e.g., the ℓ2 norm)

and n the size of the input domain (e.g., the number of

pixels). To overcome the difficulty (non-linear and non-

convex constraints) of directly solving Eqn. 3, the C&W

method expresses it in a different form by designing some

loss functions L(x′) = L(x+δ) such that the first constraint

t = argmaxc f(x
′)c is satisfied if and only if L(x′) ≤ 0.

The best loss function proposed by the C&W method is de-

fined by the hinge loss,

LCW (x′) = max(0,max
c �=t

z(x′)c − z(x′)t). (4)

which induces penalties when the logit of the target label is

not the maximum among all labels.

Then, the learning problem is formulated by,

minimize ||δ||p + λ · L(x+ δ), (5)

subject to x+ δ ∈ [0, 1]n,

which can be solved via back-propagation with the con-

straint satisfied via introducing a tanh layer.

Computing Budget: For the trade-off parameter λ
(Eqn. 5), a binary search will be performed during the learn-

ing. For example, typically, 9×30 and 9×1000 are used by

the C&W method, which represents 9 tries of different val-

ues for λ and 30 or 1000 back-propagation iterations used

for each λ.

3.2. The Proposed Ordered Top-k Attack Setting

We extend Eqn. 3 for learning ordered Top-k attacks

(k ≥ 1). Denote by (t1, · · · , tk) the ordered Top-k targets

(ti �= y). We have,

minimize E(δ) = ||δ||p, (6)

subject to ti = arg max
c∈[1,|Y|],c/∈{t1,··· ,ti−1}

f(x+ δ)c,

i ∈ {1, · · · , k},

x+ δ ∈ [0, 1]n.

Directly solving Eqn. 6 is a challenging task and proper

loss functions are entailed, similar in spirit to the approx-

imation approaches widely adopted in the Top-1 protocol,

to ensure the first constraint can be satisfied once the opti-

mization is converged (note that the optimization may fail

with a given computing budget).

3.3. Learning Ordered Top-k Attacks

3.3.1 The Modified C&W Method, CWk

We modify the loss function (Eqn. 4) of the C&W method
accordingly to solve Eqn. 6. We have,

L
(k)
CW (x′) =

k
∑

i=1

max

(

0, max
j /∈{t1,··· ,ti}

z(x′)j − min
j∈{t1,··· ,ti}

z(x′)j

)

,

(7)

which covers the vanilla C&W loss (Eqn. 4), i.e., when k =

1, LCW (x′) = L
(1)
CW (x′). The C&W loss function does not

care where the underlying GT label will be as long as it is

not in the Top-k. On the one hand, it is powerful in terms

of attack success rate. On the other hand, the GT label may

be very close to the Top-k, leading to over-confident attacks

(Tabel. 1). In addition, it is generic for any given Top-k
targets. As we shall show, they are less effective if we select

the Top-k targets from the sub-set of labels which are least

like the ground-truth label in terms of label semantics.



3.3.2 Knowledge-Oriented Adversarial Distillation

To overcome the shortcomings of the C&W loss function

and In our adversarial distillation framework, we adopt

the view of point proposed in the network distillation

method [12] that the full confidence/probability distribution

summarizes the knowledge of a trained DNN. We hypothe-

size that we can leverage the network distillation framework

to learn the ordered Top-k attacks by designing a proper ad-

versarial probability distribution across the entire set of la-

bels that satisfies the specification of the given ordered Top-

k targets, and facilitates explicit control of placing the GT

label, as well as top-down integration of label semantics.

Consider a given set of Top-k targets, {t1, · · · , tk}, de-

noted by PAD the adversarial probability distribution in

which PAD
ti > PAD

tj (∀i < j) and PAD
ti > PAD

l (∀l /∈
{t1, · · · , tk}). The space of candidate distributions are

huge. We present a simple knowledge-oriented approach

to define the adversarial distribution. We first specify the

logit distribution and then compute the probability distribu-

tion using softmax. Denote by Z the maximum logit (e.g.,

Z = 10 in our experiments).

We define the adversarial logits for the ordered Top-k
targets by,

zAD
ti = Z − (i− 1)× γ, i ∈ [1, · · · , k], (8)

where γ is an empirically chosen decreasing factor (e.g.,

γ = 0.3 in our experiments).

For the remaining categories l /∈ {t1, · · · , tk}, we define

the adversarial logit by,

zAD
l = α×

1

k

k∑

i=1

s(ti, l) + ǫ, (9)

where 0 ≤ α < zAD
tk

is the maximum logit that can be as-

signed to any j, s(a, b) is the semantic similarity between

the label a and label b, and ǫ is a small position for numer-

ical consideration (e.g., ǫ = 1e-5). We compute s(a, b) us-

ing the cosine distance between the Glove [29] embedding

vectors of category names and −1 ≤ s(a, b) ≤ 1. Here,

when α = 0, we discard the semantic knowledge and treat

all the remaining categories equally. Note that our design

of PAD is similar in spirit to the label smoothing technique

and its variants [37, 30] except that we target attack labels

and exploit label semantic knowledge. The design choice

is still preliminary, although we observe its effectiveness in

experiments. We hope this can simulate more sophisticated

work to be explored.

With the adversarial probability distribution PAD de-

fined above as the target, we use the KL divergence as the

loss function in our adversarial distillation framework as

done in network distillation [12] and we have,

L
(k)
AD(x′) = KL(f(x′)||PAD), (10)

and then we follow the same optimization scheme as done

in the C&W method (Eqn. 5).

4. Experiments

In this section, we evaluate ordered Top-k attacks with

k = 1, 2, 5, 10 in the ImageNet-1000 benchmark [33] using

three representative pretrained DNNs: (i) ResNet-50 [11].

ResNets are the most widely used DNNs. (ii) DenseNet-

121 [14]. DenseNets are also popular in practice. (iii)

AOGNet-12M [21]. AOGNets are grammar-guided net-

works with the vanilla Bottleneck building bock, which rep-

resent an interesting direction of network architecture engi-

neering. So, the attacking results by the proposed methods

will be broadly useful for ResNets and DenseNets based de-

ployment in practice and potentially insightful for on-going

and future development of more powerful and robust DNNs.

Due to computational cost, we choose the small versions of

the three different DNNs. Pretrained models of ResNet-50

and DenseNet-121 are from the PyTorch model zoo 1. Pre-

trained AOGNet-12M is from their Github repo 2. We im-

plement the proposed two methods using the AdverTorch

toolkit 3. Our reproducible source code will be released.

Data. In ImageNet-1000 [33], there are 50, 000 images

for validation. To study attacks, we utilize the subset of

images for which the predictions of all the three networks,

ResNet-50, DenseNet-121 and AOGNet-12M, are correct.

To reduce the computational demand, we randomly sample

a smaller subset, as commonly done in the literature. We

first randomly select 500 categories to enlarge the cover-

age of categories, and then randomly chose 2 images per

selected categories, resulting in 1000 test images in total.

Settings. We follow the protocol used in the C&W

method. We only test ℓ2 norm as the energy penalty for

perturbations in learning (Eqn. 5). But, we evaluate learned

adversarial examples in terms of three norms (ℓ1, ℓ2 and

ℓ∞). We test two search schema for the trade-off param-

eter λ in optimization: both use 9 steps of binary search,

and 30 and 1000 iterations of optimization are performed

for each trial of λ. In practice, computation budget is an

important factor and less computationally expensive ones

are usually preferred. Only α = 1 is used in Eqn. 9 in ex-

periments for simplicity due to computational demand. We

compare the results under three scenarios proposed in the

C&W method [4]: The Best Case settings test the attack

against all incorrect classes, and report the target class(es)

that was least difficult to attack. The Worst Case settings

test the attack against all incorrect classes, and report the

target class(es) that was most difficult to attack. The Av-

erage Case settings select the target class(es) uniformly at

random among the labels that are not the GT.

1https://github.com/pytorch/vision/tree/master/torchvision/models
2https://github.com/iVMCL/AOGNets
3https://github.com/BorealisAI/advertorch



FGSM PGD MIFGSM CWk
9x30 AD9x30 CWk

9x1000 AD9x1000

Failure Failure 17.51 0.80 0.71 0.58 0.48

Clean Image

Top-1 Attack:

Norfolk Terrier 

1) Volleyball

norm of perturbation:

Top-1 Attack:

Volleyball 

1) Norfolk Terrier 

Failure 14.35 17.75 0.77 0.63 0.61 0.53norm of perturbation:

Figure 3. Learned adversarial examples of ordered Top-5 (top) and vanilla Top-1 (bottom) attacks for ResNet-50 [11] pretrained with clean

images. The proposed AD method has smaller perturbation energies and “cleaner” (lower-entropy) prediction distributions than both the

modified CWk method in Top-5 attacks and the vanilla C&W method in the Top-1 attacks.

4.1. Results for ResNet-50

We first test ordered Top-k attacks using ResNet-50 for

the four selected k’s. Fig. 3 shows some learned adversarial

examples of ordered Top-5 and Top-1 attacks (Top-10 attack

examples in Fig. 2). The visualizations are similar across

different networks. Table. 2 summarizes the quantitative re-

sults and comparisons. For Top-10 attacks, the proposed

AD method obtains significantly better results in terms of

both ASR and the ℓ2 energy of the added perturbation. For

example, the proposed AD method has relative 362.3% ASR

improvement over the strong C&W baseline for the worst

case setting. For Top-5 attacks, the AD method obtains

significantly better results when the search budget is rela-

tively low (i.e., 9×30). For Top-k (k = 1, 2) attacks, both

the C&W method and the AD method can achieve 100%

ASR, but the AD method has consistently lower energies of

the added perturbation, i.e., finding more effective attacks

and richer perturbations.

4.2. Are all Top-k targets equally difficult to attack?

Intuitively, we understand that they should not be equally

difficult. We conduct some experiments to test this hypothe-

sis. In particular, we test whether the label semantic knowl-

edge can help identify the weak spots of different attack



Protocol Attack Method
Best Case Average Case Worst Case

ASR ℓ1 ℓ2 ℓ∞ ASR ℓ1 ℓ2 ℓ∞ ASR ℓ1 ℓ2 ℓ∞

Top-10

CWk
9×30 0 N.A. N.A. N.A. 0 N.A. N.A. N.A. 0 N.A. N.A. N.A.

AD9×30 0.8 2579 8.18 0.096 0.16 2579 8.18 0.096 0 N.A. N.A. N.A.

CWk
9×100 43.4 2336 7.83 0.109 11.8 2330 7.82 0.109 0.1 2479 8.26 0.119

AD9×100 91.8 1677 5.56 0.088 51.2 1867 6.14 0.098 5.6 2021 6.62 0.110

CWk
9×1000 97.7 1525 5.26 0.092 64.5 1742 5.99 0.103 20.4 1898 6.61 0.120

AD9×1000 99.8 678 2.45 0.060 98.4 974 3.45 0.081 94.3 1278 4.48 0.103

Improvement 2.1 (3.0%) 2.81 (53.4%) 33.9 (52.6%) 2.54 (42.4%) 73.9 (362.3%) 1.13 (17.1%)

Top-5

CWk
9×30 75.8 2370 7.76 0.083 29.34 2425 7.94 0.086 0.7 2553 8.37 0.094

AD9×30 96.1 1060 3.58 0.056 80.68 1568 5.13 0.070 49.8 2215 7.07 0.087

CWk
9×1000 100 437 1.59 0.044 100 600 2.16 0.058 100 779 2.77 0.074

AD9×1000 100 285 1.09 0.034 100 359 1.35 0.043 100 456 1.68 0.055

Top-2

CWk
9×30 99.9 1002 3.40 0.037 99.36 1504 4.95 0.050 97.9 2007 6.52 0.065

AD9×30 99.9 308 1.12 0.028 99.5 561 1.94 0.037 98.4 873 2.92 0.049

CWk
9×1000 100 185 0.72 0.025 100 241 0.91 0.033 100 303 1.12 0.042

AD9×1000 100 137 0.56 0.022 100 174 0.70 0.028 100 220 0.85 0.035

Top-1

C&W9×30 100 209.7 0.777 0.022 99.92 354.1 1.273 0.031 99.9 560.9 1.987 0.042

AD9×30 100 140.9 0.542 0.018 99.9 184.6 0.696 0.025 99.9 238.6 0.880 0.032

C&W9×1000 100 95.6 0.408 0.017 100 127.2 0.516 0.023 100 164.1 0.635 0.030

AD9×1000 100 81.3 0.380 0.016 100 109.6 0.472 0.023 100 143.9 0.579 0.029

FGSM 2.3 9299 24.1 0.063 0.46 9299 24.1 0.063 0 N.A. N.A. N.A.

PGD10 99.6 4691 14.1 0.063 88.1 4714 14.2 0.063 57.1 4748 14.3 0.063

MIFGSM10 100 5961 17.4 0.063 99.98 6082 17.6 0.063 99.9 6211 17.9 0.063

Table 2. Results and comparisons under the ordered Top-k targeted attack protocol using randomly selected and ordered k targets (GT

exclusive) in ImageNet using ResNet-50. For Top-1 attacks, we also compare with three state-of-the-art untargeted attack methods,

FGSM [10], PGD [24] and MIFGSM [7]. 10 iterations are used for both PGD and MIFGSM.

methods, and whether the proposed AD method can gain

more in those weak spots. We test Top-5 using ResNet-

50. Table. 3 summarizes the results. Similar results are

observed for DenseNets and AOGNets. We observe that for

the 9×30 search budget, attacks are more challenging if the

Top-5 targets are selected from the least-like set in terms of

the label semantic similarity (Eqn. 9), or from the lowest-

score set in terms of prediction scores on clean images.

4.3. Results for DenseNet-121 and AOGNet-12M
Overall, we obtain similar results for DenseNet-121

summarized in Table. 4. For AOGNet-12M (Table. 5), the

proposed AD does not show improvement as significant as

for the other two networks, especially for Top-10.

5. Conclusions and Discussions
This paper proposes to extend the traditional Top-1 tar-

geted attack setting to the ordered Top-k setting (k ≥ 1)

under the white-box attack protocol. The ordered Top-k
targeted attacks can improve the robustness of attacks them-

selves. To our knowledge, it is the first work studying this

ordered Top-k attacks. To learn the ordered Top-k attacks,

we present a conceptually simple yet effective adversar-

ial distillation framework motivated by network distillation.

We also develop a modified C&W method as the strong

baseline for the ordered Top-k targeted attacks. In experi-

ments, the proposed method is tested in ImageNet-1000 us-

ing two popular DNNs, ResNet-50 and DenseNet-121, with

consistently better results obtained. We investigate the ef-

fectiveness of label semantic knowledge in designing the

adversarial distribution for distilling the ordered Top-k tar-

geted attacks.

Protocol Similarity Method ASR ℓ1 ℓ2 ℓ∞

Label similarity

Most like

CWk
9×30 80 1922 6.30 0.066

AD9×30 96.5 1286 4.20 0.054

CWk
9×1000 100 392 1.43 0.042

AD9×1000 100 277 1.05 0.035

Least like

CWk
9×30 27.1 2418 7.90 0.085

AD9×30 77.1 1635 5.35 0.072

CWk
9×1000 100 596 2.15 0.060

AD9×1000 100 370 1.39 0.045

Prediction Score

Highest

CWk
9×30 93 1546 4.98 0.042

AD9×30 99.9 1182 3.78 0.039

CWk
9×1000 100 205 0.75 0.025

AD9×1000 100 170 0.65 0.023

Lowest

CWk
9×30 13.4 2231 7.30 0.082

AD9×30 68.6 1791 5.86 0.077

CWk
9×1000 100 621 2.25 0.064

AD9×1000 100 392 1.47 0.047

Table 3. Results of ordered Top-5 targeted attacks for ResNet-50

with targets being selected based on (Top) label similarity, which

uses 5 most-like labels and 5 least-like labels as targets respec-

tively, and (Bottom) prediction score of clean image, which uses 5

highest-score labels and 5-lowest score labels. In both cases, GT

labels are exclusive.

Discussions. We have shown that the proposed AD

method is generally applicable to learn ordered Top-k at-

tacks. But, we note that the two components of the AD

framework are in their simplest forms in this paper, and

need to be more thoroughly studied: designing more in-

formative adversarial distributions to guide the optimiza-

tion to learn adversarial examples better and faster, and in-

vestigating loss functions other than KL divergence such

as the Jensen-Shannon (JS) divergence or the Earth-Mover

distance. On the other hand, we observed that the proposed



Protocol Method
Best Case Average Case Worst Case

ASR ℓ1 ℓ2 ℓ∞ ASR ℓ1 ℓ2 ℓ∞ ASR ℓ1 ℓ2 ℓ∞

Top-10

CWk
9×30 0 N.A. N.A. N.A. 0 N.A. N.A. N.A. 0 N.A. N.A. N.A.

AD9×30 1.3 2674 8.48 0.102 0.26 2674 8.48 0.102 0 N.A. N.A. N.A.

CWk
9×100 45.3 2320 7.77 0.108 12.42 2338 7.83 0.109 0 N.A. N.A. N.A.

AD9×100 96.9 1864 6.21 0.101 61.4 2331 7.71 0.123 13.2 2878 9.58 0.156

CWk
9×1000 100 1163 4.09 0.085 97.16 1640 5.67 0.107 85.8 2157 7.39 0.130

AD9×1000 100 627 2.26 0.058 100 900 3.19 0.076 100 1250 4.37 0.100

Improvement 1.83 (44.7%) 2.48 (43.7%) 3.02 (40.9%)

Top-5

CWk
9×30 96.6 2161 7.09 0.071 73.68 2329 7.65 0.080 35.6 2530 8.28 0.088

AD9×30 97.7 6413 2.14 0.043 92.66 1063 3.57 0.057 83.3 1636 5.35 0.072

CWk
9×1000 100 392 1.42 0.040 100 527 1.89 0.052 100 669 2.37 0.065

AD9×1000 100 273 1.05 0.033 100 344 1.29 0.042 100 425 1.57 0.052

Top-2

CWk
9×30 99.9 549 1.92 0.033 99.72 1058 3.54 0.042 99.4 1640 5.35 0.051

AD9×30 99.9 199 0.74 0.023 99.8 249 0.92 0.029 99.7 308 1.12 0.037

CWk
9×1000 100 146 0.58 0.022 100 187 0.72 0.029 100 230 0.86 0.037

AD9×1000 100 121 0.52 0.021 100 153 0.62 0.027 100 187 0.74 0.034

Top-1

C&W9×30 99.9 188.6 0.694 0.019 99.9 279.4 1.008 0.028 99.9 396.5 1.404 0.037

AD9×30 99.9 136.4 0.523 0.017 99.9 181.8 0.678 0.024 99.9 240.0 0.870 0.031

C&W9×1000 100 98.5 0.415 0.016 100 132.3 0.528 0.023 100 174.8 0.657 0.030

AD9×1000 100 83.8 0.384 0.016 100 115.9 0.485 0.023 100 158.69 0.610 0.030

FGSM 6.4 9263 24.0 0.063 1.44 9270 24.0 0.063 0 N.A. N.A. N.A.

PGD10 100 4617 14.2 0.063 97.2 4716 14.2 0.063 87.6 4716 14.2 0.063

MIFGSM10 100 5979 17.6 0.063 100 6095 17.6 0.063 100 6218 17.9 0.063

Table 4. Results and comparisons using DenseNet-121 [14] under the ordered Top-k targeted attack protocol using randomly selected and

ordered 10 targets (GT exclusive). For Top-1 attacks, we also compare with three state-of-the-art untargeted attack methods, FGSM [10],

PGD [24] and MIFGSM [7]. 10 iterations are used for both PGD and MIFGSM.

Protocol Method
Best Case Average Case Worst Case

ASR ℓ1 ℓ2 ℓ∞ ASR ℓ1 ℓ2 ℓ∞ ASR ℓ1 ℓ2 ℓ∞

Top-10

CWk
9×30 0 N.A. N.A. N.A. 0 N.A. N.A. N.A. 0 N.A. N.A. N.A.

AD9×30 0 N.A. N.A. N.A. 0 N.A. N.A. N.A. 0 N.A. N.A. N.A.

CWk
9×100 43.5 2221 7.50 0.11 12.56 2246 7.57 0.11 0.1 2657 8.56 0.13

AD9×100 42.8 1920 6.47 0.11 11.64 1947 6.56 0.11 0 N.A. N.A. N.A.

CWk
9×1000 100 1018 3.68 0.084 99.94 1393 4.93 0.10 99.9 1816 6.31 0.12

AD9×1000 100 651 2.40 0.065 99.84 947 3.43 0.088 99.3 1317 4.72 0.12

Top-5

CWk
9×30 37.1 1809 6.08 0.078 10.84 1918 6.41 0.079 0.1 2290 7.80 0.090

AD9×30 82.7 1126 3.84 0.063 46.26 1599 5.28 0.074 10.2 2396 7.71 0.093

CWk
9×1000 100 355 1.33 0.041 100 468 1.73 0.053 100 588 2.15 0.068

AD9×1000 100 199 0.81 0.029 100 258 1.01 0.037 100 327 1.26 0.047

Top-2

CWk
9×30 99.6 644 2.33 0.046 97.22 1176 4.04 0.059 91 1918 6.38 0.074

AD9×30 99.9 205 0.78 0.024 98.72 283 1.06 0.032 96.2 391 1.43 0.041

CWk
9×1000 100 131 0.53 0.021 100 178 0.70 0.029 100 232 0.90 0.038

AD9×1000 100 96 0.44 0.019 100 124 0.54 0.025 100 154 0.65 0.032

Top-1

C&W9×30 99.9 256 0.946 0.025 99.64 532 1.90 0.039 99.1 932 3.25 0.054

AD9×30 99.9 141 0.541 0.019 99.8 190 0.720 0.026 99.5 246 0.922 0.034

C&W9×1000 100 80 0.36 0.016 100 114 0.48 0.023 100 153 0.61 0.030

AD9×1000 100 62 0.312 0.016 100 86 0.398 0.021 100 115 0.496 0.028

FGSM 1.7 9254 24.0 0.0625 0.34 9254 24.0 0.0625 0 N.A. N.A. N.A.

PGD10 100 4685 14.1 0.0625 98.16 4698 14.2 0.0625 91.2 4714 14.2 0.0625

MIFGSM10 100 5940 17.3 0.0625 99.92 6046 17.5 0.0625 99.6 6165 17.8 0.0625

Table 5. Results and comparisons under the ordered Top-k targeted attack protocol using randomly selected and ordered 10 targets (GT

exclusive) in ImageNet using AOGNet-12M.

AD method is more effective when computation budget is

limited (e.g., using the 9× 30 search scheme). This leads to

the theoretically and computationally interesting question

whether different attack methods all will work comparably

well if the computation budget is not limited. Of course, in

practice, we prefer more powerful ones when only limited

computation budget is allowed. Furthermore, we observed

that both the modified C&W method and the AD method

largely do not work in learning Top-k (k ≥ 20) attacks

with the two search schema (9 × 30 and 9 × 1000). We

are working on addressing the aforementioned issues to test

the Top-k (k ≥ 20) cases, thus providing a thorough empir-

ical answer to the question: how aggressive can adversarial

attacks be?
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