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Abstract

Deep learning-based systems have been shown to be vul-
nerable to adversarial attacks in both digital and physi-
cal domains. While feasible, digital attacks have limited
applicability in attacking deployed systems, including face
recognition systems, where an adversary typically has ac-
cess to the input and not the transmission channel. In such
setting, physical attacks that directly provide a malicious
input through the input channel pose a bigger threat. We
investigate the feasibility of conducting real-time physical
attacks on face recognition systems using adversarial light
projections. A setup comprising a commercially available
web camera and a projector is used to conduct the attack.
The adversary uses a transformation-invariant adversarial
pattern generation method to generate a digital adversarial
pattern using one or more images of the target available to
the adversary. The digital adversarial pattern is then pro-
Jjected onto the adversary’s face in the physical domain to
either impersonate a target (impersonation) or evade recog-
nition (obfuscation). We conduct preliminary experiments
using two open-source and one commercial face recognition
system on a pool of 50 subjects. Our experimental results
demonstrate the vulnerability of face recognition systems to
light projection attacks in both white-box and black-box at-
tack settings.

1. Introduction

Deep learning-based systems are typically designed un-
der the assumption that the inputs/examples presented to the
system during the test/operational phase follow the same
underlying distribution as the examples used to train the
system. However, recent research has shown security vul-
nerabilities of such systems when input test examples are
intentionally crafted to cause the system to produce incor-
rect results (called adversarial examples) [22, 8]. Most
adversarial examples on convolutional neural network ar-
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Figure 1: Example of impersonation attack on FaceNet [ 18]
in white-box setting. Shown in (a) is the captured image of
the adversary’s face with adversarial light projected in the
physical domain that is recognized as the target (b).

chitectures (typically used in image classification scenarios
including face recognition) are generated by perturbing the
pixel intensities directly in the digital domain [13, 16, 3].
These digital attacks, however, do not directly translate into
the physical domain where an adversary has access to the
open-camera channel. In such setting, the adversary usu-
ally does not have access to the image captured using the
camera that is input to the convolutional neural network.
Specifically, consider a face recognition system, that is de-
ployed, such that it captures a face image of a subject and
compares it to the enrolled faces to validate or establish the
identity of the subject. While security mechanisms can be
enforced to safeguard the digital storage and transmission
of facial data captured using the camera, an adversary can
potentially trick the system by providing a malicious input
to the camera directly [10, 7].

A subclass of physical attacks on face recognition sys-
tems called presentation or spoofing attacks achieve this by
creating physical spoofs using one or more face images of
the target (e.g., 2D-printed face photos, 3D masks) [14].
The same objective can also be achieved by crafting phys-
ical adversarial artifacts such as glasses that an adversary
can wear to either evade recognition or mimic a target [19].
However, fabrication of physical adversarial artifacts gener-
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Figure 2: Setup used for conducting real-time adversarial
light projection attacks on face recognition systems. First,
the adversary captures his/her facial image using a camera,
and uses one or more images of the target to (i) calibrate
the camera-projector setup based on the attack environment,
and (ii) generate a digital adversarial pattern. Next, the ad-
versary projects the digital pattern onto the adversary’s face
in the physical domain using a projector to either imperson-
ate a target or evade recognition.

ally requires a manufacturing method (e.g., 2D or 3D print-
ing). In addition, the utility of physical artifacts is limited in
conducting at-scale physical attacks targeting multiple users
of a face recognition system by the type of physical speci-
mens that can be fabricated in typical resource-constrained
settings.

We investigate the feasibility of conducting a real-time
physical attack on face recognition systems using adver-
sarial light projections that can be used for imperson-
ating different enrolled users (called impersonation), or
evading recognition (called obfuscation). The adversary
first calibrates the camera-projector setup and then uses
a transformation-invariant adversarial pattern generation
method to generate adversarial patterns in the digital do-
main. These digital patterns are subsequently projected
onto the adversary’s face to conduct impersonation or ob-
fuscation attack. We refer to this attack as adversarial light
projection attack. As an example, impersonation is the goal
when an adversary intends to obtain access to a resource,
e.g., personal device protected with a target’s face. Obfus-
cation, on the other hand, is the goal of an adversary black-
listed by law enforcement agencies who wants to evade
recognition in scenarios such as border crossing.

A similar idea was recently proposed for fooling deep
learning classifiers designed for image classification sys-
tems [17]. However, the authors did not evaluate the utility
of their method in the context of face recognition systems.
Another recent work [28] fabricated a wearable cap with in-
frared LEDs to attack face recognition systems. Although
this work is similar in terms of its objective, our method
does not require a wearable artifact and thus offers an easier

alternative using off-the-shelf camera-projector setup (e.g.,
a portable mini projector [1]) for conducting physical at-
tacks on facial recognition systems. Preliminary experi-
ments conducted on 50 subjects show the vulnerability of
state-of-the-art face recognition systems to adversarial light
projection attacks in both white-box and black-box attack
settings.

1.1. Contributions

The major contributions of this work include:

o Investigation of real-time adversarial light projection
attacks using off-the-shelf camera-projector setup on
state-of-the-art face recognition systems.

e An efficient transformation-invariant adversarial pat-
tern generation method suitable for conducting real-
time adversarial light projection attacks.

e Demonstration of vulnerability of state-of-the-art face
recognition systems to adversarial light projection at-
tacks in both white-box and black-box settings.

2. Related Work

Existing research on adversarial attacks can be broadly
classified into two major categories: digital and physical at-
tacks. Given one or more examples from source and target
class, digital attack methods generate adversarial pattern(s)
in the digital domain such that the pattern(s) results in a
source class example being misclassified as a target class
example (called targeted attack), or the source class exam-
ple being incorrectly classified as an example from a dif-
ferent class (called untargeted attack), typically with high
confidence of being in the target class. Physical attacks
extend this notion into the physical domain by using spe-
cially crafted adversarial artifacts for targeted or untargeted
attacks. Below we summarize the major research in the
two categories and contrast existing physical attack meth-
ods from the method presented here.

2.1. Digital Attacks

One of the first digital attack methods proposed by
Szegedy et al. in 2013 called L-BFGS [22] formulates the
goal of adversarial pattern generation as an optimization
problem, and uses a box-constrained optimizer and linear
search to find the optimal solution. In 2014, Goodfellow
et al. [8] proposed Fast Gradient Sign Method (FGSM), a
single-step adversarial pattern generation method that uses
gradients computed from neural network parameters for ad-
versarial pattern generation. Following this, multiple exten-
sions of FGSM were introduced [ 10, 5, 24, 25].

Shi et al. [20] combine gradient ascent and descent with
binary search to find the adversarial pattern with the least /5



norm. One of the most popular adversarial pattern genera-
tion methods Projected Gradient Descent (PGD) [13] uses
gradient projection space as a bound to generate {;,¢ ad-
versarial patterns. Other prominent methods include Deep-
Fool [16] which was proposed for conducting untargeted at-
tacks with £, norm, and models adversarial pattern genera-
tion as a linear approximation problem, and SparseFool [ | 5]
that aims to generate adversarial patterns by modifying a
minimal number of pixels. Another popular method pro-
posed by Carlini and Wagner [3] uses gradient descent with
a custom loss function to minimize the £, norm during ad-
versarial pattern generation.

2.2. Physical Attacks

Kurakin et al. [10] printed 2D adversarial patches con-
taining objects overlaid by adversarial patterns to attack
deep networks trained for the object recognition task. Sev-
eral other researchers directly printed 2D adversarial pat-
terns which are then manually attached to physical ob-
jects to attack object detection and classification algorithms
[4, 21, 7, 27]. Similarly, Thys et al. [23] printed 2D ad-
versarial patches to circumvent pedestrian detection classi-
fiers. Athalye et al. [2] proposed a transformation-invariant
adversarial pattern generation scheme called Expectation
of Transformations (EOT) to fabricate 3D adversarial ob-
jects designed to fool object classifiers. More recently, Li
et al. [11] printed adversarial dots on a 2D transparent pa-
per to provide adversarial input via the camera to an object
recognition system. Although the aforementioned methods
succeed in achieving their stated objective, they usually re-
quire extensive calibration of each 2D or 3D-printed artifact
before fabrication. In addition, they also require fabrica-
tion of physical artifacts. On the other hand, the camera-
projector setup used in the method presented here can be
calibrated once based on the attack environment, and then
subsequently used for conducting multiple real-time attacks
targeting different enrolled users of a face recognition sys-
tem.

Similar to this work, Nichols and Jasper [17] used a
camera-projector setup to generate 2D adversarial dot pat-
terns that are then projected onto the physical scene to at-
tack object recognition systems. However, they did not use
the setup for conducting impersonation or obfuscation at-
tacks on face recognition systems. Zhou et al. [28], on the
other hand, fabricated a wearable cap with infrared LEDs to
fool face recognition systems. Although this work is identi-
cal to the method presented here in terms of its objective,
our method does not require creation of a wearable arti-
fact and thus offers an easier alternative using off-the-shelf
camera-projector setup for conducting physical attacks on
facial recognition systems.

3. Adversarial Light Projection Attack

The proposed adversarial light projection attack is per-
formed in two steps: the first step is to calibrate the camera-
projector setup based on the attack environment and com-
pute the adversarial pattern in the digital domain that can
be used to either evade recognition or impersonate a target,
and the second step is to project the computed digital adver-
sarial pattern onto the adversary’s face using the projector
to attack the deployed face recognition system (see Figure
2).

3.1. Assumptions

In the first step, the adversary is assumed to have either
white-box access' or black-box access” to the deployed face
recognition algorithm that the adversary intends to attack.
White-box is a reasonable assumption for face recognition
algorithms such as FaceNet [ 18] and SphereFace [12] that
are available in open-source. On the other hand, commer-
cial face recognition systems often only provide black-box
access. So we assume that the adversary uses an open-
source algorithm to generate adversarial patterns to attack
the black-box system. This assumption exploits the prop-
erty that adversarial patterns are highly transferable across
deep network architectures.

Additionally, we assume that the adversary has access
to an image of the target (in case of impersonation attack).
Further, the adversary has access to a camera to capture the
adversary’s own face image in order to compute the adver-
sarial light pattern, and a projector that is able to project
light patterns on his/her own face in the physical domain
in order to conduct the attack. In addition, the adversary is
assumed to have either access to or reasonable prior knowl-
edge of the environment where the face recognition system
to be attacked is deployed. This is to ensure that the ad-
versarial light pattern can be calibrated based on the attack
environment before projection.

3.2. Practical Considerations

Adversarial light projection attacks are inherently chal-
lenging because of their unconstrained nature. Below we
discuss key practical considerations critical to the success
of such attacks:

e Environmental factors, for example ambient and posi-
tional lighting, and their interplay with the projected
light. Calibration of the attack setup based on the at-
tack environment is therefore integral to the success of
the attack (see Section 4).

'Im white-box setting, the adversary knows the internal details of the
model including the architecture and trained weight parameters.

2In black-box setting, the adversary only knows the decision/output of
the model for one or more inputs.
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Figure 3: Different viewpoints in the camera-projector
setup. The physical adversary is assumed to be in the view
of both the camera and the projector.
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e Intra-adversary facial variations especially due to
slight physical movements of the adversary, e.g., head
movements and changes in the distance to the camera,
while conducting the attack. Generation of adversar-
ial patterns that are relatively invariant to such varia-
tions is therefore critical to the success of the attack
(see Section 5).

e [ntra-target facial variations because the adversary
would typically not have access to the enrolled im-
ages of the target in the deployed face recognition sys-
tem. Instead, the adversary would have target images
captured in a different context, such as social media.
Hence it is important that the generated adversarial
pattern be robust to the target’s facial variations (see
Section 5).

4. Attack Setup Calibration

There are two key calibration steps integral to success
of the attack: (i) position calibration: to ensure that the
adversarial pattern generated in the digital domain can be
projected onto the appropriate region of the adversary’s face
while conducting the attack, and (ii) color calibration: to
ensure that the digital adversarial pattern is reproduced with
high fidelity by the projector as adversarial light.

4.1. Position calibration

Assume that the adversary is in view of both the camera
and the projector (Figure 3). There are two possible ways
to perform position calibration: (i) manual: the adversary
manually annotates a small number (3-4) of corresponding
points between the two views; or (ii) automatic: a facial
landmark detection algorithm is used to detect correspond-
ing facial landmarks from the two views. Once the land-
mark correspondences are determined, a calibration matrix
is computed to perform position calibration (see Figure 4).

4.2. Color calibration

Let C and G be the color reproduction functions of the
camera and projector, respectively, in the physical attack

Camera view point Aligned projector content

Step 1 Step 2 Step 3

Figure 4: Two possible methods for position calibration: (i)
manual (top row) and (ii) automatic (bottom row). Step I:
Adversary’s face is captured using the camera, and facial
landmarks are either manually annotated or automatically
detected; Step 2: Projected scene (including the adversary’s
face) is captured using the camera, and facial landmarks are
manually annotated or automatically detected; Step 3: Cor-
responding landmarks from step 1 and step 2 are used to
compute the calibration matrix to calibrate the adversarial
pattern before projection on the adversary’s face.

setting. The objective of color calibration is to find the color
transformation function Y given C and G. Let x = C(zg),
where z( is the physical adversary, x is the image of the
adversary in the digital domain, and A is the method used
to generate adversarial pattern in the digital domain such
as the one presented in section 5.3. Also, assume addi-
tive characteristic of the color reproduction functions, i.e.
C(colorl + color2) = C(colorl) + C(color2). The rela-
tionship between the digital and physical domains can then
be expressed as follows:

To empirically estimate the aforementioned relationship
in the attack setting, (i) color calibration patterns are gen-
erated in the digital domain, (ii) the generated calibration
patterns are projected on a white background in the phys-
ical domain, and (iii) the projected calibration patterns in
the physical domain are captured in the digital domain us-
ing the camera. The color transformation function Y is then
computed by performing regression on the generated and
camera-captured color pairs. In practice, we found that per-
forming regression in Lab color space results in more accu-
rate color reproduction in the physical domain than standard
RG B color space.



Algorithm 1 Transformation-Invariant Adversarial Pattern Generation

Input: Image of adversary x, target image y
Output: Adversarial pattern %%

Notations: .A: method to compute representative average image (equation 3); f: method to compute face embedding;
M: distance metric (e.g., £;, cosine); clip: method to clip intensity values (0-255); F': fusion function (e.g. summation);

«, : hyper-parameters
1: procedure OPTIMIZE(x, )

tem;

2: " = Oxn, 25 x,and g < x

3: while not converge do

4 ] A(z2])

5: 2" = clip(@™S + 2t + (nv(0.07)

6: xy  clip(x_1 + z,77P)

7: DI — M(f(x™), f(y)) and D « M(f(2¢), f(y))

8: An + V F (D9, D)|x:z§i’;""

9: gr < B X gi_1+ HAA% and xiemp — zzef'fp + a x sign(g:)
10: 0 =g, — g

> Initialization

> Compute representative average image

> Clipped representative image

> Clipped image of adversary

> Distance computation using metric M

> Compute update with respect to both x and 9

> Gradient update with momentum

> Adversarial pattern

5. Transformation-Invariant Adversarial Pat-
tern Generation

Generation of adversarial patterns that are relatively in-
variant to intra-adversary facial variations is critical to the
success of light projection attacks. Let x and y, respectively,
be the images pertaining to the adversary and the target in
the digital domain that are used in the adversarial pattern
generation process. Existing methods (e.g., [2], [6]) gen-
erate a transformation-invariant adversarial pattern 2% by
applying different transformations on the adversary’s im-
age. In case of impersonation attack, the following opti-
mization is solved:

k—1
20 = argminz (wi L(Ti(x) + Az, y)), s.t.||Axl|, < e
Az 5

2

Here, T; corresponds to the i, transformation, k is the
total number of transformations, and w; corresponds to the
weight of T; such that Zf;ol w; = 1. Also, L is the loss
function used in the adversarial pattern generation process.
We assume that £ is computed using a distance metric M
in the face embedding space, and hence needs to be min-
imized. Alternatively, £ could be computed using a simi-
larity metric in which case it would need to be maximized.
Equation 2 involves computation of loss functions with re-
spect to each transformation in each iteration. This is com-
putationally intensive, and limits the application of these
methods in the setting where an adversary wants to generate
adversarial patterns in real-time.

5.1. Computing representative adversary image

Instead, our method computes an average representative
image "9 of the adversary as follows:

k—1 k—1
x® = Ax) = wox—&-Z(wﬂ;(x)), s.t. Z w; =1 (3)
i=1 =0

For the impersonation task, the following optimization is
then solved:

2% = argmin £(z*9 + Ax,y), s.t.|Az], <e (@)
Az

Equation 4 does not require explicit computation of loss
functions for all possible transformations, yet explores a
wide variety of transformation configurations in each iter-
ation. The limitation though is that the optimization is per-
formed with respect to a single representative image, and
not with respect to expected loss pertaining to each transfor-
mation configuration. For real-time light projection attacks,
this trade-off is desirable.

Also note that although equations 2 and 4 pertain to im-
personation, equations for obfuscation can be formulated
and solved in a similar manner.

5.2. Using the original adversary image

Optimizing with respect to the representative image
x*9 provides an efficient way to achieve transformation-
invariance. However, to ensure that the generated pattern re-
tains adversarial characteristics not only for the representa-
tive image x“*9 but for = as well, optimization with respect
to both z*¥9 and z is performed. Figure 5 illustrates exam-
ple benefit for translation and rotation-invariance. Similar
benefits were observed for other transformations.
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Figure 5: Advantage of using the proposed transformation-invariant pattern generation method for (a) translation invariance
and (b) rotation invariance. Left and right charts show, respectively, the similarity scores generated by FaceNet [ 18] between
an adversary’s face image with projected adversarial light pattern and the target’s face image, without and with (a) translation-
invariance (in x and y direction in pixels) and (b) rotation-invariance (in degrees).

5.3. Proposed method

Algorithm | summarizes the proposed transformation-
invariant pattern generation method. The method takes as
input the image x of the adversary and the image of the tar-
get y, and outputs the adversarial pattern 2%%. The trans-
formations used depend on the invariance objective (e.g.,
affine, perspective, photo-metric or others). The conver-
gence criteria is either predefined number of steps or thresh-
old on distance metric M (step 7). A brightness term sam-
pled from a normal distribution is used during each iter-
ative update for obtaining invariance to slight illumination
changes (step 5). Furthermore, a binary mask can be used to
constrain the facial region for which the adversarial pattern
is generated similar to [19].

5.4. Using multiple images of target

While the method described above focuses on intra-
adversary invariance, it is desirable to impart invariance to
intra-target variations as well to increase likelihood of suc-
cess. For this, multiple images of the target can be used.
Instead of a single target image, algorithm 1 can then be op-
timized with respect to target embedding y computed using
multiple target images.

6. Experimental Evaluation

To study the feasibility of adversarial light projection at-
tacks, live subject experiments are performed with 50 sub-
jects in total. Each experiment is conducted in a room with
fixed lighting. A Logitech web camera and a Panasonic or
Epson projector are used for the experiments.
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Figure 6: Example of impersonation attack on the commer-
cial face recognition system in black-box setting. Shown in
(a) is the captured image of the adversary’s face with ad-
versarial light projected in the physical domain that is rec-
ognized as target (b). This example is interesting because
it appears that adversarial light resulted in failure of face
detection (blue rectangle) yet the impersonation attack suc-
ceeded.

6.1. Experimental setup

A web-based user interface is designed that takes real-
time input of a subject’s face using a web camera, and lets
the subject select/upload face images of the target. The in-
terface also lets the subject perform calibration based on the
camera feed and the connected projector. Multi-task con-
volutional neural network (MTCNN)-based face detection
and landmark estimation [26] is used for automatic position
calibration. For color calibration, the method described in
section 4.2 is used. If necessary, the brightness and color in-
tensity of the projector is manually tuned via the interface.

Post calibration, a python script executes the
transformation-invariant  pattern  generation method
(implemented in Tensorflow 2.0) for 100 iterations. Cosine
is used as distance metric and multiplication as the fusion
function. For gradient update, the parameters « and /3 are
set to 1 and 0.7 respectively. The following transformation
configurations (assuming the origin is centered at midpoint
of adversary’s image) are considered during generation of
the transformation-invariant pattern: —40 to +40 pixels
translation in both z and y directions, —7/3 to +m/3
rotation, and 0.5 — 2 times scaling. Each transformation
configuration is assumed to be equally likely i.e. the weight
corresponding to each transformation is set to % where
k = 3 is the number of transformations.

The computed digital pattern is projected using the pro-
jector in the form of adversarial light onto the subject’s face.
The subject’s face with light projection is captured for about
30 seconds and used to attack a face recognition algorithm
in real-time. The subject is instructed to make natural head
movements (e.g. translation, rotation) during the duration
of the attack. Similarity score between each captured im-
age and the target face image is computed. If the com-

Experiment #Subjects | #Attempts | Success Rate (%) ‘

imp-fix-FN 25 25 92.00
imp-fix-SF 25 25 84.00
imp-fix-CO 25 25 60.00
imp-select-FN 15 15 93.33
imp-select-SF 15 15 80.00
imp-topS-FN 10 50 88.00
imp-top5-SF 10 50 78.00
obf-FN 10 10 100.00
obf-SF 10 10 100.00
obf-CO 10 10 70.00

Table 1: Impersonation (imp) and obfuscation (obf) exper-
iments conducted on live subjects. FC, SF and CO refer to
FaceNet, SphereFace and the commercial face recognition
system respectively. Similarity score threshold correspond-
ing to FAR=0.01% is used to determine if the attack was
successful.

puted score for any adversary-target image pair is above
the threshold corresponding to False Accept Rate (FAR) of
0.01%, the attack attempt is considered successful. FaceNet
[18] and SphereFace [12] are the two face recognition al-
gorithms used in white-box setting. In black-box setting,
FaceNet is used to generate adversarial pattern to attack a
commercial face recognition algorithm.

6.2. Impersonation

For impersonation, a face image of a subject (adversary)
captured using the camera, and a face image of the target
(obtained from the web or a database) are used to gener-
ate the digital adversarial pattern. A different face image
of the target (also obtained from the web or a database) is
assumed to be enrolled in the face recognition system to be
attacked. Impersonation attempts are made using different
subject pools in the following scenarios.

e Fixed target (imp-fix): Impersonating a fixed high-
profile target (Rowan Atkinson). 25 subjects in total
attempted this in both white-box and black-box set-
ting. 23 and 21 attempts out of 25 on FaceNet and
SphereFace, respectively, succeeded. In black-box set-
ting, 15 out of 25 attempts on the commercial system
succeeded.

o Selected target (imp-select): Impersonating any one of
the given targets (Taylor Swift, Michael Phelps, or Al-
bert Einstein) at random. A total of 15 subjects at-
tempted this in white-box setting. 14 and 12 attempts
out of 15 on FaceNet and SphereFace, respectively,
succeeded.
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Figure 7: Example of impersonation attack on SphereFace
[12] in white-box setting. Shown in (a) is the captured im-
age of the adversary’s face with adversarial light projected
in the physical domain that is recognized as target (b).

o Top-5 similar targets (imp-top5): Given a database
of target images (Labelled Faces in the Wild (LFW)
database [9]), impersonate top-5 most similar targets
based on a face recognition algorithm. 10 different
subjects attempted this on five most similar targets
from LFW in white-box setting. 44 and 39 out of 50 at-
tempts on FaceNet and SphereFace, respectively, suc-
ceeded.

Table 1 summarizes the experimental results. Figures 1, 7
and 6 show successful examples of impersonation, respec-
tively, on FaceNet, SphereFace and the commercial face
recognition system.

6.3. Obfuscation

For obfuscation (obf), two face images of a subject
(adversary-target pair) captured using the camera are used
to generate digital adversarial pattern. A different face im-
age of the same subject (target) is assumed to be enrolled.
10 different subjects attempted obfuscation attacks in both
white-box and black-box setting. All 10 obfuscation at-
tempts on FaceNet and SphereFace succeeded in white-box
setting, whereas in black-box setting 7 out of 10 attempts
on the commercial face recognition system succeeded. Ta-
ble | summarizes the experimental results. Figure 8 shows
a successful example of obfuscation on the commercial face
recognition system.

6.4. Failure Cases

While most impersonation and obfuscation attempts are
successful, failure of adversarial light projection attacks is
observed due to one or more of the following reasons:

e Light projection either covering the entire face or sig-
nificantly occluding majority of the face resulting in
failure of face detection. Projection of adversarial light
on a particular part of the face, e.g., cheeks or fore-
head, is found to result in higher likelihood of success
in practice.

Figure 8: Example of obfuscation attack on the commercial
face recognition system in black-box setting. Adversarial
light projected on the adversary’s face in the physical do-
main results in successful obfuscation.

e Strong ambient or directional lighting that overpowers
the projected light.

e Extreme facial pose of the adversary. In practice, how-
ever, this is less likely as the adversary is cooperative.

e Out of focus light projection on the adversary’s face
when the projector lens is not tuned appropriately.
Manual tuning of the projector lens to ensure the pro-
jected light is properly focused on the adversary’s face
is important for a successful attack attempt in practice.

We plan to investigate failure cases in a more systematic
manner in a follow-up study.

7. Conclusions and Future Work

We show the feasibility of conducting impersonation and
obfuscation attacks using adversarial light projections on
two open-source face recognition systems in white-box set-
ting and a commercial face recognition system in black-box
setting. Furthermore, an efficient transformation-invariant
adversarial pattern generation method that enables an ad-
versary to conduct light projection attacks in real-time is
presented.

While we have shown the feasibility of light projection
attacks, we have not systematically tested the likelihood of
success at different operating thresholds of face recognition
systems in different environments. One of our immediate
goals, therefore, is to systematically investigate the impact
of environmental and subject-dependent covariates (such as
lighting, subject orientation and pose) on the repeatability
of light projection attacks. Furthermore, we suspect that
presentation attack detection methods designed for static at-
tacks using 2D or 3D fabricated artifacts will be inadequate
in defending against dynamic adversarial attacks such as
light projection attacks. Therefore, we also plan to conduct
an evaluation of existing defense mechanisms and develop
novel defense mechanisms for such dynamic attacks.
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