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Abstract

Deep learning-based systems have been shown to be vul-

nerable to adversarial attacks in both digital and physi-

cal domains. While feasible, digital attacks have limited

applicability in attacking deployed systems, including face

recognition systems, where an adversary typically has ac-

cess to the input and not the transmission channel. In such

setting, physical attacks that directly provide a malicious

input through the input channel pose a bigger threat. We

investigate the feasibility of conducting real-time physical

attacks on face recognition systems using adversarial light

projections. A setup comprising a commercially available

web camera and a projector is used to conduct the attack.

The adversary uses a transformation-invariant adversarial

pattern generation method to generate a digital adversarial

pattern using one or more images of the target available to

the adversary. The digital adversarial pattern is then pro-

jected onto the adversary’s face in the physical domain to

either impersonate a target (impersonation) or evade recog-

nition (obfuscation). We conduct preliminary experiments

using two open-source and one commercial face recognition

system on a pool of 50 subjects. Our experimental results

demonstrate the vulnerability of face recognition systems to

light projection attacks in both white-box and black-box at-

tack settings.

1. Introduction

Deep learning-based systems are typically designed un-

der the assumption that the inputs/examples presented to the

system during the test/operational phase follow the same

underlying distribution as the examples used to train the

system. However, recent research has shown security vul-

nerabilities of such systems when input test examples are

intentionally crafted to cause the system to produce incor-

rect results (called adversarial examples) [22, 8]. Most

adversarial examples on convolutional neural network ar-
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Figure 1: Example of impersonation attack on FaceNet [18]

in white-box setting. Shown in (a) is the captured image of

the adversary’s face with adversarial light projected in the

physical domain that is recognized as the target (b).

chitectures (typically used in image classification scenarios

including face recognition) are generated by perturbing the

pixel intensities directly in the digital domain [13, 16, 3].

These digital attacks, however, do not directly translate into

the physical domain where an adversary has access to the

open-camera channel. In such setting, the adversary usu-

ally does not have access to the image captured using the

camera that is input to the convolutional neural network.

Specifically, consider a face recognition system, that is de-

ployed, such that it captures a face image of a subject and

compares it to the enrolled faces to validate or establish the

identity of the subject. While security mechanisms can be

enforced to safeguard the digital storage and transmission

of facial data captured using the camera, an adversary can

potentially trick the system by providing a malicious input

to the camera directly [10, 7].

A subclass of physical attacks on face recognition sys-

tems called presentation or spoofing attacks achieve this by

creating physical spoofs using one or more face images of

the target (e.g., 2D-printed face photos, 3D masks) [14].

The same objective can also be achieved by crafting phys-

ical adversarial artifacts such as glasses that an adversary

can wear to either evade recognition or mimic a target [19].

However, fabrication of physical adversarial artifacts gener-
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Figure 2: Setup used for conducting real-time adversarial

light projection attacks on face recognition systems. First,

the adversary captures his/her facial image using a camera,

and uses one or more images of the target to (i) calibrate

the camera-projector setup based on the attack environment,

and (ii) generate a digital adversarial pattern. Next, the ad-

versary projects the digital pattern onto the adversary’s face

in the physical domain using a projector to either imperson-

ate a target or evade recognition.

ally requires a manufacturing method (e.g., 2D or 3D print-

ing). In addition, the utility of physical artifacts is limited in

conducting at-scale physical attacks targeting multiple users

of a face recognition system by the type of physical speci-

mens that can be fabricated in typical resource-constrained

settings.

We investigate the feasibility of conducting a real-time

physical attack on face recognition systems using adver-

sarial light projections that can be used for imperson-

ating different enrolled users (called impersonation), or

evading recognition (called obfuscation). The adversary

first calibrates the camera-projector setup and then uses

a transformation-invariant adversarial pattern generation

method to generate adversarial patterns in the digital do-

main. These digital patterns are subsequently projected

onto the adversary’s face to conduct impersonation or ob-

fuscation attack. We refer to this attack as adversarial light

projection attack. As an example, impersonation is the goal

when an adversary intends to obtain access to a resource,

e.g., personal device protected with a target’s face. Obfus-

cation, on the other hand, is the goal of an adversary black-

listed by law enforcement agencies who wants to evade

recognition in scenarios such as border crossing.

A similar idea was recently proposed for fooling deep

learning classifiers designed for image classification sys-

tems [17]. However, the authors did not evaluate the utility

of their method in the context of face recognition systems.

Another recent work [28] fabricated a wearable cap with in-

frared LEDs to attack face recognition systems. Although

this work is similar in terms of its objective, our method

does not require a wearable artifact and thus offers an easier

alternative using off-the-shelf camera-projector setup (e.g.,

a portable mini projector [1]) for conducting physical at-

tacks on facial recognition systems. Preliminary experi-

ments conducted on 50 subjects show the vulnerability of

state-of-the-art face recognition systems to adversarial light

projection attacks in both white-box and black-box attack

settings.

1.1. Contributions

The major contributions of this work include:

• Investigation of real-time adversarial light projection

attacks using off-the-shelf camera-projector setup on

state-of-the-art face recognition systems.

• An efficient transformation-invariant adversarial pat-

tern generation method suitable for conducting real-

time adversarial light projection attacks.

• Demonstration of vulnerability of state-of-the-art face

recognition systems to adversarial light projection at-

tacks in both white-box and black-box settings.

2. Related Work

Existing research on adversarial attacks can be broadly

classified into two major categories: digital and physical at-

tacks. Given one or more examples from source and target

class, digital attack methods generate adversarial pattern(s)

in the digital domain such that the pattern(s) results in a

source class example being misclassified as a target class

example (called targeted attack), or the source class exam-

ple being incorrectly classified as an example from a dif-

ferent class (called untargeted attack), typically with high

confidence of being in the target class. Physical attacks

extend this notion into the physical domain by using spe-

cially crafted adversarial artifacts for targeted or untargeted

attacks. Below we summarize the major research in the

two categories and contrast existing physical attack meth-

ods from the method presented here.

2.1. Digital Attacks

One of the first digital attack methods proposed by

Szegedy et al. in 2013 called L-BFGS [22] formulates the

goal of adversarial pattern generation as an optimization

problem, and uses a box-constrained optimizer and linear

search to find the optimal solution. In 2014, Goodfellow

et al. [8] proposed Fast Gradient Sign Method (FGSM), a

single-step adversarial pattern generation method that uses

gradients computed from neural network parameters for ad-

versarial pattern generation. Following this, multiple exten-

sions of FGSM were introduced [10, 5, 24, 25].

Shi et al. [20] combine gradient ascent and descent with

binary search to find the adversarial pattern with the least ℓ2



norm. One of the most popular adversarial pattern genera-

tion methods Projected Gradient Descent (PGD) [13] uses

gradient projection space as a bound to generate ℓinf ad-

versarial patterns. Other prominent methods include Deep-

Fool [16] which was proposed for conducting untargeted at-

tacks with ℓp norm, and models adversarial pattern genera-

tion as a linear approximation problem, and SparseFool [15]

that aims to generate adversarial patterns by modifying a

minimal number of pixels. Another popular method pro-

posed by Carlini and Wagner [3] uses gradient descent with

a custom loss function to minimize the ℓp norm during ad-

versarial pattern generation.

2.2. Physical Attacks

Kurakin et al. [10] printed 2D adversarial patches con-

taining objects overlaid by adversarial patterns to attack

deep networks trained for the object recognition task. Sev-

eral other researchers directly printed 2D adversarial pat-

terns which are then manually attached to physical ob-

jects to attack object detection and classification algorithms

[4, 21, 7, 27]. Similarly, Thys et al. [23] printed 2D ad-

versarial patches to circumvent pedestrian detection classi-

fiers. Athalye et al. [2] proposed a transformation-invariant

adversarial pattern generation scheme called Expectation

of Transformations (EOT) to fabricate 3D adversarial ob-

jects designed to fool object classifiers. More recently, Li

et al. [11] printed adversarial dots on a 2D transparent pa-

per to provide adversarial input via the camera to an object

recognition system. Although the aforementioned methods

succeed in achieving their stated objective, they usually re-

quire extensive calibration of each 2D or 3D-printed artifact

before fabrication. In addition, they also require fabrica-

tion of physical artifacts. On the other hand, the camera-

projector setup used in the method presented here can be

calibrated once based on the attack environment, and then

subsequently used for conducting multiple real-time attacks

targeting different enrolled users of a face recognition sys-

tem.

Similar to this work, Nichols and Jasper [17] used a

camera-projector setup to generate 2D adversarial dot pat-

terns that are then projected onto the physical scene to at-

tack object recognition systems. However, they did not use

the setup for conducting impersonation or obfuscation at-

tacks on face recognition systems. Zhou et al. [28], on the

other hand, fabricated a wearable cap with infrared LEDs to

fool face recognition systems. Although this work is identi-

cal to the method presented here in terms of its objective,

our method does not require creation of a wearable arti-

fact and thus offers an easier alternative using off-the-shelf

camera-projector setup for conducting physical attacks on

facial recognition systems.

3. Adversarial Light Projection Attack

The proposed adversarial light projection attack is per-

formed in two steps: the first step is to calibrate the camera-

projector setup based on the attack environment and com-

pute the adversarial pattern in the digital domain that can

be used to either evade recognition or impersonate a target,

and the second step is to project the computed digital adver-

sarial pattern onto the adversary’s face using the projector

to attack the deployed face recognition system (see Figure

2).

3.1. Assumptions

In the first step, the adversary is assumed to have either

white-box access1 or black-box access2 to the deployed face

recognition algorithm that the adversary intends to attack.

White-box is a reasonable assumption for face recognition

algorithms such as FaceNet [18] and SphereFace [12] that

are available in open-source. On the other hand, commer-

cial face recognition systems often only provide black-box

access. So we assume that the adversary uses an open-

source algorithm to generate adversarial patterns to attack

the black-box system. This assumption exploits the prop-

erty that adversarial patterns are highly transferable across

deep network architectures.

Additionally, we assume that the adversary has access

to an image of the target (in case of impersonation attack).

Further, the adversary has access to a camera to capture the

adversary’s own face image in order to compute the adver-

sarial light pattern, and a projector that is able to project

light patterns on his/her own face in the physical domain

in order to conduct the attack. In addition, the adversary is

assumed to have either access to or reasonable prior knowl-

edge of the environment where the face recognition system

to be attacked is deployed. This is to ensure that the ad-

versarial light pattern can be calibrated based on the attack

environment before projection.

3.2. Practical Considerations

Adversarial light projection attacks are inherently chal-

lenging because of their unconstrained nature. Below we

discuss key practical considerations critical to the success

of such attacks:

• Environmental factors, for example ambient and posi-

tional lighting, and their interplay with the projected

light. Calibration of the attack setup based on the at-

tack environment is therefore integral to the success of

the attack (see Section 4).

1In white-box setting, the adversary knows the internal details of the

model including the architecture and trained weight parameters.
2In black-box setting, the adversary only knows the decision/output of

the model for one or more inputs.
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Figure 3: Different viewpoints in the camera-projector

setup. The physical adversary is assumed to be in the view

of both the camera and the projector.

• Intra-adversary facial variations especially due to

slight physical movements of the adversary, e.g., head

movements and changes in the distance to the camera,

while conducting the attack. Generation of adversar-

ial patterns that are relatively invariant to such varia-

tions is therefore critical to the success of the attack

(see Section 5).

• Intra-target facial variations because the adversary

would typically not have access to the enrolled im-

ages of the target in the deployed face recognition sys-

tem. Instead, the adversary would have target images

captured in a different context, such as social media.

Hence it is important that the generated adversarial

pattern be robust to the target’s facial variations (see

Section 5).

4. Attack Setup Calibration

There are two key calibration steps integral to success

of the attack: (i) position calibration: to ensure that the

adversarial pattern generated in the digital domain can be

projected onto the appropriate region of the adversary’s face

while conducting the attack, and (ii) color calibration: to

ensure that the digital adversarial pattern is reproduced with

high fidelity by the projector as adversarial light.

4.1. Position calibration

Assume that the adversary is in view of both the camera

and the projector (Figure 3). There are two possible ways

to perform position calibration: (i) manual: the adversary

manually annotates a small number (3-4) of corresponding

points between the two views; or (ii) automatic: a facial

landmark detection algorithm is used to detect correspond-

ing facial landmarks from the two views. Once the land-

mark correspondences are determined, a calibration matrix

is computed to perform position calibration (see Figure 4).

4.2. Color calibration

Let C and G be the color reproduction functions of the

camera and projector, respectively, in the physical attack

Camera view point Aligned projector content

Step 1 Step 2 Step 3

Figure 4: Two possible methods for position calibration: (i)

manual (top row) and (ii) automatic (bottom row). Step 1:

Adversary’s face is captured using the camera, and facial

landmarks are either manually annotated or automatically

detected; Step 2: Projected scene (including the adversary’s

face) is captured using the camera, and facial landmarks are

manually annotated or automatically detected; Step 3: Cor-

responding landmarks from step 1 and step 2 are used to

compute the calibration matrix to calibrate the adversarial

pattern before projection on the adversary’s face.

setting. The objective of color calibration is to find the color

transformation function Υ given C and G. Let x = C(x0),
where x0 is the physical adversary, x is the image of the

adversary in the digital domain, and h is the method used

to generate adversarial pattern in the digital domain such

as the one presented in section 5.3. Also, assume addi-

tive characteristic of the color reproduction functions, i.e.

C(color1 + color2) = C(color1) + C(color2). The rela-

tionship between the digital and physical domains can then

be expressed as follows:

C(x0 + G(Υ(h(x)))) = x+ h(x)

⇔ C(x0) + C(G(Υ(h(x))))) = x+ h(x)

⇔ C(G(Υ(h(x))))) = h(x)

⇔ Υ = (C ◦ G)−1

(1)

To empirically estimate the aforementioned relationship

in the attack setting, (i) color calibration patterns are gen-

erated in the digital domain, (ii) the generated calibration

patterns are projected on a white background in the phys-

ical domain, and (iii) the projected calibration patterns in

the physical domain are captured in the digital domain us-

ing the camera. The color transformation function Υ is then

computed by performing regression on the generated and

camera-captured color pairs. In practice, we found that per-

forming regression in Lab color space results in more accu-

rate color reproduction in the physical domain than standard

RGB color space.



Algorithm 1 Transformation-Invariant Adversarial Pattern Generation

Input: Image of adversary x, target image y
Output: Adversarial pattern xadv

Notations: A: method to compute representative average image (equation 3); f : method to compute face embedding;

M: distance metric (e.g., ℓp, cosine); clip: method to clip intensity values (0-255); F : fusion function (e.g. summation);
α, β: hyper-parameters

1: procedure OPTIMIZE(x, y)

2: xtemp
0 ← 0w×h, xavg

0 ← x, and x0 ← x ⊲ Initialization

3: while not converge do

4: xavg
t−1 ← A(x

avg
t−1) ⊲ Compute representative average image

5: xavg
t ← clip(xavg

t−1 + xtemp
t−1 + ζN (0,σ2)) ⊲ Clipped representative image

6: xt ← clip(xt−1 + xtemp
t−1 ) ⊲ Clipped image of adversary

7: Davg ←M(f(xavg
t ), f(y)) and D ←M(f(xt), f(y)) ⊲ Distance computation using metricM

8: ∆η ← ∇xF (Davg,D)|x=x
temp

t−1

⊲ Compute update with respect to both x and xavg

9: gt ← β × gt−1 +
∆η

‖∆η‖1

and xtemp
t ← xtemp

t−1 + α× sign(gt) ⊲ Gradient update with momentum

10: xadv = xt − x ⊲ Adversarial pattern

5. Transformation-Invariant Adversarial Pat-

tern Generation

Generation of adversarial patterns that are relatively in-

variant to intra-adversary facial variations is critical to the

success of light projection attacks. Let x and y, respectively,

be the images pertaining to the adversary and the target in

the digital domain that are used in the adversarial pattern

generation process. Existing methods (e.g., [2], [6]) gen-

erate a transformation-invariant adversarial pattern xadv by

applying different transformations on the adversary’s im-

age. In case of impersonation attack, the following opti-

mization is solved:

xadv = argmin
∆x

k−1∑

i=0

(wiL(Ti(x) + ∆x, y)), s.t.‖∆x‖p ≤ ε

(2)

Here, Ti corresponds to the ith transformation, k is the

total number of transformations, and wi corresponds to the

weight of Ti such that
∑k−1

i=0 wi = 1. Also, L is the loss

function used in the adversarial pattern generation process.

We assume that L is computed using a distance metricM
in the face embedding space, and hence needs to be min-

imized. Alternatively, L could be computed using a simi-

larity metric in which case it would need to be maximized.

Equation 2 involves computation of loss functions with re-

spect to each transformation in each iteration. This is com-

putationally intensive, and limits the application of these

methods in the setting where an adversary wants to generate

adversarial patterns in real-time.

5.1. Computing representative adversary image

Instead, our method computes an average representative

image xavg of the adversary as follows:

xavg = A(x) = w0x+

k−1∑

i=1

(wiTi(x)), s.t.

k−1∑

i=0

wi = 1 (3)

For the impersonation task, the following optimization is

then solved:

xadv = argmin
∆x

L(xavg +∆x, y), s.t.‖∆x‖p ≤ ε (4)

Equation 4 does not require explicit computation of loss

functions for all possible transformations, yet explores a

wide variety of transformation configurations in each iter-

ation. The limitation though is that the optimization is per-

formed with respect to a single representative image, and

not with respect to expected loss pertaining to each transfor-

mation configuration. For real-time light projection attacks,

this trade-off is desirable.

Also note that although equations 2 and 4 pertain to im-

personation, equations for obfuscation can be formulated

and solved in a similar manner.

5.2. Using the original adversary image

Optimizing with respect to the representative image

xavg provides an efficient way to achieve transformation-

invariance. However, to ensure that the generated pattern re-

tains adversarial characteristics not only for the representa-

tive image xavg but for x as well, optimization with respect

to both xavg and x is performed. Figure 5 illustrates exam-

ple benefit for translation and rotation-invariance. Similar

benefits were observed for other transformations.
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Figure 5: Advantage of using the proposed transformation-invariant pattern generation method for (a) translation invariance

and (b) rotation invariance. Left and right charts show, respectively, the similarity scores generated by FaceNet [18] between

an adversary’s face image with projected adversarial light pattern and the target’s face image, without and with (a) translation-

invariance (in x and y direction in pixels) and (b) rotation-invariance (in degrees).

5.3. Proposed method

Algorithm 1 summarizes the proposed transformation-

invariant pattern generation method. The method takes as

input the image x of the adversary and the image of the tar-

get y, and outputs the adversarial pattern xadv . The trans-

formations used depend on the invariance objective (e.g.,

affine, perspective, photo-metric or others). The conver-

gence criteria is either predefined number of steps or thresh-

old on distance metric M (step 7). A brightness term sam-

pled from a normal distribution is used during each iter-

ative update for obtaining invariance to slight illumination

changes (step 5). Furthermore, a binary mask can be used to

constrain the facial region for which the adversarial pattern

is generated similar to [19].

5.4. Using multiple images of target

While the method described above focuses on intra-

adversary invariance, it is desirable to impart invariance to

intra-target variations as well to increase likelihood of suc-

cess. For this, multiple images of the target can be used.

Instead of a single target image, algorithm 1 can then be op-

timized with respect to target embedding y computed using

multiple target images.

6. Experimental Evaluation

To study the feasibility of adversarial light projection at-

tacks, live subject experiments are performed with 50 sub-

jects in total. Each experiment is conducted in a room with

fixed lighting. A Logitech web camera and a Panasonic or

Epson projector are used for the experiments.
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Figure 6: Example of impersonation attack on the commer-

cial face recognition system in black-box setting. Shown in

(a) is the captured image of the adversary’s face with ad-

versarial light projected in the physical domain that is rec-

ognized as target (b). This example is interesting because

it appears that adversarial light resulted in failure of face

detection (blue rectangle) yet the impersonation attack suc-

ceeded.

6.1. Experimental setup

A web-based user interface is designed that takes real-

time input of a subject’s face using a web camera, and lets

the subject select/upload face images of the target. The in-

terface also lets the subject perform calibration based on the

camera feed and the connected projector. Multi-task con-

volutional neural network (MTCNN)-based face detection

and landmark estimation [26] is used for automatic position

calibration. For color calibration, the method described in

section 4.2 is used. If necessary, the brightness and color in-

tensity of the projector is manually tuned via the interface.

Post calibration, a python script executes the

transformation-invariant pattern generation method

(implemented in Tensorflow 2.0) for 100 iterations. Cosine

is used as distance metric and multiplication as the fusion

function. For gradient update, the parameters α and β are

set to 1 and 0.7 respectively. The following transformation

configurations (assuming the origin is centered at midpoint

of adversary’s image) are considered during generation of

the transformation-invariant pattern: −40 to +40 pixels

translation in both x and y directions, −π/3 to +π/3
rotation, and 0.5 − 2 times scaling. Each transformation

configuration is assumed to be equally likely i.e. the weight

corresponding to each transformation is set to 1
k

where

k = 3 is the number of transformations.

The computed digital pattern is projected using the pro-

jector in the form of adversarial light onto the subject’s face.

The subject’s face with light projection is captured for about

30 seconds and used to attack a face recognition algorithm

in real-time. The subject is instructed to make natural head

movements (e.g. translation, rotation) during the duration

of the attack. Similarity score between each captured im-

age and the target face image is computed. If the com-

Experiment #Subjects #Attempts Success Rate (%)

imp-fix-FN 25 25 92.00

imp-fix-SF 25 25 84.00

imp-fix-CO 25 25 60.00

imp-select-FN 15 15 93.33

imp-select-SF 15 15 80.00

imp-top5-FN 10 50 88.00

imp-top5-SF 10 50 78.00

obf-FN 10 10 100.00

obf-SF 10 10 100.00

obf-CO 10 10 70.00

Table 1: Impersonation (imp) and obfuscation (obf) exper-

iments conducted on live subjects. FC, SF and CO refer to

FaceNet, SphereFace and the commercial face recognition

system respectively. Similarity score threshold correspond-

ing to FAR=0.01% is used to determine if the attack was

successful.

puted score for any adversary-target image pair is above

the threshold corresponding to False Accept Rate (FAR) of

0.01%, the attack attempt is considered successful. FaceNet

[18] and SphereFace [12] are the two face recognition al-

gorithms used in white-box setting. In black-box setting,

FaceNet is used to generate adversarial pattern to attack a

commercial face recognition algorithm.

6.2. Impersonation

For impersonation, a face image of a subject (adversary)

captured using the camera, and a face image of the target

(obtained from the web or a database) are used to gener-

ate the digital adversarial pattern. A different face image

of the target (also obtained from the web or a database) is

assumed to be enrolled in the face recognition system to be

attacked. Impersonation attempts are made using different

subject pools in the following scenarios.

• Fixed target (imp-fix): Impersonating a fixed high-

profile target (Rowan Atkinson). 25 subjects in total

attempted this in both white-box and black-box set-

ting. 23 and 21 attempts out of 25 on FaceNet and

SphereFace, respectively, succeeded. In black-box set-

ting, 15 out of 25 attempts on the commercial system

succeeded.

• Selected target (imp-select): Impersonating any one of

the given targets (Taylor Swift, Michael Phelps, or Al-

bert Einstein) at random. A total of 15 subjects at-

tempted this in white-box setting. 14 and 12 attempts

out of 15 on FaceNet and SphereFace, respectively,

succeeded.
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Figure 7: Example of impersonation attack on SphereFace

[12] in white-box setting. Shown in (a) is the captured im-

age of the adversary’s face with adversarial light projected

in the physical domain that is recognized as target (b).

• Top-5 similar targets (imp-top5): Given a database

of target images (Labelled Faces in the Wild (LFW)

database [9]), impersonate top-5 most similar targets

based on a face recognition algorithm. 10 different

subjects attempted this on five most similar targets

from LFW in white-box setting. 44 and 39 out of 50 at-

tempts on FaceNet and SphereFace, respectively, suc-

ceeded.

Table 1 summarizes the experimental results. Figures 1, 7

and 6 show successful examples of impersonation, respec-

tively, on FaceNet, SphereFace and the commercial face

recognition system.

6.3. Obfuscation

For obfuscation (obf), two face images of a subject

(adversary-target pair) captured using the camera are used

to generate digital adversarial pattern. A different face im-

age of the same subject (target) is assumed to be enrolled.

10 different subjects attempted obfuscation attacks in both

white-box and black-box setting. All 10 obfuscation at-

tempts on FaceNet and SphereFace succeeded in white-box

setting, whereas in black-box setting 7 out of 10 attempts

on the commercial face recognition system succeeded. Ta-

ble 1 summarizes the experimental results. Figure 8 shows

a successful example of obfuscation on the commercial face

recognition system.

6.4. Failure Cases

While most impersonation and obfuscation attempts are

successful, failure of adversarial light projection attacks is

observed due to one or more of the following reasons:

• Light projection either covering the entire face or sig-

nificantly occluding majority of the face resulting in

failure of face detection. Projection of adversarial light

on a particular part of the face, e.g., cheeks or fore-

head, is found to result in higher likelihood of success

in practice.

Figure 8: Example of obfuscation attack on the commercial

face recognition system in black-box setting. Adversarial

light projected on the adversary’s face in the physical do-

main results in successful obfuscation.

• Strong ambient or directional lighting that overpowers

the projected light.

• Extreme facial pose of the adversary. In practice, how-

ever, this is less likely as the adversary is cooperative.

• Out of focus light projection on the adversary’s face

when the projector lens is not tuned appropriately.

Manual tuning of the projector lens to ensure the pro-

jected light is properly focused on the adversary’s face

is important for a successful attack attempt in practice.

We plan to investigate failure cases in a more systematic

manner in a follow-up study.

7. Conclusions and Future Work

We show the feasibility of conducting impersonation and

obfuscation attacks using adversarial light projections on

two open-source face recognition systems in white-box set-

ting and a commercial face recognition system in black-box

setting. Furthermore, an efficient transformation-invariant

adversarial pattern generation method that enables an ad-

versary to conduct light projection attacks in real-time is

presented.

While we have shown the feasibility of light projection

attacks, we have not systematically tested the likelihood of

success at different operating thresholds of face recognition

systems in different environments. One of our immediate

goals, therefore, is to systematically investigate the impact

of environmental and subject-dependent covariates (such as

lighting, subject orientation and pose) on the repeatability

of light projection attacks. Furthermore, we suspect that

presentation attack detection methods designed for static at-

tacks using 2D or 3D fabricated artifacts will be inadequate

in defending against dynamic adversarial attacks such as

light projection attacks. Therefore, we also plan to conduct

an evaluation of existing defense mechanisms and develop

novel defense mechanisms for such dynamic attacks.
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