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Abstract

The performance of deep face recognition depends heav-

ily on the training data. Recently, larger and larger datasets

have been developed for the training of deep models. How-

ever, most face recognition training sets suffer from the

class imbalance problem, and most studies ignore the ben-

efit of optimizing dataset structures. In this paper, we study

how class-balanced training can promote face recognition

performance. A medium-scale face recognition training set

BUPT-CBFace is built by exploring the optimal data struc-

ture from massive data. This publicly available dataset

is characterized by the uniformly distributed sample size

per class, as well as the balance between the number of

classes and the number of samples in one class. Experi-

mental results show that deep models trained with BUPT-

CBFace can not only achieve comparable results to larger-

scale datasets such as MS-Celeb-1M but also alleviate the

problem of recognition bias.

1. Introduction

In recent years, face recognition technology is becoming

more mature and applicable. A lot of public face recogni-

tion training sets [5, 13, 31, 33, 46] are developed to meet

the needs of training deep models. The recognition perfor-

mance on public benchmarks such as LFW [18] are also

becoming saturated. However, the class imbalance prob-

lem [2, 3, 14, 15, 20] remains a bottleneck in the field of

deep face recognition, which means, the number of sam-

ples in majority classes is much more than that in minority

classes in the training sets. The imbalanced data distribu-

tion is characterized by the long tail distribution [28, 51]: a

few classes have many face images as the “head” data, and

most classes have fewer face images as a long “tail”.

Developing a face recognition system using imbalanced

training sets, which is a common practice, can really impair

the representation ability of the model. First, the recogni-

tion accuracy is affected. As shown in the upper part of Fig-

ure 1, if the model is trained with class-imbalanced training

sets, the volume of different classes in the feature space is
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Figure 1: Upper: imbalanced training set leads to unequal

feature space. Lower: balanced training set leads to equal

feature space, improving recognition accuracy and fairness.

unequal. The majority classes occupy bigger spaces so that

when the model is applied, samples with similar distribu-

tion to the minority classes have a greater chance of being

misidentified. In contrast, if the number of samples in each

class in the training set is the same, as shown in the lower

part of Figure 1, the model can reserve equal volume space

for different identities. Second, fairness is affected. Due to

the limitation of data collection methods, different popula-

tions have different probability of appearing in the dataset.

For example, most face recognition training sets are com-

posed of celebrities [13, 36, 46], so that the proportion of

men is much larger than that of women, the proportion of

Americans is much larger than that of Africans, and the pro-

portion of elderly and infants is seriously insufficient. As a

result, women, Africans, the elderly and infants have less

chance to be well learned by the model, leading to the bias

in face recognition. Some bias-related researches [19, 40]

prove the existence of this kind of misidentification and un-

fairness. We firmly believe that in face recognition, every-

one should be treated equally, and the unfairness can be al-

leviated with balanced training data.

Besides the class imbalance problem, the data structure

of the dataset is also worth studying. Zhou et al. [52] prove

that when training a small portion of a large dataset, using



the “head” part can reach a better recognition result on the

LFW [18] than randomly sampling classes. However, as the

number of selected classes increases, “head” data begins to

suffer from the long tail problem, resulting in performance

degradation, although the number of images and identities

for training is indeed increasing. This suggests that feeding

a large amount of data to the model does not necessarily

lead to better training results. Carefully selected classes and

well-designed sample distributions also play vital roles in

the effectiveness of face recognition.

In this paper, we study the impact of dataset structure

on deep face recognition, and especially observe the phe-

nomenon produced by class-balanced training. Extensive

experiments are performed to compare face recognition per-

formance on the long-tailed and uniformly distributed train-

ing data, showing that the long tail phenomenon is likely

to be one of the important factors that restrict the perfor-

mance of a dataset. In addition, the issues of class selection

and balance between the number of classes and the number

of samples per class are also well studied experimentally.

Finally, in light of the experimental observations, an opti-

mized training set BUPT-CBFace is built for efficient deep

face recognition. As shown in Figure 2, BUPT-CBFace is a

class-balanced face dataset, which is constructed by search-

ing optimal data structure for face recognition.

Based on state-of-the-art ResNet [16] architecture and

ArcFace loss [9], compared to the widely-used CASIA-

WebFace [46] dataset, training deep models using BUPT-

CBFace of the same size can improve the accuracy on

LFW [18], RFW [40] and IJB-C [29] by a large margin,

and reach state-of-the-art performance on MegaFace chal-

lenge 1 [21] under the small protocol with 79.57% identi-

fication accuracy and 95.20% verification accuracy. More-

over, BUPT-CBFace even outperforms the large-scale face

dataset MS-Celeb-1M [10, 13], exceeding it by 2.10% on

the average accuracy of five verification sets with eight

times fewer training images. To encourage more class bal-

ance researches, the BUPT-CBFace dataset is made publicly

available at http://whdeng.cn.

2. Related Work

Class Imbalance Problem In recent years, a lot of

work [2, 15, 20] has been devoted to addressing the problem

of imbalanced training samples in deep learning. In terms of

algorithm, UP [12] imposes a penalty on the norm of weight

vectors so that minority classes can have comparable feature

space volume with majority classes. Wu et al. [44] propose

a center invariant loss that aligns the feature centers of the

minority classes to the majority. Fair loss [24] uses rein-

forcement learning to balance different classes. Zhong et

al. [51] train the head data and tail data separately to re-

duce the long tail effect. Ring loss [50] applies soft feature

normalization to augment standard loss functions.

0.0 0.2 0.4 0.6 0.8 1.0
Identity

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f I
m

ag
es

VGGFace2
CASIA-WebFace
MS1M-IBUG
MegaFace2
BUPT-CBFace

Figure 2: Sample distributions of widely-used long-tailed

datasets and BUPT-CBFace. The two axes are normalized.

Some other work improves in terms of data, such as data

resampling and data augmentation. SMOTE [6] combines

over-sampling the minority classes and under-sampling the

majority classes to achieve better classifier performance.

BalanceCascade [26] trains the learners sequentially, where

in each step, the majority class examples that are correctly

classified by the currently trained learners are removed

from further consideration. OOB and UOB [41, 42] build

an ensemble model overcoming class imbalance in real-

time through resampling and time-decayed metrics. Lin et

al. [23] use a clustering technique during the data prepro-

cessing step for data undersampling. REPAIR [22] learns

weights for different classes to re-sample data to remove

representation bias. However, in the field of deep face

recognition, no attempt has been made to directly establish

a class-balanced training set. In this paper, we try to ex-

plore the gains of training a face recognition model in the

case of absolute fairness in terms of the number of samples

between all classes.

Face Recognition Datasets Large-scale face recognition

training datasets are critical to recognition performance.

CASIA-WebFace [46] is the first large-scale dataset for ef-

ficient deep face recognition. VGGFace2 [5], MS-Celeb-

1M [13] and MegaFace2 [31] provide over one million

training images, pushing the face recognition benchmark

performance to a new level. However, existing large-scale

datasets are usually composed of in-the-wild face images

collected from the web rather than in the laboratory, which

makes them suffer from the imbalance of classes. Fig-

ure 2 shows the normalized identity distribution of four

widely-used training datasets, i.e., CASIA-WebFace [46],

MS1M-IBUG [10] (cleaned from MS-Celeb-1M [13]),

MegaFace2 [31] and VGGFace2 [5]. The curves are drawn

by arranging all classes according to the number of their

images in descending order. The long tail problem of

MegaFace2 [31] is the most serious. VGGFace2 [5] han-

dles this problem better, but it only contains 9,131 classes.

Unfortunately, previous studies mostly keep the natu-



Dataset # of photos # of subjects STD

MillionCelebs 18.8M 636.2K -

MS1M-IBUG 3.8M 84.2K -

CASIA-WebFace 494.4K 10.6K -

Long-tail 500.0K 10.0K 65.5

Uniform 500.0K 10.0K 0.0

BUPT-CBFace 500.0K 41.6K 0.0

Table 1: Face datasets used in the experiments for training

recognition models. The MillionCelebs dataset [47] is used

to extract subsets of 500k images under different conditions.

ral distribution of the web-collected datasets for deep face

recognition model training, and the impact of the dataset

structure has not been well studied. One possible reason is

that the data size is too small to select partial data for effec-

tive training, so researchers tend to use all available data.

However, it is meaningful to explore whether the recogni-

tion model can benefit from better data distribution. It is

possible that, by adjusting sample distribution and select-

ing classes, medium-scale datasets also achieve compara-

ble training effects of a larger-scale one. Besides, such an

“efficient” dataset may benefit the training of a lightweight

model that is important for industrial applications.

3. How Does Class Balance Help Training?

In this section, we explore the effects of class imbalance

and data structure distributions on face recognition perfor-

mance through experiments. Specifically, we hope to an-

swer the following three questions:

1. Can a uniformly distributed dataset with balanced

classes lead to better recognition performance?

2. Does the class imbalance contribute to recognition bi-

ases such as racial bias and gender bias?

3. Can training classes be deliberately selected to im-

prove recognition performance?

For a fair comparison, we study these issues by training

deep models with training sets of same level data size as

CASIA-WebFace [46]. The training sets are built by ex-

tracting samples from MillionCelebs [47], which is a well-

cleaned long-tailed face dataset with abundant images and

identities so that it is suitable for extracting such subsets for

specific studies. Table 1 shows the information of related

datasets. For data preprocessing, we use MTCNN [45] face

detector to localize five landmarks, then align and crop the

images to 112×112 face warps. The images are normalized

by subtracting 127.5 and being divided by 128. In training,

all input images are horizontally flipped with probability 0.5

for data augmentation. All experiments in this paper are im-

plemented by MXNet [8].

3.1. Experimental Setup

Evaluation Metrics Face recognition performance

is evaluated on 10-fold verification sets LFW [18],

CALFW [49], CPLFW [48], CFP [35] and AgeDB [30].

The RFW [40] benchmark is used to test model perfor-

mance on four kinds of races so that the degree of algorithm

fairness can be measured by the standard deviation (STD)

of the four races. Moreover, the MegaFace Challenge1 [21]

evaluates face recognition performance under one million

distractors, and the IJB-C [29] benchmark evaluates

template-wise face recognition performance. CMC curves

and Rank-1 are adopted to evaluate face identification

performance, while ROC curves and TPR at given FPR are

adopted to evaluate face verification performance.

CNN Architecture and Loss Function Many CNN ar-

chitectures [7, 16, 17] and loss functions [9, 38, 43] are

developed to promote the face recognition ability. In this

paper, ResNet-X [16] and MobileNetV2 [34] are deployed

to test data performance at different network scale. ResNet-

X refers to a ResNet [16] architecture with X layers. For

measuring training loss, the cross-entropy Softmax loss LS

and large-margin ArcFace loss [9] LA are used:

LS = −
1

N

N∑

i=1

log
e
WT

yi
xi+byi

∑n

j=1 e
WT

j
xi+bj

(1)

where xi ∈ R
d denotes the deep feature of the i-th sample,

yi denotes the label of xi. W is the weight matrix and b is

the bias term. N and n is batch size and class number. For

simplicity, we fix b = 0 as in many works [9, 12, 25, 37].

LA = −
1

N

N∑

i=1

log
es cos(θyi+m)

es cos(θyi+m) +
∑n

j=1,j 6=yi
es cos θj

(2)

where θj is the angle between Wj and xi, m is the angular

margin that aims to enlarge the gradient towards the class

prototypes, and s is the scale of l2 normalized feature vec-

tors. m and s are set 0.5 and 64.

Training All experiments are performed on two NVIDIA

GTX 1080Ti GPUs with batch size 256. The initial Stochas-

tic Gradient Descent (SGD) learning rate is set 0.1, then

is divided by 10 three times when the loss plateaus. The

hyper-parameters weight decay and momentum are set

0.0005 and 0.9, respectively.

3.2. Face Recognition Accuracy

To study the class imbalance issue of existing face recog-

nition training sets, we build a synthetic set called “Long-

tail” by simulating their long tail distribution. Specifically,

“Long-tail” is extracted from a big dataset in the following

three steps:



Architecture Loss Dataset LFW CALFW CPLFW CFP AgeDB Avg. U. - L.

ResNet-18

Softmax
Long-tail 98.67 86.70 78.98 92.31 90.53 89.44

0.20
Uniform 98.78 87.18 79.55 92.27 90.40 89.64

ArcFace
Long-tail 99.47 92.80 83.58 93.76 94.97 92.92

0.21
Uniform 99.45 93.07 84.42 93.56 95.13 93.13

MobileNetV2

Softmax
Long-tail 98.40 85.93 76.57 90.81 89.60 88.26

0.24
Uniform 98.60 86.37 76.85 91.10 89.57 88.50

ArcFace
Long-tail 98.90 90.35 81.43 92.24 92.65 91.11

0.13
Uniform 99.15 90.83 81.18 91.69 93.33 91.24

Table 2: Face recognition accuracy (%) of the “Long-tail” and the “Uniform” with different architectures and loss functions.

“Avg.” means average accuracy on the 5 test sets. “U. - L.” means how the “Uniform” surpasses “Long-tail” on average.

1. Simulate the long tail curve. Simulate the long tail

shape of a dataset D and scale its distribution to i iden-

tities, with a total number of m images. Then this long

tail curve can be expressed using a discrete function

S(k), k = 1, 2, · · · , i, where

i∑

k=1

S(k) = m (3)

2. Determine source distribution. In a big dataset B,

intercept its head identities with the number of face

images greater than n.

3. Extract subset. Randomly select i identities from the

intercepted head part, rearrange them from 1 to i. For

identity k, randomly select S(k) images to generate

the subset.

To construct the “Long-tail” dataset, we set i = 10, 000,

m = 500, 000, and n = 90 to ensure that every class has

enough images to choose from. B and D refers to Mil-

lionCelebs [47] and CASIA-WebFace [46], respectively. A

comparative “Uniform” dataset is also constructed by us-

ing the same classes and data size as the “Long-tail” but

each class has 50 randomly selected images. By control-

ling the variables, we ensure that the accuracy differences

between the experimental results of the two datasets de-

pend only on whether the classes are balanced. Table 2

compares performances of deep models on five validation

sets by different architectures and loss functions. It is ob-

served that class-balanced training data can effectively en-

hance face recognition performance on average for all tested

architectures and loss functions. For example, when train-

ing a MobileNetV2 [34] model with Softmax as loss func-

tion, Uniform outperforms Long-tail on four out of the five

test sets and increases the mean accuracy by 0.24%. When

the ResNet [16] architecture or ArcFace loss [9] is used, the

class-balanced dataset also achieves higher accuracy.

Figure 3 shows the loss decreasing curves of Long-tail

(red) and Uniform (green). It is observed that the Softmax
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(b) Softmax on MobileNetV2
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(d) ArcFace on MobileNetV2

Figure 3: Comparison of loss curves. Softmax loss of a

class-imbalanced dataset decreases earlier. ArcFace loss [9]

of a class-balanced dataset decreases lower.

loss of an imbalanced training set converges faster at the

beginning. This is because the majority classes can quickly

converge due to its large number of training samples, but

this does not help improve the final training effect. On the

other hand, the ArcFace loss [9] of Uniform can decrease

lower than Long-tail. This shows that balanced classes are

easier to fit into the large margin feature space, so the model

performance is also improved as expected.

3.3. Bias in Recognition

In Section 1, it is analyzed that imbalanced training sets

hinder the fairness among people of different races and gen-

ders, resulting in bias in face recognition. The Long-tail and

Uniform sets are helpful to explore existence of such bias.



# Dataset Caucasian African Indian Asian STD

1
Long-tail 92.17 82.25 88.47 85.02 3.72

Uniform 93.73 83.97 88.83 86.23 3.63

2
Long-tail 90.42 78.43 85.77 83.18 4.33

Uniform 90.57 79.05 86.02 83.50 4.17

Table 3: Performance on the RFW benchmark of ResNet-

18 [16] (#1) and MobileNetV2 [34] (#2) trained with Ar-

cFace loss [9]. The class-balanced training set can reach

higher accuracy (%) on all races with lower standard de-

viation. Therefore, the fairness of race is guaranteed.

RFW RFW [40] is a benchmark for measuring face

recognition accuracy on four kinds of races, i.e., Cau-

casian, Asian, Indian and African, which can be used to

test the bias problem in face recognition. Table 3 reports

the results on RFW [40] of ResNet-18 [16] (#1) and Mo-

bileNetV2 [34] (#2) models trained by Long-tail and Uni-

form with ArcFace loss [9]. It is observed that in the two

comparative experiments, Uniform not only performs better

than Long-tail on any race but also has a smaller standard

deviation in the accuracy of the four races, which means,

the difference between recognition accuracy for the four

races is even smaller. It is worth noting that we achieve this

improvement by only adapting the sample distribution to a

uniform distribution without using any race-related infor-

mation to deliberately select the classes. This confirms that

the class-balanced training is of great benefit to the fairness

of deep face recognition.

3.4. Class Selection

For a class-balanced training set, there is still great op-

timization potential. For example, the composition of the

classes in the dataset can be carefully designed to better fit

the spatial distribution of the human face. When construct-

ing the Uniform dataset, n is the main variable controlling

the choice of classes. It is observed that with the change of

n, although the generated datasets are in the same shape and

size, the training effects are totally different. As is shown in

Figure 4, training ResNet-34 [16] with ArcFace [9] as loss

function, LFW [18] and CPLFW [48] peak at n = 60, but

CALFW [49] peaks at n = 90.

Noted that a big n only considers majority classes while

a small n can consider more minority classes, this phe-

nomenon indicates that majority classes perform better on

the “cross-pose” recognition task, and adding a certain pro-

portion of the minority classes can improve the performance

on “cross-age” recognition task. Considering the data col-

lection process, the majority classes are often composed of

famous people, who have more pictures on the web, so the

collecting recall is lower, and the photos after his fame will

be collected first, which means there is more cross-pose in-
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Figure 4: The recognition accuracy on three verification sets

with the variety of n. The dashed lines represent the results

of model combination of n = 60 and n = 90.

formation. On the contrary, the minority classes are col-

lected with high recall, including his pictures of different

ages, so the “cross-age” performance is improved. This

interesting observation gives guidance on the selection of

training data. According to the application scenario, there

should be different emphasis on the majority or minority.

For comprehensive optimization, it is necessary to have a

compromise or deploy model combination. The dashed

lines in Figure 4 show one possible model combination at-

tempt: we simply concatenate the output features of the

n = 60 and n = 90 models, then the balance of the recog-

nition accuracy on different tasks is reached.

4. BUPT-CBFace: Class-Balanced Training

Following previous observations, a novel face recogni-

tion training set BUPT-CBFace is constructed to help con-

venient yet effective deep face recognition models training.

4.1. Balance Between Breadth and Depth

There are many studies [1, 4, 39] that discuss whether

the training set should have more classes or more images in

one class, but their answers are not the same. We define two

parameters for a class-balanced dataset:

Breadth The number of identities.

Depth The number of images per identity.

Keeping the data distribution and data size unchanged,

we can observe how the variation of breadth and depth af-

fect training. To this end, we set n = 60 and select seven

kinds of setups (breadth from 5,000 to 62,500) to build

training sets, in which the identities and images are still

randomly selected. Table 4 shows the recognition accu-

racy of training ResNet-34 [16] with ArcFace loss [9] and

these datasets. Figure 5 draws the average verification ac-

curacy and final training loss vary with breadth. It is ob-

served that when the data size remains constant, the variety

of dataset shape plays an important role in training. Start-

ing from 5,000, each increase in breadth brings a significant

accuracy enhancement. However, the excessive number of



Breadth Depth LFW CALFW CPLFW Avg.

5,000 100 99.28 91.72 84.85 91.95

10,000 50 99.65 93.12 88.48 93.75

20,000 25 99.57 94.15 89.22 94.31

31,250 16 99.68 94.18 89.58 94.48

41,667 12 99.63 94.60 89.90 94.71

50,000 10 99.50 94.20 90.30 94.67

62,500 8 99.58 94.50 89.75 94.61

Table 4: At the same data scale (500k images), proper

breadth and depth of a class-balanced dataset can signifi-

cantly improve the recognition accuracy (%).
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Figure 5: The variations of mean verification accuracy and

final training loss with dataset breadth.

classes also leads to insufficient depth, which inhibits the

training effect. This shows that there is a demand for both

the number of images and the number of identities in the

deep model learning, and the performance limit lies in the

side of the shortboard. Finally, the average recognition ac-

curacy peaks at the breadth of around 40,000 to 50,000.

The final loss curve in Figure 5 is also intriguing. As is

observed, the loss keeps very small when the breadth is less

than 15,000, which means that a small number of classes

is easy to fit. When the breadth is greater than 15,000, the

feature space is gradually saturated so the loss increases.

However, when the data breadth reaches 30,000 or more,

the loss falls back to a medium level at around 1.5 because

the number of images in one class is smaller, so that they

are easier to fit into the feature space. It confirms that deep

learning can gain from depth and breadth, separately.

Comprehensive consideration, we regard the dataset with

41,667 classes and 12 images per class as the BUPT-

CBFace dataset. Figure 6 shows images of five classes in

BUPT-CBFace. In addition to its balanced classes, it also

strikes a balance between depth and breadth. In recogni-

tion tasks, BUPT-CBFace not only considers the balance

between cross-age and cross-pose recognition but also re-

duces recognition bias to certain extent. Due to its small

size and good recognition performance, BUPT-CBFace can

Figure 6: Images of five classes in BUPT-CBFace. There

are twelve images in each class with rich facial information

such as poses, lighting and expressions.

be easily trained on a single NVIDIA GTX 1080Ti GPU to

achieve the same level results as large-scale parallel training

like training on the MS-Celeb-1M [13] dataset.

4.2. Evaluation Results

We evaluate the benchmark performance of BUPT-

CBFace comparing with the other two public training sets

CASIA-WebFace [46] and MS1M-IBUG [10] under the

same training environments. Table 5 reports face recogni-

tion accuracy of the ResNet-50 [16] models trained with

Softmax or ArcFace loss [9]. BUPT-CBFace reaches the

highest accuracy on three of the five verification sets, even

more than MS1M-IBUG [13] that has nearly eight times

more face images of it. Especially on the cross-pose test

set CPLFW [48] and CFP [35], BUPT-CBFace surpasses

MS1M-IBUG [13] by 5.75% and 5.27% with ArcFace

loss [9], which means that it contains a large amount of

pose-related information. BUPT-CBFace also obtains the

highest average accuracy of the 5 verification sets, surpass-

ing MS1M-IBUG [13] by 2.10% to reach 95.60%.

IJB-C The IJB-C benchmark [29] tests template-wise

face recognition performance. Training ResNet-50 [16]

with Softmax or ArcFace loss [9], the verification TPR at

1e-4 FPR and identification Rank-1 on IJB-C [29] are re-

ported in Table 5. BUPT-CBFace reaches higher accuracy

than CASIA-WebFace [46] and MS1M-IBUG [13] on all

tests. Trained with ArcFace loss [9], BUPT-CBFace reaches

93.95% identification accuracy and 92.99% verification ac-

curacy. Figure 7 shows the corresponding CMC and ROC

curves. In Figure 7a, BUPT-CBFace has the highest Rank-

N accuracy for any N in all comparisons, which shows its

strong identification ability. In Figure 7b, when trained with

ArcFace loss [9], MS1M-IBUG [13] can reach higher TPR

at 1e-5 FPR. This shows that when the requirements for

identifying negative pairs become stricter, the number of

training samples becomes more important. However, in or-



Loss Training Dataset Size(M) LFW CALFW CPLFW CFP AgeDB Avg.
IJB-C

Id. Ver.

Softmax

CASIA-WebFace 0.5 98.77 86.38 80.88 92.37 88.83 89.45 79.82 69.23

MS1M-IBUG 3.8 98.97 90.92 79.98 87.46 92.38 89.94 79.05 56.53

BUPT-CBFace 0.5 99.05 89.67 83.32 92.93 90.47 91.09 85.73 81.21

Arcface

CASIA-WebFace 0.5 99.52 92.55 87.17 95.33 95.20 93.95 88.05 80.44

MS1M-IBUG 3.8 99.62 94.85 84.95 90.97 97.13 93.50 93.54 92.86

BUPT-CBFace 0.5 99.65 94.80 90.70 96.24 96.60 95.60 93.95 92.99

Table 5: Face recognition accuracy (%) of different datasets with ResNet-50 [16] as backbone and Softmax or ArcFace [9]

as loss function. Training with BUPT-CBFace can obtain a better performance than other two datasets with smaller data size.
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Figure 7: Identification CMC curves and verification ROC

curves on the IJB-C [29] benchmark.

dinary scenes, a medium-scale class-balanced training set is

more suitable for face recognition tasks.

MegaFace MegaFace challenge 1 [21] evaluates face

recognition performance under one million distractors. It

measures TPR at 1e-6 FPR for verification and Rank-1

retrieval performance for identification. Adopting Face-

Scrub [32] as probe set, Table 6 shows BUPT-CBFace and

comparative methods on the official leaderboard under the

“small” protocol. Corresponding CMC and ROC curves of

the highest official published methods are drawn in Fig-

ure 8. BUPT-CBFace and CASIA-WebFace [46] trained

with ArcFace loss [9] are included for comparison. Train-

ing the same ResNet-34 [16] architecture with ArcFace

loss [9], BUPT-CBFace exceeds CASIA-WebFace [46] by

2.13% identification accuracy and 2.03% verification accu-

racy. When training ResNet-100 [16] architecture with Ar-

cFace loss [9], BUPT-CBFace reaches state-of-the-art per-

formance on both face identification and verification tests

under small protocol, outperforming CVTE V2 by 1.25%

identification accuracy and 0.78% verification accuracy.

RFW In Section 3.3, it is proved that a class-balanced

training set can obtain higher accuracy and lower recog-

nition bias for different races. Table 7 compares train-

ing results of CASIA-WebFace [46] and BUPT-CBFace on

RFW [40]. For fairness, MS1M-IBUG [13] is excluded for

comparison because RFW [40] is a subset of MS-Celeb-1M

Methods Id. Ver. Protocol

DeepSense 70.98 82.85 small

SphereFace [25] 75.77 90.05 small

FaceAll V2 76.66 77.61 small

GRCCV 77.68 74.89 small

FUDAN 77.98 79.20 small

CVTE V2 78.32 94.42 small

CASIA-WebFace + ResNet-34 76.22 91.48 small

BUPT-CBFace + ResNet-34 78.35 93.45 small

BUPT-CBFace + ResNet-50 78.75 93.81 small

BUPT-CBFace + ResNet-100 79.57 95.20 small

Table 6: FaceScrub [32] results (%) of the MegaFace chal-

lenge 1 [21] under small protocol. BUPT-CBFace reaches

state-of-the-art performance on the official leaderboard.
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Figure 8: Identification CMC curves and verification ROC

curves of all official published methods under the MegaFace

challenge 1 [21] small protocol.

and the identity duplication can cause serious interference.

It is observed that the accuracy of BUPT-CBFace in all races

greatly exceeds that of CASIA-WebFace [46]. For example,

the ArcFace [9] model trained by BUPT-CBFace are 6.25%

higher on the worst performed Asian faces, and 2.82%

higher on the best performed Caucasian faces. Therefore,

differences in accuracy between races are also reduced. The

standard deviation of different races decreases to 1.61 from
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Figure 9: Visualization of randomly selected 50 classes of three datasets on t-sne [27] feature space.

# Dataset Caucasian African Indian Asian STD

1
CASIA-WebFace 87.65 76.38 80.98 76.73 4.54

BUPT-CBFace 89.98 81.93 85.30 83.38 3.04

2
CASIA-WebFace 94.43 88.53 89.85 86.88 2.81

BUPT-CBFace 97.25 93.53 94.87 93.13 1.61

Table 7: Face recognition accuracy (%) and standard devia-

tion on the RFW [40] benchmark of ResNet-50 [16] trained

with Softmax loss (#1) and Arcface loss [9] (#2).

2.81 of CASIA-WebFace [46], so that the recognition bias

problem is greatly alleviated.

4.3. Analysis and Discussion

Weight Matrix As many studies [9, 12] show, the weight

matrix W in Equation 1 can reflect the training quality

of the model. Table 8 shows the mean of the angle be-

tween Wj and the corresponding embedding feature cen-

ter and standard deviant of ‖Wj‖ for all classes of three

datasets. First, the angle between Wj and centers of fea-

ture embeddings xi of samples belong to class j shows

how the training samples are fitted to the model. In the

model trained with BUPT-CBFace, the mean angle is 1.18◦

smaller than CASIA-WebFace [46] and 3.33◦ smaller than

MS1M-IBUG [13], which means the output feature embed-

dings of training classes are closer to Wj and therefore more

representative, and the model converges better on the train-

ing set. On the other hand, a majority class j usually leads

to a larger weight vector norm ‖Wj‖, while a minority class

usually leads to a smaller weight vector norm. In this case,

if the vectors are not l2 normalized, the decision bound-

ary is shifted towards the smaller-norm classes (see analy-

sis in [11] and [12]). When training with the class-balanced

BUPT-CBFace, weight vector norms ‖Wj‖ have very small

standard deviation 0.03, which is 4.93 smaller than that of

MS1M-IBUG [13] and 0.10 smaller than that of CASIA-

WebFace [46]. Therefore, even if no additional constraints

are added on the norms of weight vectors, the norms of dif-

ferent classes in BUPT-CBFace tend to be more consistent.

Datasets Angle (Mean) Norm (STD)

CASIA-WebFace 15.29 0.13

MS1M-IBUG 17.34 4.96

BUPT-CBFace 14.01 0.03

Table 8: Statistics of weight matrix of ResNet-50 [16] mod-

els trained with ArcFace loss [9] and different datasets.

“Angle (Mean)” refers to the mean of angles between

Wj and the corresponding embedding feature center.

“Norm (STD)” refers to the standard deviation of ‖Wj‖.

Visualization In Figure 9, we visualize the feature distri-

butions of randomly selected 50 classes from three train-

ing sets, where each class is represented by one color. The

ResNet-50 [16] models with ArcFace loss [9] are used

to extract deep features, and t-sne [27] is used to gener-

ate visual embeddings. It is observed that both CASIA-

WebFace [46] and MS1M-IBUG [13] have extremely un-

even sample spaces. On the one hand, the majority classes

occupy a large volume of space, on the other hand, the mi-

nority classes are squeezed closer and difficult to separate.

So the class imbalance causes biases in the recognition ef-

fect between the majority and the minority. In contrast, the

spacial volumes of different classes in BUPT-CBFace are

basically equal, so the recognition fairness is guaranteed.

5. Conclusion

In this paper, we study the impact of class balance and

data structures on deep face recognition. A class-balanced

face recognition training set BUPT-CBFace is built by care-

fully adjusting data shapes and classes. BUPT-CBFace has

a significant recognition performance and fairness improve-

ment compared to long-tailed datasets of the same scale.

Moreover, BUPT-CBFace can be easily trained on a single

NVIDIA GTX 1080Ti GPU to achieve the same level re-

sults as large-scale parallel training, which is very friendly

to many institutes. BUPT-CBFace is publicly available as

an alternative option to the existing long-tailed datasets.
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