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Abstract

Visual pattern recognition over agricultural areas is an

important application of aerial image processing. In this

paper, we consider the multi-modality nature of agricultural

aerial images and show that naively combining different

modalities together without taking the feature divergence

into account can lead to sub-optimal results. Thus, we apply

a Switchable Normalization block to our DeepLabV3+ seg-

mentation model to alleviate the feature divergence. Using

the popular symmetric Kullback–Leibler divergence mea-

sure, we show that our model can greatly reduce the diver-

gence between RGB and near-infrared channels. Together

with a hybrid loss function, our model achieves nearly 10%

improvements in mean IoU over previously published base-

line.

1. Introduction

Recent progress in CNNs demonstrates significant im-

provements in many typical computer vision tasks such as

classification, object detection and segmentation [11, 6, 2,

3]. Applications in multiple domains developed rapidly by

employing deep neural networks and achieved better accu-

racy and efficiency.

Agriculture, as one of the most fundamental fields for

humanity, is a significant application area of computer vi-

sion. One important direction of visual pattern recog-

nition in agriculture is aerial image semantic segmenta-

tion. Different from conventional image semantic seg-

mentation dataset where only RGB based image is avail-

able [5, 20, 19, 13], the agricultural data collection process

utilizes specific cameras to capture Red, Green and Blue

channel(RGB) with an additional near-infrared(NIR) signal

channel which can be used in the pattern recognition pro-

cess [4]. Also, agricultural data is naturally imbalanced.

In [4], the authors proposed to add the additional NIR

channel to the corresponding RGB image to form a Near-
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Figure 1: Instance-batch normalization (IBN) block. IBN-a

and IBN-b are the variants of IBN-Net proposed in [16], we

change the first BN to Switchable-Normlization for better

performance.

infrared-Red-Green-Blue(NRGB) 4-channel image. By du-

plicating the weights corresponding to the Red channel of

the first convolution layer, the authors can utilize imagenet

pretrained model for NRGB images. In their experiment,

the model utilizes the NRGB images for training and testing

gains 2.92% improvement in mean intersection-over-union

(mIoU) over the RGB image count part. This demonstrated

that using NRGB images is more effective than using RGB

images only. However, by employing the technique called

symmetric KL divergence which is used in AdaBN [12],

we found that there is a feature divergence between RGB

and NIR images. This feature divergence between RGB and

NIR images can be seen as the representation of the inherent

data modality or domain difference between RGB and NIR

images. Naively using the NRGB images without taking

the feature divergence into account can lead to sub-optimal

results.

In our experiments, we found that the recently proposed

IBN-Net [16] can reduce the feature divergence between



Figure 2: Both figures represent feature divergence between RGB images and NIR images. The vertical axis indicates the

feature divergence between RGB images and NIR images. IBN-Net101-a reduces the feature divergence dramatically when

trained on RGB images or NIR images.

two data modalities effectively. The IBN-Net incorpo-

rates Instance Normalization(IN) [18] and Batch Normal-

ization [10] together to enhance the generalization capacity

on different domains. In Fig. 2, we show the feature di-

vergence between RGB and NIR can be reduced by using

IBN-Net.

By further modify the original IBN-Net architecture

(IBN-s) and using a hybrid loss function which addresses

the imbalanced data problem and directly optimize the eval-

uation metric, we achieve a 4.03% improvement in mIoU

on the validation set of Agriculture-Vision challenge dataset

and scored 54.0% mIoU on the test set.

To summarize, first we show that the feature divergence

between RGB and NIR images should be carefully ad-

dressed to achieve better performance on the agricultural

data. Second, we propose to use a widely adopted method

called symmetric KL divergence to measure the feature di-

vergence between RGB and NIR images. Finally, based on

the motivation of reducing the feature divergence between

RGB and NIR images, we proposed a novel network build-

ing block called IBN-s, and achieves comparable results on

both the validation and test set of the Agriculture-Vision

Challenge dataset.

2. Feature Divergence Analysis

Appearance difference between RGB and NIR images

can cause huge feature divergence which results in bad

cross-modality generalization.

mIoUs(%)

Train on RGB Train on NIR

Test on RGB 46.05 23.39

Test on NIR 18.29 44.22

Perf. Decay 27.76 20.83

Table 1: ‘Perf. Decay’ stands for “Performance decay”.

When models are trained on NIR images alone, NIR im-

ages with a single channel will be duplicated channel-wise

to transform into a three-channel images. All the other set-

tings about the experiment regarding this table are the same

as ones in Section 5. Testing on different modalities from

training can reduce the performance by a huge margin. This

phenomenon suggests that the feature divergence between

RGB and NIR can be huge.

2.1. Direct generalization of two modalities

Here we present the experimental result of training a

DeepLabV3+ [3] model with ResNet101 [8] as the back-

bone on one data modalities and test on the other, i.e., train

on RGB and test on NIR.

2.2. Symmetric KL Divergence

In order to quantize the feature divergence between two

data modalities, we denote each feature i as Fi, and assume

that the feature follows a Gaussian distribution with mean

µi and variance σ2
i . Then we can naturally use a symmet-

ric KL divergence as our metric for the feature divergence
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Figure 3: For each class, top: RGB image; bottom: NIR image; line: ground truth; mask: prediction. All predictions are

given by IBN-Net101-s trained with BCE+Dice+Lovasz as loss function.

between data modalities:

KL(A‖B) = log
σA

σB

+
σ2
A + (µA − µB)

2

2σ2
B

−
1

2
(1)

D(A‖B) = KL(A‖B) +KL(B‖A) (2)

2.3. Feature Divergence

Symmetric KL divergence can be used to measure the

distance between feature distribution in different modali-

ties.

For a certain layer in one model, we calculate the mean

and variance on each channel among every sample in the

validation set. The mean symmetric KL divergence of every

channel of a layer is defined as the feature divergence of this

layer. Thus, for a layer with C channels, this layer’s feature

divergence with features FA and FB respectively on two

modalities are defined as below:

D(LA‖LB) =
1

C

C
∑

i=1

D(FiA‖FiB) (3)

To understand how IBN-Net achieves better performance

on NRGB images, we compared the feature divergence of

34 ReLU layers in both IBN-Net101-a and ResNet101 on

RGB and NIR images.

As Figure 2 shown, the feature divergence caused by dif-

ferent appearances in RGB and NIR images are obviously

reduced among most layers in IBN-Net101.

2.4. Discussion

It is shown that IBN-Net reduces the distance between

feature distributions in RGB and NIR images. The analysis

on feature divergence gives us an intuition of how IBN-Net

gains stronger performance on NRGB images since regular

ResNet needs to learn to adapt appearance variance between

RGB and NIR images while IBN-Net can automatically fil-

ter out this variance by introducing IN into the model.

3. Our Model

Our model is based on Deeplabv3+ [3] with IBN-Net as

the backbone.

3.1. IBN­Net

Instance Normalization [18](IN) learns appearance-

related features, while Batch Normalization [10](BN) pre-

serves content-related information. By integrating IN and

BN, IBN-Net achieves better generalization and perfor-

mance on various computer vision tasks [16].

Pan et al. [16] introduced two kinds of IBN-block, IBN-a

and IBN-b. These two kinds of IBN block work differently.

IBN-a introduces IN into the residual path while IBN-b in-

troduces IN into the identity path(Figure 1).

As shown in Table 2 and Figure 2, IBN improves mIoU

on NRGB images by reducing feature divergence between

RGB and NIR images.

3.2. IBN­s

Figure 2 shows that the feature divergence is reduced in

deeper layers. The effect of IN removing appearance vari-

ant features is weakened while the effect of BN preserving

discriminative information is enhanced as the depth of lay-

ers grows. However, the integration method between IN and

BN is fixed among all the layers, unable to adjust according

to depth.



Backbone

IoUs(%)

Background
Cloud

shadow

Double

plant

Planter

skip

Standing

Water
Waterway

Weed

Cluster

Mean

IoU

ResNet50 79.95 45.75 36.98 1.18 59.67 58.03 48.58 47.16

IBN-Net50-a 80.51 53.67 40.87 1.83 64.44 61.67 49.71 50.39

IBN-Net50-b 80.41 52.48 39.32 4.19 62.82 57.91 49.36 49.50

IBN-Net50-s 80.82 53.52 43.63 3.59 65.44 60.20 50.84 51.15

ResNet101 79.32 47.95 39.77 0.98 62.47 61.17 49.36 48.72

IBN-Net101-a 80.79 52.64 38.27 2.72 67.52 61.96 48.52 50.35

IBN-Net101-b 80.88 52.05 40.75 3.19 64.21 59.88 51.05 50.29

IBN-Net101-s 80.78 52.69 44.53 3.34 66.26 62.26 50.39 51.46

Table 2: Different backbones setting with DeepLabV3+ architecture and BCE+Dice as loss function on NRGB images. The

detailed loss defintion is given in 4. IBN-Net101-s achieves highest mIoU of 51.46% on val set.

Thus, we propose IBN-s by replacing concatenated IN

and BN in IBN-a with Switchable Normalization(SN) [14].

With IBN-s, now models can learn how to trade off IN and

BN’s effect at different depths.

As shown in Table 2, our IBN-s improves mIoU by

2.74% compared with ordinary ResNet Bottleneck, and

1.11% compared with IBN-a.

4. Hybrid Loss

With our severely imbalanced dataset, the regular cross-

entropy loss 4 results in slow convergence and bad perfor-

mance.

Dice loss 5 [15] is a commonly used loss function in

semantic segmentation tasks. It can directly improve IoU

while has a smoother gradient than using negative IoU as

loss function. Unlike pixel-wise cross-entropy loss, dice

loss automatically ignores the negative pixels in the label.

Thus, it leads to a better performance than cross-entropy

loss on imbalanced data.

LBCE = −
1

N

N
∑

i=1

yi log σ(si) + (1− yi) log (1− σ(si))

(4)

LDice = −
1

N

N
∑

i=1

2yiσ(si)

yi + σ(si)
(5)

Since there is an overlap between classes in the agricul-

tural dataset, we consider this m-class segmentation task

as m independent binary segmentation tasks. Lovász hinge

loss [1] is another attempt to directly optimizes IoU for bi-

nary segmentation tasks. It is a pixel-wise convex surrogate

to the IoU loss based on the Lovász extension of submod-

ular set functions. It often yields better performance com-

pared to the IoU loss.

Define m ∈ R
p as mi = 1− sign(yi) ∗ si with

sign(x) =

{

1 x > 0

−1 x ≤ 0
(6)

Define m̂ ∈ R
p as m̂i = mπi

as π being a permuta-

tion ordering the components of m in a decreasing order,

i.e.mπ1
≥ mπ2

· · · ≥ mπp

Define ŷ ∈ R
p as ŷi = yπi

and s is cumulative sum of

elements of ŷ, i.e.si =
∑i

j=1
ŷj

∆i = 1−

p
∑

j=i+1

m̂j

p
∑

j=1

m̂j +
i
∑

j=1

(1− m̂j)

(7)

∆̂i =

{

∆i i = 1

∆i −∆i−1 i > 1
(8)

LLovasz =

p
∑

i=1

ReLU(mi) ∗ ∆̂i (9)

To summarize these loss functions, we purpose a hybrid

loss composed of binary cross-entropy loss, dice loss and

Lovasz loss defined as 10.

Lhybrid =
1

1 + λ1 + λ2

(LBCE + λ1LDice + λ2LLovasz)

(10)

Here y and y′ stand for target and logits vector for all

the pixels in one image. λ1 and λ2 controls the trade-off

between different losses.



λ1 λ2

IoUs(%)

Background
Cloud

shadow

Double

plant

Planter

skip

Standing

Water
Waterway

Weed

Cluster

Mean

IoU

0 0 80.49 51.09 40.98 3.77 63.75 57.01 49.75 49.55

1 0 80.79 52.64 38.27 2.72 67.52 61.96 48.52 50.35

0 1 81.35 55.43 40.33 1.42 65.70 64.30 48.83 51.05

1 1 81.06 57.56 46.30 12.45 65.11 60.63 51.55 53.52

Table 3: Different loss settings with IBN-Net101-a+DeepLabV3+ on NRGB images. (λ1, λ2)=(1, 1) achieves highest mIoU

of 53.52% on val set.

As shown in Table 3, Our hybrid loss achieves the high-

est mIoU of 53.52 among all the loss settings we tried.

5. Experiment Details

Our experiments are performed on the Agriculture-

Vision challenge dataset [4] 1. We use DeepLabv3+ [3] with

various backbone [8, 16, 14] in our experiments. All back-

bones are pretrained on ImageNet. We train each model for

25,000 iterations with a batch size of 32. We use SGD with

momentum as the optimizer [17]. Momentum and weight

decay are set to 0.9, 5e-4 respectively. First we warmup the

learning rate for 1,000 iterations [7], then train the model

for 7,000 iterations with a constant learning rate of 0.01. We

then apply the ‘poly’ learning rate policy with the power of

0.9 in the remaining 17,000 iterations.

6. Conclusion

In this paper, we show that despite using NIR and RGB

images together to perform the agricultural pattern recog-

nition tasks can improve the baseline performance. There

is still a feature divergence between NIR and RGB data

modalities. Our experiments show that IBN-Net [16] and

its variants can improve the model performance by reduc-

ing the divergence between features. Inspired by IBN, we

designed a novel IBN-s block to better tackle this feature di-

vergence problem, combined with our hybrid loss function,

our IBN-s model achieves over 10% improvement over the

baseline result proposed by Chiu et al. [4]. This suggests

that reducing the feature divergence between different data

modalities can be a promising direction to further improves

the performance on Agricultural pattern recognition tasks.

7. Future Work

The motivation of our work is to reduce the feature diver-

gence between RGB and NIR images, the rationale behind

1Our code is publicly available at https://github.com/

LAOS-Y/AgriVision

this idea is the fact that there indeed is an appearance vari-

ance between RGB and NIR modalities. In our experiments,

by introducing Instance Norm (IN) which can filter out the

appearance variance into the model, IBN-Net [16] achieves

better mIoU score on both validation and test set. How-

ever, our work has not included any explicit proof that IBN-

Nets lead to a better mIoU score by lowering feature diver-

gence. Further analysis about how IBN-Nets improve the

performance of the model is essential. Our future work may

include using style-transfer [9] or CycleGAN [21] models

to close the appearance gap between two modalities, and

then test the effectiveness of IBN-Net [16] and our mod-

ified IBN-s Net on the style-transferred dataset to further

validate that the gain of mIoU comes from the ability of re-

moving the appearance variance between modalities rather

than the increased model capacity of IBN-Net. Also, if we

confirmed that the performance gain indeed is from the abil-

ity of removing the appearance variance, we plan to find

theoretical proof to support our findings using learning the-

ory.
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