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Abstract

Deep Neural Network has shown great strides in the

coarse-grained image classification task. It was in part due

to its strong ability to extract discriminative feature repre-

sentations from the images. However, the marginal visual

difference between different classes in fine-grained images

makes this very task harder. In this paper, we tried to focus

on these marginal differences to extract more representa-

tive features. Similar to human vision, our network repeti-

tively focuses on parts of images to spot small discrimina-

tive parts among the classes. Moreover, we show through

interpretability techniques how our network focus changes

from coarse to fine details. Through our experiments, we

also show that a simple attention model can aggregate

(weighted) these finer details to focus on the most dominant

discriminative part of the image. Our network uses only

image-level labels and does not need bounding box/part

annotation information. Further, the simplicity of our net-

work makes it an easy plug-n-play module. Apart from pro-

viding interpretability, our network boosts the performance

(up to 2%) when compared to its baseline counterparts.

Our codebase is available at https://github.com/

TAMU-VITA/Focus-Longer-to-See-Better

1. Introduction

Fine-grained image classification [30] has been an active

research area that recognizes sub-categories within some

meta-category [33, 14, 16]. This problem differs from

generic image classification due to very small inter-class

and large intra-class variations among the classes. This

makes the task very challenging, as the recognition should

be able to localize these fine variations and then repre-

sents these marginal visual differences. Though deep neu-

ral networks [30] have shown astounding performance in

generic image classification [27], reaching similar-level per-

formance on fine-grained recognition remains a challenge.

Deep learning approaches for fine-grained classification
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Figure 1. Example of a center patch of an image. The heat-maps

around the image visualize the changes in attention, as we look

longer at an image from temporal step (T) from 1 to 10. Looking

recurrently at an image helps our model to progressively spot finer

details like pointy ears from the coarser head region.

fall into two separate paradigms: localization-classification

network [8, 38, 10], and end-to-end feature encoding [21, 5,

1]. The first category makes use of a separate localization

network along with the classification network. The local-

ization network is used to localize the discriminative image

regions/parts. In order to localize these fine changes, ear-

lier work [34, 22] has relied on human-annotated bounding

box/par annotations (eg head, wings, feather color). But, all

these human-based manual annotations make the process

quite intensive, laborious, and subjective. Also, the man-

ual annotation may be possible for small scale datasets like

CUB200-2011 [33] , Stanford dataset [14, 16] but not fea-

sible for large-scale image dataset say ImageNet [27]. Con-

volution neural networks (CNNs) were hence leveraged for

weakly supervised part-learning with category-labels only,

assuming no dependencies on bounding box/part annota-

tions [6, 7, 17].



In the localization-classification network, the localiza-

tion subnetwork focuses on learning the objects parts shared

among the same classes while the classification subnetwork

extracts discriminative features from these localize objects

to make them different among classes. This complemen-

tary network architecture requires separate losses [34, 8]

and tends to be computationally expensive.

The second category is to encode higher-order statistics

of convolutional feature maps to enhance the feature pre-

sentation of the image [21, 9, 15, 18]. One of the first works

in this category was the use of Bilinear CNNs [21] which

computes pairwise feature interactions by two independent

CNNs to capture the local differences in the image. An-

other work [26] proposed to encode CNN representation

with Fisher Vector representation giving much superior per-

formance on several datasets. But using higher-order dy-

namics makes the network less human-interpretable when

compared to the localization-classification sub-network.

To overcome the above-mentioned challenges, we pro-

pose a novel attention-based recurrent convolutional neural

network for fine-grained image classification. Our network

recursively attends from coarse to the finer region of image

or parts of the image to focus on the discriminative region

more finely. Our model is simple, computationally inexpen-

sive, and interpretable. Our motivation is that by processing

an image or a part of the image recursively, we can focus on

most discriminative details by continuously removing in-

significant ones and other background noises. Further, by

aggregating the finer regions from the image via suitable

attention we can pinpoint the most discriminative region in

the image. Additionally, the module is plug-and-play which

greatly enhances its scalability and usability.

Our network consists of a weakly supervised patch ex-

traction network which extracts different patches corre-

sponding to an image. Another network attends to each

patch by recurrently processing it via LSTMs. We use uni-

directional stacked LSTMs to recurrently pass the patch

through the time steps of LSTMs. Then, an attention layer

is used to aggregate the finer representation from the out-

put of the LSTMs. We append this network to the baseline

image classifier giving way to a two-stream architecture. To

leverage the power of ensembles, the representative features

are fused and then passed to the end classifier.

Our contributions can be summarized as the following:

• We propose a novel recurrent attention network which

progressively attends to and aggregate finer image de-

tails, for more discriminative representations.

• We show through various ablation studies the human

interpretability of our attentions and features.

• We conduct experiments on two challenging bench-

marks (CUB200-2011 birds [33], Stanford Dogs [14]),

and show performance boosts over the baselines.

2. Related Work

Fine-grained Feature Learning. Learning discrimina-

tive features have been studied extensively in the field of im-

age recognition and also for fine-grained classification. Due

to the great success of deep learning, powerful deep convo-

lutional based features [30, 11, 12, 31] forms the backbone

for most of the recognition tasks. This has shown a great

boost in performance when compared to hand-crafted fea-

tures. To model subtle difference, a bilinear structure [21]

is used to compute pairwise differences. The use of boost-

ing to combine the representation of multiple learners also

helps to improve classification accuracy [25]. Additionally,

second-order information also helps in fine-grained feature

extraction. Pooling methods that utilize second-order infor-

mation [19, 18] have proven to enhance the extraction of

more meaningful information.

Interpretable Deep Models for Fine-grained Recog-

nition. Given the subtle differences between fine-grained

categories, it becomes imperative to focus on and extract

meaningful features from them. There has been exten-

sive research [39, 13, 35, 29, 4] to develop interpretable

models that visualize regions attended by the network. In

[39] , Class Activation Maps (CAMs) are used to provide

object-level attention but not providing much finer discrim-

inative details. Over time, there have been variants devel-

oped [28, 23], that explores the backward propagation to

identify salient image features. In [13, 35, 29], attention is

at a finer level and focus more on the parts of the object

rather than the whole body/object. In [4], the authors asso-

ciate the prototypical aspect with the object part to reason

out the classification prediction for an image. Our network

uses a simple approach based on [28] to visualize the fine

attention areas in the patches.

Attention. Attention has been incorporated in visual re-

lated tasks from a long time [36, 24, 2, 37, 3]. Attention

models are aimed at identifying discriminative image parts

that are most responsible for recognition. We follow on the

same methodology of the visual-attention model to aggre-

gate the output of LSTMs to have weighted attention to the

most discriminative patch/part of the image. In [10], the

author uses weakly supervised model to generate different

patches of the same image containing different parts of im-

ages. We used a similar approach to extract patches from

the images which is further used to look for finer details.

This method does not use any external information like part

annotations/bounding box information.

3. Our Proposal

Given an image I and its corresponding label c, our net-

work aims to look longer via recurrently iterating through

a patch of an image to extract more fine-grained informa-

tion. A bottom-up weakly supervised object detection ap-
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Figure 2. The pipeline of our two-stream architecture. The global stream (on the top) processes the entire image to provide global represen-

tation. While the local stream (on the bottom) processes a certain region of the image (say, patch). The features are generated by recurrently

passing the patch through stacked LSTMs followed by an attention layer. Finally, the whole architecture is optimized via cross-entropy

loss at each output.

proach is used to extract meaningful patches (parts of the

images). This network uses only the category level labels

and does not use any part annotations or bounding box in-

formation. Further, a two-stream feature extractor is used

to extract global and object-level feature representations to

boost the classification accuracy.

3.1. TwoStream Architecture

Once we get a set of patches for each training image I,

we randomly select a patch Pi from the set of patches P

obtained. Hence, the input to the two-stream architecture

consists of image I and a patch Pi defined by a pair of co-

ordinates

[(xtli , y
tl
i ), (x

br
i , ybri )] (1)

where tl and br represent top-left and bottom-right. The

pair of coordinates denote top-left and bottom-right corners

of the box over the part of an image. Assuming top-left cor-

ner in the original image as the origin of a pixel coordinate

system, x-axis and y-axis is defined from left-to-right and

top-to-bottom respectively.

As shown in figure 2, there are two streams in the ar-

chitecture. The top stream consists of a convolution-based

feature extractor followed by the classification layer. The

second stream takes patch from images and extracts fea-

ture presentations via CNN. These features are recurrently

passed through LSTMs to get better and finer represen-

tations focusing on fine discriminative regions within the

patch. These finer patches are weight-aggregated to form a

single most discriminative representation. Specific details

about the architecture are shared in the following sections.

Global Stream Given an input image I, we first extract

deep features by passing the image through a convolution

neural network. The neural network is pretrained on Im-

ageNet [27]. The extracted representations can be written

as Wg * I, where Wg denotes the representative weight

of the whole neural network and * denotes all the convo-

lution, pooling, and non-linear functions performed on the

input image. The features are further passed through a soft-

max layer which outputs a probability distribution over fine-

grained categories. Mathematically,

GI = F(Wg ∗ I) (2)

where GI represents global representation for image and

F(.) denotes the Global Pooling Layer (GAP) [20] fol-

lowed by a fully connected softmax layer which transforms

the deep features into probabilities. The global stream is

used to extract global representative features of the images.

The reasons for including this simple branch are two-fold.

First, to provide global information to the network during

the training since the patches/parts of the object extracted

focus on the object itself. Second, it provides a simple base-

line over which our local stream can be added, demonstrat-

ing the plug-n-play functionality of our main contribution.

Local Stream The output of weakly supervised patch

extraction framework is dominant parts of an image as P =

[P1, P2, P3, ..., Pn], where each Pi could be defined as a

pair of coordinates of the bounding box for a region of an

image. The regions are cropped from the entire image as

shown in the figure 2. The set of cropped image regions can

be denoted as I(P) = [ I(P1), I(P2), I(P3), ..., I(Pn)].
Once a region I(Pi) (say ith patch) is cropped from image

I, it is passed through the pre-trained convolution neural

network as:



Fi = (Wg ∗ I(Pi)) (3)

where Wg represents the overall weights of CNN and * de-

notes convolution, pooling, and other non-linear functions.

The dimension of output feature Fi is w x h x c where w,

h, c represents the width, height, and channel of the feature

map. Note that the CNN in the global stream and the lo-

cal stream does not share weights. The feature map Fi is

recurrently passed through different time steps of stacked-

LSTMs. The motivation of this step is to make the details

finer as the feature map of patch passes through several time

steps of LSTMs. So, the input to each time step is the same

feature map Fi. The output of the first layer of LSTMs is

passed as input to the second layer. The temporal repre-

sentative function of stacked-LSTMs can be denoted as φ.

Hence, the outputs of stacked-LSTMs can be modeled as

[φ(F1
i ), φ(F

2
i ), ...., φ(F

T
i )] (4)

where t = 1,2,3 ... T denotes the time steps of stacked-

LSTMs and φ denotes the function modelled after each time

step by LSTMcell. φ(Ft
i ) ∈ R

D is the D dimensional vector

denoting output of feature part( ith patch) Fi at time step

t. Our experiments 4.2 validates our hypothesis about how

feature changes over the time steps to focus on finer details

of parts.

Once we have finer details of a patch through the LSTM,

an attention network is used to perform a weighted aggre-

gation over these finer features. We believe the advantages

of attention is two-fold. First, the trainable weights of at-

tention layer help to provide more weights to the discrimi-

native finer scale of the patch. The attention network helps

to focus on the scale of the patch which maximizes the clas-

sification accuracy by removing the noisy parts. Secondly,

the weighted aggregation of these different time-step fea-

tures aggregates fine details within the patch. The output of

the attention layer can be written as:

Ai =

T∑

t=1

αtφ(Ft
i ) (5)

where

αt =
exp(Wt

· φ(Ft
i ))∑T

i=1 exp(W
t
· φ(Ft

i ))
(6)

where Ai is the output of attention network and Wt
∈ R

D

is the trainable weight parameter assigned to feature at each

time step. Finally, the D-dimensional output from attention

layer is to pass through a network of fully-connected neural

network and softmax to generate class probability vector for

fine-grained categories given by:

LI = F
′

(Wl ∗ Ai) (7)

where LI represents the probability distribution, Wl encap-

sulates the weights of full-connected layer after attention,

F
′

(.) denotes the softmax layer, and Ai denotes the out-

put from the attention network. Such design enforces the

network to gradually attend to the most discriminative re-

gion of patch/part of the image and boost confidence in the

prediction of an image.

3.2. Classification Loss

The proposed architecture is optimized using classifica-

tion based loss function. Here, we used two different in-

stances of the same classification loss. So, for a given image

the multi-scale loss function can be defined as follows:

Ltotal =

N∑

n=1

[LXE(Y
g
n , Y ) + λ ∗ LXE(Y

l
n, Y )] (8)

where LXE represents classification loss for N training

samples. Y g
n denotes predicted label from the probability

distribution of global image GI and correspondingly Y l
n de-

notes the probability distribution of patch representation of

local stream LI . Y is the ground truth label vector for nth

training image. λ controls the amount of patch representa-

tion’s influence on global representation. The specific clas-

sification loss used is the cross-entropy loss given by:

LXE(Y
g
n , Y ) = −

C∑

k=1

Y klogY g
n , (9)

where C denotes the total number of classes. Such a design

helps the network to learn both global and region-based lo-

cal patch representative features simultaneously.

3.3. Joint Representation

Once the network is trained end-to-end, we obtain two

feature representations of an image I, one from the global

stream GI and another from the local stream LI. These de-

scriptors are global and finer part-attention region represen-

tations. Hence, to boost the performance we merge the fea-

ture output from two-stream to evaluate the performance on

the test set. The merge is weighted is the same way as the

losses of both streams are weighted.

4. Experiment Results

4.1. Implementation Details

Datasets We evaluated the usability and interpretability

of our network on the following two datasets:

• CUB200-2011[33] is one of the most used fine-

grained classification dataset with 11,788 images from

200 classes. We followed the conventional split with

5,994 training images and 5,794 test images.



• Stanford Dogs[14] contains 120 breeds of dogs taken

from ImageNet. It has 20,580 images from 120 classes

with 12000 training images and 8,580 test images.

Architectures We initialize the Convolutional Neural

Network of both the stream with ImageNet pre-trained

VGG network [30]. We do not use any part annotation or

bounding box information. We obtained patches of an im-

age by following the procedure in [32]. Both the streams are

trained end-to-end simultaneously. Implementation details

of streams are as follows:

• Global Stream We have followed the standard prac-

tice as per the literature. The input to the global CNN

is 448 x 448 image. To reduce computation, we re-

moved the fully connected layer from the classifier

layer of VGG19 [30] and replace them with Global Av-

erage Pooling (GAP) layer [20]. The classifier layer is

a randomly initialized single fully-connected layer.

• Local Stream The output of the weakly supervised

network is a set of multiple patches for an im-

age. These patches have varying spatial dimensions.

Hence, before passing into local stream’s CNN it is re-

sized to 224 x 224. Then, the patch is passed through

a pre-trained VGG19 [30] network. All the layers af-

ter conv5 4 are removed. Therefore the output of the

network is a feature map of 512 x 14 x 14. The feature

map is passed through another Global Average Pool-

ing (GAP) layer to output a 512 -dimensional feature.

This feature vector is passed through stacked-LSTMs

with a hidden size of 512. Note that the input feature

is the same across all the time-steps of LSTM hence it

is computed only once. The number of time steps used

is 10. The output of each step is fed to the attention

layer which creates a soft-score based on equation 5.

These scores are weight-multiplied with LSTM’s fea-

tures and summed to produce a representative feature

of the same dimension as hidden layer (512). Finally,

two fully-connected layers are used to change the 512
dimensions to the number of classes in datasets (200 in

CUB200-2011 and 120 in Stanford dogs).

End-to-end training of both streams proceeds with

global and local stream having softmax with cross-

entropy losses with weight 1.0 and 1.0 respectively.

At test time, these softmax layers are removed and the

prediction is based on the same weighted combination

of these two streams.

4.2. Visualization and Analysis

Attention Areas: Insights into the behavior of the local

branch can be obtained by visualizing the features of the

attention layer and drawing the attention heatmap around

the attended regions within the patch. We ran Grad-CAM

[28] on the output of the local stream to visualize the finer

attended region within the patch.

Figure 3. The diagram shows the image regions of the patch con-

sidered to be important via [28] by each of the 10 hidden repre-

sentations of LSTMs for its prediction. As evident in the diagram,

the attention regions in the patch become finer as we increase the

number of time steps from 1 to 10.

Table 1. It shows the accuracy for our network over baseline for

CUB200-2011 dataset[33]

Model Accuracy(%)

VGG19 [30] 77.8
VGG19 + local-stream 79.6

The effect of hidden representations of LSTMs from var-

ious time-steps is shown in figure 3. Using Grad-CAM,

[28] we can see the part of the image a time step’s hid-

den representation attends to. Aligning with our motivation

we can see that the attention in heatmap goes finer as we

go further from the initial time step. As seen in figure 3 ,

the hidden representations in initial LSTMs focus on much

broader areas of the patch, but as we recurrently pass the

patch through the deeper LSTM cells the attention becomes

finer and more discriminative. Moreover, in some cases 3

the attention spans changes from generic regions like the

whole face to more subtle variations present in ears, feather,

beak. This also shows that the representations at higher time

steps are more discriminative producing higher responses.

Further, the simplicity of the module makes it possible

to use it as a plug-n-play module. The local stream can

be attached to any network which will be helpful to visu-

alize how the network is attending to the various region of

an image. It helps to inject interpretability and get a better

understanding of the network evident from figure 3 . Also,

we gain a boost in classification accuracy over the standard

baseline as tabulated in Table 1 for CUB200 dataset and Ta-

ble in 2 for Stanford dogs dataset.

Quantitatively, we tried to analyze the relationship be-

tween the level of finer details and being discriminative

among the classes in table 3. As evident from the table,

the feature representations of finer details become less dis-

criminative as we pass it through more recurrent layers. We



processed a single patch repetitively and it started to overfit

the finer details.

Table 2. It shows the accuracy for our network over baseline for

Stanford Dogs dataset[14]

Model Accuracy(%)

VGG19 [30] 77.2
VGG19 + local-stream 78.7

Table 3. Accuracy of fine detail representative feature at different

time step t of LSTM

Feature at time step (t) Accuracy(%)

1 78.90
2 79.22
3 79.23

4 79.11
5 79.04
6 79.09
7 79.08
8 79.03
9 79.03
10 79.04

Table 4. Effect of increasing LSTMs time step on classification

accuracy for CUB200-2011 dataset[33]

Model Accuracy(%)

VGG19 [30] 77.80
VGG19 + local-stream(CNN only) 77.79

VGG19 + local-stream(CNN + LSTM) 78.20
VGG19 + local-stream(CNN + LSTM + attention) 79.60

4.3. Ablation Study

We conducted the ablation studies to show how each

component individually boost the accuracy of the overall

model.

Effect of network components on classification As

shown in Table 4, the presence of only Convolutional Neu-

ral Network in the local-stream doesn’t add much perfor-

mance benefit. Further, a stacked-LSTM layer is added in

the local-stream. Here, the local-stream is trained using

cross-entropy losses on the outputs of all the time steps.

During inference, we only consider the output of the final

step. This addition of the stacked-LSTM layer boosts the

performance by a significant margin (∼1%) , indicating the

finer details are highly discriminative. Moreover, the atten-

tion layer provides extra gain to reach much better perfor-

Table 5. Effect of feature summation vs attention on CUB200-

2011 dataset [33]. ’∼’ denotes the summation of all the features

between specific time steps.

Feature Summation Accuracy(%)

1 78.90
1 ∼ 2 78.78
1 ∼ 3 79.18
1 ∼ 4 78.75
1 ∼ 5 77.04
1 ∼ 6 75.32
1 ∼ 7 72.97
1 ∼ 8 71.01
1 ∼ 9 69.21
1 ∼ 10 67.64

Attention 79.60

mance showing the effectiveness of weighted aggregation

of the finer features.

Attention vs Summation We investigate the effect and

importance of attention in the local-stream of the network,

we tried to replace the attention layer with a simple sum-

mation of features. Table 5 shows the result of an exper-

iment comparing simple summation of features from time

step 1 to 10 with the attention layer. The results validate the

claim that simple summing doesn’t help to boost the accu-

racy while the attention layer explicitly learns the weights

for each feature at the time steps. This helps the network to

focus on the finer details which is most discriminative.

4.4. Hyperparameter Setting For Time Steps

We tried to see how the number of steps affects the over-

all classification accuracy of the network. We ran the net-

work on CUB200-2011 dataset with different number of

time steps in each run and recorded the results in Table 6

This shows that adding more time step does not necessarily

Table 6. Effect of increasing LSTMs time step on the classification

accuracy for CUB200-2011 dataset[33]

Time Steps Accuracy(%)

5 77.72
10 79.60

15 79.12
20 79.34
25 78.98

increase the performance of the network. The results also

align well with figure 3 showing diminishing difference in

fine attention towards the end of the recurrent time steps.



5. Conclusion

In this paper, we propose a simple recurrent attention

based module that extracts finer details from the image pro-

viding more discriminative features for fine-grained classi-

fication. The local stream of whole architecture aggregates

these fine details into a representative and complementary

feature vector. The proposed method does not need bound-

ing box/part annotation for training and can be trained end-

to-end. Moreover, the simplicity of the module makes it a

plug-n-play module, thus, increasing its usability. Through

the ablation study, we also show the effectiveness of each

part of the network. Additionally, the interpretable nature

of the module makes it easy to visualize learned discrimi-

native patches.
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