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Abstract

In this paper, we address the insufficiency of the popu-

lar atmospheric scattering model (ASM) used in the image

dehazing problem. Unlike ASM assumes the global uniform

atmospheric light and attenuation coefficients and thus of-

ten introduces unrealistic color after dehazing, we propose

a novel dehazing model by relaxing the global uniform at-

mospheric assumption to local with additional color con-

straints to ensure more appealing and realistic dehazed re-

sults. More precisely, we make the modeling process as

an optimization problem, whose cost function is composed

of color constraint, local smooth of transmission map and

atmospheric light. Consequently, we are able to generate

more realistic dehazed images comparing to ASM, imply-

ing that deep neural networks trained with these samples

could effectively learn how to dehaze images of complicated

cases, especially when the global atmospheric assumption

fails. Our extensive experimental studies also confirm that

the proposed dehazing model outperforms the state-of-the-

art methods by a noticeable margin on all three public

benchmarks including HazeRD, RESIDE, and O-HAZE in

terms of SSIM and PSNR.

1. Introduction

Haze is an atmospheric phenomenon whereby dust,

smoke, and/or dry particles reduce the visibility of a scene

and degrade image quality. As a result, only parts of the

light spectrum can be received by a camera, and the cam-

era’s incoming light also inevitably blends with light rays

reflected by particles. In other words, haze could severely

impact the contrast and color of a captured image, and thus

not only largely reduces the visibility of scenes and objects

for human, but also negatively affects the performance of

millions of computer vision systems all around the world,

including but not limited to face recognition, text detection,

object detection, pedestrian detection, action recognition,

person re-identification [6, 37, 13, 19]. It is therefore an

important vision task that has attracted many researchers to

∗corresponding author

Hazy input DCP [10]

GridDehazeNet [18] Our result

Figure 1. Visual comparisons on a challenging real-world hazy

example. Traditional methods (e.g., DCP [10] and GridDe-

hazeNet [18]) usually ignore the relation between the colors in

dehazed result and colors in natural clean images, which leads to

color distortion in dehazed results. The sky area of DCP contains

noise and color distortion. The road area of GridDehazeNet con-

tains haze. In contrast, our method effectively utilizes the relation

well and maxes the prohibition of colors appeared in haze-free col-

ors, which is able to remove color distortion and thus generate a

much clearer image.
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study on it [39, 40, 24].

The most commonly used atmospheric scattering model

(ASM) for image dehazing is a linear degradation model

defined as follows [33, 34, 21]:

I (x) = J (x) t (x) +A (1− t (x)) , (1)

where I (x) represents the observed hazy pixel at location

x, J (x) denotes the corresponding haze-free radiance to be

recovered, A is the global atmospheric light, and t (x) is the

transmission map.

As one can see, only I(x) in the ASM model (1) is

known, and thus one needs extra knowledge about atmo-

spheric light A and transmission map t(x) to solve J(x).
Depending on whether or not estimate A and t(x) directly,

image dehazing method can be roughly classified into two

families – prior-based and learning-based methods.

Prior-based image dehazing. Sharp image prior-based

dehazing methods require a variable clue to estimate A and

t(x), and thus recover J(x) according to Eq. (1). For exam-

ple, Based the observation that haze reduces contrast in the

image, Tan [29] maximized the contrast in the dehazed im-

age to remove haze. Based on the assumption that the shad-

ing and transmission functions are locally statistically un-

correlated, Fattal et al. [7] proposed a physically grounded

method accounting for surface shading in addition to the

transmission function. He et al. relied on the empirical

statistics obtained by experimenting with haze-free images

and proposed a dark channel prior (DCP), which indicates

that at least one color channel has some pixels with very low

intensities in most of the haze-free patches. Based on the

DCP, He et al. proposed a method to estimate air-light and

transmission map. Other authors [20, 30] have proposed de-

hazing methods based on DCP due to its ability for dehaz-

ing. For example, Meng et al. [20] proposed an extension to

the DCP to estimate the initial transmission map and impose

local transmission smoothing via L1-norm based contextual

regularization. Based the assumption that pixels will form a

line in a local haze-free image patch in the RGB space, Fat-

tal proposed a color-line method. Based on the observation

that a haze-free image can approximated with a few hun-

dred distinct colors, Berman et al. [4] proposed a non-local

dehazing method. However, all these methods ignore the

relation between the pixels of dehazed result and haze-free

images, which results in color distortion. As shown in Fig-

ure 1, we can see that the sky area of DCP dehazed result

tend to boost noise and shown some color distortion.

Learning-based image dehazing. Recently, some learning

based dehazing approaches [11, 38] directly estimates es-

timate A and t(x), and J(x) from synthetic hazy dataset.

Due to the success of traditional methods [9, 29], Tang

et al. [30] proposed a method for combining the four haze-

relevant features (e.g., dark channel, max contrast, hue dis-

parity, and color attenuation) with Random Forests to esti-

mate the transmission map. On the other hand, capitalizing

on the linear relationship between the scene depth and color

attenuation, Zhu et al. created a linear model for estimat-

ing scene depth and learning the model parameters through

a supervised method. Due to the successful CNN applica-

tion in many vision tasks [25, 26, 15, 32, 35], several CNN-

based dehazing methods [5, 22] have been proposed. For

example, Cai et al. [5] introduced a CNN-based method that

can be applied for establishing the relationships between

hazy images and transmission maps. Ren et al. improved

the transmission map accuracy by adopting a multi-scale

network, which first estimates a coarse-scale transmission

map via a large network and refines the obtained results

via a small network. On the other hand, Li et al. [11]

developed a dehazing model by reformatting the scattering

model and incorporating the transmission map and the at-

mospheric light into one new variable. Ren et al. [23] pro-

posed a method which employs deep learning to fuse three

images derived from input to generate a haze-free image. In

other work, Zhang et al. [38] incorporated scattering model

into a deep learning network in order to achieve end-to-end

dehazing. Conditional GAN [14] has also been employed to

improve the dehazing quality. First, learning-based methods

learn features from synthetic hazy dataset, which is simu-

lated using the simplified atmospheric scattering model. If

the simplified atmospheric scattering model cannot hold for

real hazy image, the dehazed result of learning-based meth-

ods is poor. As shown in Figure 1, the dehazed result of

GridDehazeNet cannot remove haze well. In contrast, our

method can achieve better dehazing with visually pleased

results without any artifacts.

Despite the ASM is very popular in the image dehazing

community, it suffers two major drawbacks: 1) the uniform

atmospheric light A of may fail on real hazy images, espe-

cially for those are taken under complex weather conditions

or scenes (see Fig. 1), and 2) it has no controls over the

resulting colors in a dehazed image. In this paper, we ad-

dress the both drawbacks in a single dehazing model. More

precisely, we propose a generalized ASM model as follows,

I(x) = J(x)t(x) +A(x)(1− t(x)) (2)

where we no longer force A to be a constant to represent the

atmospheric light distortion for all pixels on an image, but

make it an pixel location dependent coefficient A(x) to bet-

ter approximate the real-scenarios, and we also put explicit

color-constraints that penalize the use of uncommon colors

in a dehazed image.

The rest of the paper is organized as follows: Sec. 2

introduces the proposed color-constraint dehazing model;



Sec. 3 discusses the use of proposed dehazing model to gen-

erate high quality dehazed images for deep learning; and

Sec. 4 compares the proposed method against various the

state-of-the-arts image dehazing algorithms; and we con-

clude the paper in Sec 5.

2. Proposed Color-constrained Dehazing

2.1. Problem Formulation

In order to improve the ASM defined in Eq. (1), we pro-

pose a new model that penalizes unrealistic colors on the

local atmospheric scattering model. The proposed model

considers the color distribution, as well as local smoothing

of atmospheric light and transmission map jointly.

More precisely, we restore a hazed image by optimizing

the Eq. (3),

min
J̄

{−C(J̄)/T + λ1||∇t||1 + λ2||∇A||1}

s.t. I(x) = J(x)t(x) +A(x)(1− t(x))
(3)

where J̄ denotes the dehazed result, and T is the number of

pixels in the hazy input image. And we explain the three

terms in the target function one by one.

The first term C(J̄) is the color constraint defined in (4)

C(J̄) =
∑

x

log Pr(J̄(x) = [r, g, b]|Real) (4)

where Pr([r, g, b]|Real) indicates of probability seeing a de-

hazed [r, g, b] value in the haze-free image. In practice,

we estimate this distribution from 1 million haze-free im-

ages. Surprisingly, although RGB color spaces can repre-

sent 16,581,375 colors, only 2.8M colors are found in the

natural haze-free images with the probability greater than

1e-5.

The second term ||∇t||1 and third ||∇A||1 denote the to-

tal variation regularization on the transmission and atmo-

spheric light map. Please note that a local image the depth

is often smooth [8] indicating that the transmission map in a

nature image should also be smoothed. Moreover, the atmo-

spheric light A is used as a map instead of a global constant.

As mentioned earlier, we apply this change to alleviate the

problem of uniform atmospheric light [30] in ASM. Since

natural atmospheric light also changes smoothly, we also

apply the total variation regularization to this term. Finally,

λ1 and λ2 control the relative importance of the regulariza-

tion for each term.

2.2. Solver

As the traditional gradient descent or other discrete op-

timization methods are not effective when applied to the

joint optimized problem, we propose a two-step method

to optimize Eq. (3), which divides the problem into solve

{−C(J̄)/T} and smoothing of the transmission map and

atmospheric light.

In the first step, the dehazed pixels are projected to haze-

free color space, after which the transmission map and at-

mospheric light are smoothed. Consequently, the proposed

method is an approximation of Eq. (3), making the problem

easier to solve while maximizing the number of pixels pro-

jected to the haze-free color space and retaining the smooth-

ness of the transmission map and atmospheric light. The

solver components, namely hazy pixel cluster, color line

cluster and smoothing of transmission map and atmospheric

light, are presented below.

Hazy pixel cluster is used to reduce the computation

time and ensure that the number of dehazed pixels is sim-

ilar to that in the hazy domain. As objects tend to show

multi-scale sizes, using one network would not yield opti-

mal results. The dehazing result produced by CNN tends to

show color inconsistencies. Consequently, hazy pixel clus-

ter is used to capture non-local information and use it to re-

cover the color consistently. Furthermore, hazy pixel clus-

ter limits the number of hazy pixels being projected to large

distance, which may reduce the dehazing performance. Fur-

thermore, the pixels belonging to the same hazy pixel clus-

ter should have similar transmission map and similar ap-

pearance in the final dehazed result.

Haze-free candidate select line cluster is used to reduce

the computation time and find the candidate haze-free pixels

for a special haze-free candidate select line (HCSL) cluster.

Haze-line [4] has previously been used for dehazing and is a

special case of haze-free candidate select line. In this work,

we use haze-free candidate select line to determine which

haze-free pixels can be used as the final dehazed result for

a hazy pixel. As hazy image may contain one billion pix-

els, computing haze-free pixel candidate for each pixel is

inefficient. Counter to the strategy adopted in [4], haze-free

candidate select line used in the present study is determined

by haze-pixel in I and the corresponding estimated haze-

free pixel. Moreover, all haze-free candidate select lines

are clustered to 1, 000 haze-free candidate select lines. For

each HCSL cluster, we find the haze-free pixels, whereby a

haze-free pixel is assigned to a HCSL cluster only if the dis-

tance to one of the HCSL cluster is smaller than the prede-

fined threshold τ . Haze-free pixels often distribute around

the distance areas from A, whereby τ adaptively depends

on the distance between I(x) and Ĵ(x) to allow for small

intensity variations, as indicated below:

τ =
||Ĵ(x)− I(x)||1

λ0

, (5)

where Ĵ is the network output or other results of dehaz-

ing methods. In our experiments, we find λ0 = 50 can

include possible haze-free pixels for all HCSL in a cluster.

For each hazy pixel in hazy image, we find the haze-free



Figure 2. The steps to refine the color of dehazed pixel and atmospheric light for a hazy pixel. The first step is to find the nearest color to

the line formed by the estimated haze-free pixel and hazy pixel in original hazy image. The second step is to refine the line, which will

be used to find the atmospheric light. According to the new line, we find the atmospheric light, which lie at the line formed by the refined

haze-free pixel and hazy pixel. Our refine module can help the dehazing methods obtain natural dehazed result.

candidate select line and then find the candidate haze-free

pixels according to HCSL cluster. After obtaining the haze-

free pixel, if the atmospheric light does hold for line com-

bination of haze-free pixel and hazy pixel, we correct this

situation by haze-free pixel and hazy pixel. After obtain-

ing the atmospheric light map, we compute the transmission

map. We show this process in Figure 2. The estimation of

transmission map and atmospheric light is performed per-

pixel, without imposing any spatial coherency conditions.

As the air condition of local area in a local image patch is

change smoothly, we next apply regularization on both the

transmission map and atmospheric light.

Algorithm In this part, we describe the proposed al-

gorithm in detail. Our solver assumes the A and Ĵ has

obtained by deep learning-based or prior-based dehazing

methods, which can be treated as a refine module for prior

dehazing methods. In the first step, we project the dehazed

pixel to a haze-free color space by finding the nearest color

to the line formed by dehazed pixel and hazy pixel in RGB

space, the result is denoted by Ĵ(x). Next, we estimate the

atmospheric light using the following expression:

Â(x) = I(x)− (Ĵ(x)− I(x))||I(x)−A(x)||1. (6)

The transmission map is subsequently calculated by apply-

ing the expression below:

t̂(x) =
||I(x)−A(x)||1

||Ĵ(x)−A(x)||1
. (7)

After obtaining the Â and t̂, we correct the outliers by hazy

pixels cluster.

Next, we smooth the transmission and atmospheric light

while retaining the edge in the hazy input image by mini-

mizing the following two functions:

∑

x

[Ā(x)− Â(x)]2 + λ1

∑

x

∑

y∈Nx

[Ā(x)− Â(y)]2

||Ī(x)− Î(y)||
. (8)

∑

x

[t̄(x)− t̂(x)]2 + λ2

∑

x

∑

y∈Nx

[t̄(x)− t̂(y)]2

||Ī(x)− Î(y)||
. (9)

Finally, we recover the dehazing result via the following

expression:

J(x) =
I(x)− Ā(x)

t̄(x)
+ Ā(x) (10)

Algorithm 1 provides a summary of all steps included in

the proposed model, which can be used to refine the dehazed

result of traditional or learning-based dehazing methods.



(a) Hazy input (b) Initial result (c) Final airlight (d) Final transmission (e) Our result

Figure 3. (a) Visual example of the model performance when applied to a challenging real-world hazy image. (b) The output of network

containing haze. (c) The final atmoshperic light used to recover the haze-free scene. (d) The final transmission map used to recover the

haze-free scene. (e) The final dehazing result based on the original image.

Algorithm 1 The proposed single image dehazing frame-

work.

Input: The hazy image.

Output: The final haze free image.

1: Obtain the initial dehazed result Ĵ and atmospheric

light using CNN or other traditional methods.

2: Compute the haze-free candidate select line formed by

hazy pixel and corresponding dehazed pixel and cluster

the lines

3: Find the haze-free pixels for the haze-free candidate se-

lect line cluster

4: error = mean(abs(Ĵ − I))
5: while error > 0.05 do

6: Replace the dehazed pixels with a haze-free pixel

nearest to the haze-free candidate select line

7: Compute the atmospheric light A using Eq. 6

8: Compute the transmission map according to Eq. 7

9: Refine the atmospheric light and transmission map

using hazy pixel cluster, which makes sure that pixels

in same hazy pixel cluster have similar atmospheric

light and transmission.

10: Smoothen the transmission map and atmospheric

light

11: Recover the final dehazed result J according to

Eq. 10

12: error = mean(abs(J − Ĵ))
13: end while

2.3. Discussion

Our HCSL process differs from the haze-line [4] in sev-

eral aspects – First, haze-line will project the pixel on the

same line to the farthest pixel, while HCSL finds the most

likely one from the prior haze-free pixel distribution. Sec-

ond, haze-line is determined by atmospheric light and hazy

pixel, whereas HCSL is determined by hazy pixel and esti-

mated clean pixel. Moreover, the final dehazed pixel is de-

termined by the nearest haze-free pixel, which will help to

avoid color distortion. Thirdly, as stated in [3], the boundary

constraint of the transmission map (Eq. (11)) cannot hold

after regularization. Our method can keep the boundary

constraint well and it is based on the haze-free pixel near-

Figure 4. Architecture of the proposed networks that can be used

to estimate the transmission map, atmospheric light and dehazed

image. All estimators share similar architecture, while the output

layer tends to vary.

est to the line formed by the hazy pixel and the predicted

haze-free pixel.

tLB = 1− min
c∈{R,G,B}

Ic(x)

Ac(x)
(11)

3. Semi-supervised Dehazing Model

The proposed model can be used to develop a semi-

supervised dehazing model, which could reduce the infer-

ence time. For this purpose, we use three networks to model

the three variables (atmospheric light, transmission map and

haze-free image) in Eq. (3). We first train the three net-

works using synthetic datasets. After training the network

for 10 epochs, we apply the trained model to obtain the at-

mospheric light, transmission map and haze-free image of

natural hazy images and then refine the output of networks

using the refine module. According to Eq. (3), we propose a

new loss function to train the networks as shown in Eq. (12),

which is composed of four terms – the reconstruction loss

of hazy image, the smoothing loss of transmission map, the

smoothing loss of atmospheric light and the reconstruction

loss of the haze-free image Ĵ .

L = Lrec(Ī , I) + λ1||∇t||1 + λ2||∇A||1}+ λ3Lrec(J̄ , Ĵ),
(12)

where I is the hazy image, Ĵ is the refined result of the haze-

free estimating network using (3), and Ī can be defined as



follows:

Ī = J̄ t̄+ Ā(1− t̄), (13)

where t̄ is the transmission map estimating network output,

J̄ is the haze-free estimating network output, and Ā is the

output of atmospheric light estimating network. Lrec(Ī , I)
is the reconstruction loss, which can be defined as follows

Lrec(Ī , I) = ||Ī − I||1. (14)

Figure 4 illustrates the proposed training procedure

of obtaining initial and refined transmission maps, atmo-

spheric light and haze-free images. Intermediate and fi-

nal dehazing results can be found Figure 3. As previously

noted, conventional ASM-based CNN solutions encounters

difficulties when applying to real hazy images (see Figure 4-

(b)). The proposed method relies on haze-free pixels to

guide the dehazing procedure and can penalize the haze-

free pixels to be unrealistic, and thus mitigate the color dis-

tortion issue.

3.1. Implementation Details

The proposed model was trained on simulated hazy im-

ages using the NYU indoor dataset [27], which has been

used to simulate hazy images for training CNN-based mod-

els [23, 11, 38]. During training, we use the adam optimizer

with the learning rate 1e − 4. After training our model for

10 epochs, we further fine-tune it for 40 epochs on natural

hazy images [12]. When fine-tuning the model, we apply

our refine module to refine the output of networks, and then

training the networks using the new loss (12) on simulated

hazy images and natural hazy images. We obtained haze-

free pixels from haze-free images from coco dataset [16], to

ensure that the colors in dehazed results produced by the de-

hazing process result in haze-free colors. We set λ1 = 0.01,

λ2 = 0.005 and λ3 = 0.1. The remaining results of the pro-

posed method are based on semi-supervised learning. The

natural hazy images (RTTS) were obtained from the RE-

SIDE dataset [12]. We used RTTS to train our model are

excluded from test hazy images.

4. Experiments

In this section, we quantitatively and qualitatively evalu-

ate our method against eleven classic or state-of-the-art de-

hazing methods namely, DCP [10], BCCR [20], CAP [42],

NLD [4], DehazeNet [5], MSCNN [22], AOD-Net [11],

GFN [23], DCPDN [38], and PDNet [36], using both syn-

thetic and real-world hazy images.

4.1. Quantitative Evaluation

Due to the absence of ground truths for natural hazy im-

ages, synthetic datasets have been used to evaluate the per-

formance of dehazing methods [2, 12]. Synthetic indoor

hazy datasets are mostly used for this purpose due to the

development of CNN depth estimation. High-quality depth

map has been provided to synthesize hazy images [41].

However, we chose to evaluate our method on three syn-

thetic outdoor hazy datasets to better demonstrate its per-

formance [41, 12, 1].

Evaluations Based on the HazeRD dataset. The HazeRD

dataset [41] provides natural outdoor images with high-

quality depth map, which allows for simulating more re-

alistic haze. As none of the CNN-based methods include

images in HazeRD as training data, using this dataset would

yield a fair comparison. As shown in Table 1, the proposed

method achieves the highest PSNR and SSIM on the Haz-

eRD testing data, and exceeds the suboptimal method (i.e.,

PDNet [36]) by up to 2.06 dB and 0.01 in terms of PSNR

and SSIM, respectively.

Evaluations Based on the RESIDE dataset. We also eval-

uated the proposed model on the Synthetic Objective Test-

ing Set (SOTS) obtained from the RESIDE dataset [12].

This test dataset contains 500 outdoor hazy images synthe-

sized from natural outdoor images. The depth of natural

images was estimated using the CNN model [17]. From Ta-

ble 2, it is evident that our model again outperforms other

dehazing methods in terms of the PSNR and SSIM.

Evaluation on the O-HAZE dataset. We have evaluated

the proposed model on synthesized hazy image datasets,

which are simulated using a simplified optical model. To

further show the ability of the proposed model, we evalu-

ate our model on the O-HAZE dataset [1], which generates

haze using a professional haze machine that simulates with

high fidelity real hazy conditions. As shown in Table 3, we

can see that our model achieve highest performance in terms

of PSNR and SSIM.

4.2. Qualitative Evaluation

Natural hazy images captured in bad weather are usu-

ally complex due to diverse lighting conditions and multi-

ple scattering effects. We thus qualitatively evaluated the

proposed method by applying it on the natural hazy images

from [30]. Figure 5 shows several real-world hazy images

and the dehazed results obtained by the proposed method

and state-of-the-art dehazing methods [10, 31, 20, 30, 42,

28, 5, 22, 4, 38, 23]. It is evident that the traditional de-

hazing methods, including FVR [31] and ATM [28], fail to

remove haze well and tend to produce color distortions, as

shown in Figure 5(c) and 5(g). In addition, the approaches

based on image priors DCP [10], BCCR [20], and NLD [4]

tend to overestimate the haze concentration and thus gen-

erate darker results than those yielded by the rest meth-

ods, because priors may fail on some real hazy images (see

the large white areas for DCP). It should be noted that, in

some prior works [5, 22, 38], the authors developed CNN-

based methods for transmission map estimation, applying



(a) Hazy input (b) DCP (c) FVR (d) BCCR (e) RF (f) CAP (g) ATM

(h) DehazeNet (i) MSCNN (j) NLD (k) AOD-Net (l) DCPDN (m) GFN (n) Our

(a) Hazy input (b) DCP (c) FVR (d) BCCR (e) RF (f) CAP (g) ATM

(h) DehazeNet (i) MSCNN (j) NLD (k) AOD-Net (l) DCPDN (m) GFN (n) Our

Figure 5. Qualitative evaluations on the real hazy images. The proposed method generates much clearer images with clearer structures and

characters.

(a) Input (b) AOD-Net (c) DCPDN (d) GFN (e) PDNet (f) CGAN (g) Our results

Figure 6. Qualitative evaluation on the natural hazy image.

Table 1. Average PSNR/SSIM of dehazed results on the HazeRD dataset.

DCP BCCR CAP NLD MSCNN DehazeNet AOD-Net DCPDN GFN PDNet Ours

PSNR 17.66 16.31 18.56 18.82 19.10 19.53 18.13 18.82 19.18 20.14 22.20

SSIM 0.84 0.83 0.83 0.84 0.85 0.85 0.83 0.89 0.86 0.89 0.90

Table 2. Average PSNR and SSIM of dehazed results on the outdoor SOTS test data from the RESIDE dataset.

DCP BCCR CAP NLD MSCNN DehazeNet AOD-Net DCPDN GFN PDNet Ours

PSNR 19.13 15.08 22.27 16.85 18.64 22.46 19.06 19.93 21.55 20.89 24.52

SSIM 0.81 0.74 0.90 0.78 0.82 0.85 0.88 0.84 0.84 0.85 0.92

Table 3. Quantitative evaluation on the O-HAZE dataset [1].

DCP BCCR CAP NLD MSCNN DehazeNet AOD-Net DCPDN GFN PDNet Ours

PSNR 16.59 17.44 17.62 16.61 19.07 16.21 16.72 15.62 18.30 18.52 19.29

SSIM 0.74 0.75 0.71 0.75 0.77 0.67 0.68 0.62 0.72 0.75 0.78



the conventional atmospheric model given by Eq. (1) to

generate final haze-free images. However, due to the im-

perfectly estimated transmission maps, the final recovered

images produced by these methods contain haze and gen-

erate some artifacts (see Figure 5(i) and (l)). Furthermore,

the end-to-end deep learning networks proposed in [11, 23]

rely on CNNs to directly estimate clear images from hazy

images. However, these methods fail to generate clean im-

ages, as shown in Figure 5(k) and (m), as the assumption

used to generate the training dataset is not satisfied for really

hazy images. Unlike the aforementioned methods, the pro-

posed method utilizes the information obtained from haze-

free pixels, as well as alleviates the traditional atmospheric

constraint given by Eq. (1). Thus, it not only removes haze

well, but also reduces the potential artifacts and color distor-

tions. It can be seen from Figure 5(n) that the images gen-

erated by our model are much clearer than those generated

by other algorithms, as the proposed model can deal with

dense hazy images and avoids color distortion and over-

enhancement.

We further compare our method with five state-of-the-art

methods [11, 38, 23, 36, 14] in Figure 6. As one can see,

the end-to-end learning-based methods fail to remove haze

well. For example, GFN tends to show color distortion as

shown in green square. AOD-Net tends to leave haze in

dehazed result. DCPDN can generate a better result than

AOD-Net. However, the result of DCPDN still contains

some haze. CGAN [14] and PDNet [36] cannot deal the

sky area well and leave haze in yellow square area. In con-

trast, our model can achieve better dehazing with visually

appealing results without any artifacts.

5. Conclusion

In this work, we introduced a novel color-constrained lo-

cal smooth atmospheric scattering model for single image

dehazing. This model is inspired by the observation that the

dehazed colors should be in the haze-free color distribution.

More specifically, the pixel RGB values of a dehazed im-

age should attain the same values as they are in a haze-free

image. To ensure that the dehazing result strictly follows

the physics-driven scattering model for dehazing, we incor-

porated local smoothing into our color-constrained dehaz-

ing model. Our model overcomes the problem of uniform

atmospheric light assumption and constructs relationships

between dehazed results and the haze-free color distribu-

tion. We also proposed a method for solving Eq.(3). As

our solver is an approximation of Eq. (3), it can be further

improved. In contrast to previous methods, our method can

reduce color artifacts by considering the haze-free distri-

bution with local atmospheric scattering model. Moreover,

unlike the learning-based methods, our method overcome

the assumption of three equal channels of atmospheric light

and uniform attenuation coefficient of the atmosphere. In

addition, we incorporated the model into a CNN frame-

work and proposed a semi-supervised CNN-based method.

Our extensive experiment results on both synthetic and real

datasets demonstrated that the proposed method outper-

formed the state-of-the-art dehazing methods. Additional

visual comparison results further confirmed the superiority

of the proposed method, which produced nearly haze-free

prediction with very little color distortion or dehazing arti-

facts.
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