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Abstract

Monitoring the occupancy of public sports facilities is

essential to assess their use and to motivate their construc-

tion in new places. In the case of a football field, the area to

cover is large, thus several regular cameras should be used,

which makes the setup expensive and complex. As an alter-

native, we developed a system that detects players from a

unique cheap and wide-angle fisheye camera assisted by a

single narrow-angle thermal camera. In this work, we train

a network in a knowledge distillation approach in which

the student and the teacher have different modalities and

a different view of the same scene. In particular, we de-

sign a custom data augmentation combined with a motion

detection algorithm to handle the training in the region of

the fisheye camera not covered by the thermal one. We

show that our solution is effective in detecting players on

the whole field filmed by the fisheye camera. We evaluate it

quantitatively and qualitatively in the case of an online dis-

tillation, where the student detects players in real time while

being continuously adapted to the latest video conditions.

1. Introduction

Local sports fields can be expensive to construct and

maintain, especially those built with artificial turf. There-

fore, it is important to monitor and then optimize the oc-

cupancy of existing fields and stadiums. Furthermore, an

automatic occupancy analysis method may open up new

possibilities within real-time information and booking. In

this work we propose a robust and cost-effective method for

player detection and counting in a football field.

(*) Denotes equal contributions. Code at https://github.com/

cioppaanthony/multimodal-multiview-distillation.

Figure 1: Illustration of the problem handled in this paper.

We leverage the detections made on a thermal image on a

part of the field to detect all the players on the whole field

on the fisheye image.

For robust video monitoring of outdoor football fields,

one main challenge is the size of the field. A field may

be covered by either several regular cameras, which makes

the setup rather complex and expensive, or it is possible to

use a camera with a wide field of view, such as a fisheye

camera. However, with a fisheye camera covering the en-

tire football field, the players will appear small and have

different orientation in the image due to the lens distortion.

Player detection on these types of images is therefore not

a trivial task. Another main challenge in outdoor environ-

ments is varying lighting conditions. Even though a football

field may be illuminated during nights, lighting conditions

will change during the day due to changing weather, posi-

tion of the sun, and the effect of artificial lighting. To avoid

problems with difficult lighting conditions, thermal cameras

may be considered. These cameras capture only thermal in-

frared radiation, which represents temperature in the scene,

hence they are more independent of lighting and normally

eases the task of person detection because people have a

1



temperature different from the background [14]. However,

thermal cameras are expensive and due to their limited field

of view and resolution, several cameras would be needed to

cover a football field.

To construct a camera setup that is reasonable in price

level and at the same time robust to changes in weather and

lighting conditions, we propose to use one fisheye RGB and

one thermal camera co-located at the side of the field. An

illustration of the setup and example images from the two

cameras are shown in Figure 1. Only the fisheye camera will

cover the entire field, while the detections obtained directly

from the thermal camera will serve to provide some kind of

ground truth for teaching a network.

There are two main contributions in this paper: (i) We

show how two different image modalities and fields of view

can be combined in a student-teacher distillation approach.

(ii) We show how a student network can be trained to detect

players outside the field of view of the teacher, through a

combination of a custom data augmentation process and a

motion detection algorithm.

2. Related work

Player detection in sports. Detection of players in sports

fields is the first step of vision systems for sports applica-

tions, like occupancy analysis, tracking, performance anal-

ysis, etc. [36]. Background subtraction based methods have

often been used for player detection due to the fast process-

ing time that makes it well-suited for real-time applications.

It has been applied for static cameras [1, 33] and for mov-

ing cameras in the case of uniformly colored surfaces [31].

However, noise should be expected due to, e.g., other mov-

ing objects, similar colors in foreground and background,

changing lighting conditions, and shadows. It has also been

proposed to use classic person detection methods like us-

ing the AdaBoost algorithm for training a linear classifier

with HOG features for detecting players in Australian Rules

Football [11], or similarly with AdaBoost and Haar features

for player detection in basketball [21] and baseball [26].

More recently, like for general object detection, CNN-

based methods have also been the dominant trend for de-

tecting sports players. In [34] a shallow CNN was trained

to detect players on a hockey field, while others use pre-

trained networks like Mask R-CNN for handball videos [30]

and basketball videos [41], or YOLO for handball videos

[6]. In [43] a reverse connected convolutional neural net-

work (RC-CNN) is proposed for player detection. The re-

verse connected modules are embedded into the CNN to

pass semantic information captured by deep layers back to

shallower layers.

Person detection in fisheye and thermal cameras. Fish-

eye cameras have been widely used for person detection

because of their advantage of wide viewing angle. Meth-

ods using a single camera setup have been reported for

surveillance [22, 23], automobiles [24], indoor environment

[35, 39] and outdoor sports field [19]. In these methods, the

setup was used for pedestrian detection, tracking and occu-

pancy analysis. Multiple camera setups are also proposed

to detect persons for similar applications [3, 28, 40]. How-

ever, the main disadvantages with fisheye cameras are the

distortion on the borders and the lower image quality in low

lighting conditions.

Thermal cameras have long been used in practice be-

cause of their efficiency in bad lighting conditions. The

range of applications varies from industrial uses to daily

life traffic and surveillance [14]. Various methods based

on thermal cameras have been proposed for person detec-

tion, such as feature extraction and threshold based methods

[9, 12, 13, 42], HOG methods [25, 37], machine learning

techniques [18] and deep neural networks [16, 17, 20]. A

dataset and a trained network for people detection on out-

door thermal images have been proposed in [20]. The disad-

vantage of thermal cameras is their expensive cost and their

reduced field of view.

In this work we will continue on recent trends to use a

CNN-based method for player detection. We aim to circum-

vent the limitations of both fisheye and thermal cameras, by

combining these modalities and teach the network for the

fisheye camera with detections from the thermal camera, in

a student-teacher distillation approach.

3. Data acquisition and calibration

Camera setup. The data used in this work consist of video

streams of two different cameras: a fisheye camera and a

thermal camera. Both cameras are installed on the same

pole at the side of a football field, as illustrated in Fig-

ure 1. The thermal camera is placed approximately 9.8 me-

ters above the ground and the fisheye camera is installed at

9.5 meters. By doing so, the field of view of the fisheye

camera covers the whole football field, whereas the thermal

camera covers the central area, as shown in Figure 1. In this

setup, the field of view of the thermal camera represents 6%
of the fisheye image, and covers 22% of the football field as

seen by the fisheye camera. Let us note that several teams

use the field simultaneously for a training session during the

video. Hence, the players are performing different activi-

ties, such as moving goals or performing various exercises.

Therefore, the players can be found in different postures in

any part of the field.

Acquisition. The fisheye video stream is recorded using

a Hikvision Fisheye Network Camera with a resolution of

1280 × 1280 pixels and a field of view of 360◦. The ther-

mal video stream is recorded using an Axis Q1922 camera

that has a resolution of 640 × 480 pixels and 57◦ of hori-

zontal viewing angle. The videos were recorded during one



Figure 2: Projection of the thermal image onto the fisheye

image. The thermal camera sees only ≈ 22% of the football

field pixels of the fisheye image.

hour in an amateur football field in December 2017, at night

time with artificial light illuminating the field. The fisheye

camera records the video at 12 fps. The thermal camera ini-

tially records the video at 30 fps, which is then re-sampled

at 12 fps to allow a synchronization of the two streams.

A proper camera calibration and registration between fish-

eye and thermal images is required for the transferability of

points of interest.

Calibration and registration. First, a calibration of the

internal parameters of each camera is performed following

the procedure described in [29]. For the thermal camera, an

A3-sized 10 mm polystyrene foam board is used as back-

drop and a board of the same size with cut-out squares is

used as checkerboard. In order to obtain a suitable con-

trast, the backdrop is heated and the checkerboard is placed

at room temperature before the calibration. For the fisheye

camera calibration, a checkerboard of 25 × 25 centimeters

is used. Finally, the camera parameters derived from the

calibration are obtained with a Matlab toolbox [4].

Second, we perform the registration between the two

cameras. We undistord the images of the cameras using

the internal parameters obtained previously. We manually

choose several points of interest on the undistorded foot-

ball field to compute the homography between the cameras,

following [27]. These points are player feet positions for

the players seen by the two cameras. The projection of the

thermal image onto the fisheye image is shown in Figure 2.

4. Methodology

Problem statement. A general formulation of the problem

tackled in this paper is the following. Given a network per-

forming a detection task on data from a camera, how can

we train a real-time network for the same detection task on

data from another camera with a possibly different modal-

ity and a different field of view of the same scene? In this

section, we describe our solution for this problem in general

terms, and we also explain how each step is particularized

for our practical use case. Our use case consists in the task

of player detection on a football field given a network able

to detect players on a fixed thermal camera with a narrow

field of view, which is used to train another detection net-

work on data from a fixed fisheye camera with a wide field

of view. This is illustrated in Figure 1.

Notations. We handle this problem with a teacher-student

distillation approach, in which the output of a trained

teacher network T serves as surrogate ground truth to train

a student network S (see [38] for a recent review). Such a

method has already been successfully applied in sports in

[7] for segmenting football and basketball players in real

time by distilling a slow T (Mask R-CNN [15]) into a

fast S (TinyNet [8]). In addition, in [7], the distillation is

performed in an online fashion, such that S continuously

adapts to the latest game conditions. However, T and S use

the same video feed, which implies that S can be directly

(no transformation needed) and entirely (no missing ground

truth) supervised by T .

In the present work, the setup is more challenging as T

and S process the video feeds of two cameras CT and CS

with different modalities and fields of view. Having dif-

ferent modalities prevents us from using T on the feed of

CS , and having different fields of view prevents us from di-

rectly and entirely supervising S . We assume that CT and

CS are synchronized, such that they capture frames CT (t)
and CS(t) simultaneously at each capture time t. We also

assume that the projection from CT (t) to CS(t), expressed

in terms of pixel coordinates, is known from the preliminary

calibration step explained in the previous section. We note

P the area of CS(t) representing the projection on CS(t) of

the part of the scene also filmed by CT (shown in Figure 3).

The remaining part of CS(t) is filmed by CS only and is

noted P. As both cameras are fixed, this partition of CS(t)
is independent of t.

In order to train S , we need surrogate ground-truth

bounding boxes both in P and in P. We detail hereafter how

we obtain such boxes in CS(t) for a given capture time t.

Following common practice, we represent a bounding box

coordinates by a quadruplet containing the two coordinates

of the center of the box, its width and its height.

Surrogate ground truths in P. This part is straightforward.

First, we use T to detect players in CT (t) and retrieve the



Figure 3: The bounding boxes given by T on CT (t) (a) are

projected (b) into CS(t) to provide us surrogate ground-truth

bounding boxes in P (c).

coordinates of bounding boxes of CT (t). Then, we project

them into CS(t) using the calibration of the previous sec-

tion. By doing so, we obtain the surrogate ground-truth

bounding boxes of CS(t) that are located in P, as shown in

Figure 3. The remaining part of P constitutes detection-free

areas.

Surrogate ground truths in P. This part is more difficult

as we cannot have a direct access to the pixels of P from

those of CT (t). Training S solely with the boxes provided

in P for each CS(t) leads the network to focus only on P

and to overlook P for each frame. Eventually, the network

is not able to detect anything in P.

To circumvent this problem, our idea is the following.

First, we use a custom data augmentation process to cre-

ate artificial players with known bounding boxes in P. This

provides us the “ground-truth locations” of some “true posi-

tive” players that S will have to detect. This is not sufficient

as we still need “ground-truth information” in areas where

we did not create any player. For that purpose, we use a

motion detection algorithm to identify areas of P that are

guaranteed player-free. This provides us “true negative” ar-

eas, in which S will be penalized when predicting player

bounding boxes. In the remaining areas of P, we have no

useful information, hence S will not be penalized. These

two steps are described in detail hereafter.

[1. Custom data augmentation] In order to introduce true

positive players with known bounding boxes in P, we de-

sign the following automatic data augmentation process.

Given a frame CS(t), we start by randomly extracting image

crops delimited either by one isolated or by several adjacent

bounding boxes previously obtained in P (Figure 4). Then,

for each crop, we randomly select a pixel in P, which will

serve as an anchor point where the crop will be pasted after

being rescaled and rotated appropriately. In our use case,

the anchors are selected in the subset of P corresponding to

the football field.

We perform a rescaling and a rotation of each crop to

produce an insertion that looks as realistic as possible by

taking into account the inherent distortions of CS (Figure 4).

Let (r, θ) denote the initial polar coordinates (with origin

located at the center of CS(t)) of the center of the crop

and (r′, θ′) those of its selected anchor point. We rescale

the crop by a factor αeβ(r
′
−r) + γ with α = 0.5, β =

−0.004, γ = 0.5 and rotate it by the angle difference θ′−θ.

Finally, we paste the transformed crop on CS(t) itself with

OpenCV’s seamless blending function, such that its center

is located at the selected anchor point (Figure 4). In or-

der to obtain the boxes associated with these artificial play-

ers, we perform the same transformation on each bounding

box included in the initial crop. Eventually, for each trans-

formed box, we consider as surrogate ground-truth bound-

ing box the smallest unrotated (regular) rectangular box that

encloses it (Figure 4).

In our fisheye setup, the data augmentation process al-

lows to create artificial players with known bounding boxes

in P (Figure 4). However, this does not suffice to train S

efficiently, as real players without known boxes may still be

present in P. In a standard training process, S would thus

be forced to detect the artificial players and would be penal-

ized for detecting the remaining real ones. To bypass this

undesirable effect, we remove the penalty suffered by S for

detections containing enough motion. Hence, we leverage a

motion detection algorithm to determine where this should

be applied. By doing so, we also obtain areas where there

is assuredly no player, i.e. where detections should not be

made.

[2. Motion detection] As we handle a video feed from a

fixed camera, we use ViBe [2] to obtain, for each frame



Figure 4: Our custom data augmentation pipeline designed to construct surrogate ground-truth bounding boxes in the region

P filmed by CS only. First, crops containing players are extracted (a) from the area filmed by both cameras P, in which we

know their location. Then, each crop and its associated bounding boxes are scaled (b) and rotated (c) to be appropriately

pasted in P. A seamless blending is applied during the collage to increase the realistic aspect of the augmented image. As a

result, we create artificial players with known bounding boxes in P.

Figure 5: Initial motion detection mask M(t) overlayed on

its corresponding frame (left), and enlarged motion detec-

tion mask M(t) (right).

CS(t), the set of pixels that are in motion, noted M(t), and

those that are not, noted M(t) (Figure 5). ViBe is very sen-

sitive to motion, which implies that, in our fisheye setup,

M(t) almost surely contains all the players, as well as pix-

els corresponding to the balls, player shadows, and some

noise. As M(t) may be tight around the players, we mor-

phologically dilate it by a 11 × 11 square kernel to ensure

that it includes the bounding boxes that would surround the

players if they were available (Figure 5). By doing so, we

obtain an enlarged mask M(t), such that we can penalize

S when it detects players in M(t), i.e. outside the enlarged

mask. However, M(t) remains an area of uncertainty, where

we do not penalize S . Technically, this means that we zero

out the loss in this area during training, as detailed hereafter.

Training S . We use the YOLOv3 network [32] trained to

detect humans on thermal images in [20] as teacher net-

work T . We use YOLOv3-tiny [32] as student network S ,

adapted for a single class problem and with four times less

channels for each convolutional layer. Hence, S outputs a

list of 5-dimensional vectors. Each of them encapsulates

information on a predicted bounding box: the four coor-

dinates (x, y, w, h) defining the box, and a player score p

representing its confidence for a player to actually belong

to the box.

The loss of YOLOv3-tiny, hence S , penalizes these vec-

tors in the following way (see Figure 6). For a predicted box

close to a surrogate ground-truth box (either in P or in P),

the mean square error loss between the coordinates of the

boxes is computed, as well as the binary cross-entropy loss

of p. This encourages the network to predict a high confi-

dence score (closer to 1) and to find the right dimensions of

the box. For a box far from a surrogate ground-truth box,

only the binary cross-entropy loss of 1 − p is computed, to

discourage the network from predicting a player in that box

(p closer to 0). In our case, we must take into account the

uncertainty about the boxes in M(t) in the region P, as they

may correspond to unnanotated real players. Therefore, for

a box far from a surrogate ground-truth box (including those

created by the data augmentation), we zero out its loss if the

center of the box is in P and is in motion (belongs to M(t)).
If the center of the box belongs to M(t), we are practically

sure that there is no player in the box, and we thus leave the

loss as is to penalize that detection. There is not particular

restriction about the loss in P. This is illustrated in Figure 6.

Inference. When used for inference, we verify that the

bounding boxes predicted by S contain enough motion. In-

deed, the predicted boxes whose center is not in motion, i.e.

outside M(t), are not likely to contain a player. Therefore

they are removed from the final output of S .



Figure 6: Combination of our data augmentation and mo-

tion detection algorithms, showing how the loss is applied to

penalize the predictions of S in P (outside the white area). S

must detect the players artificially created (red rectangles).

Also, predicted boxes whose center falls within the enlarged

motion mask M(t) (the black zones) do not generate any

loss, since this area includes the players of P not erased by

the data augmentation, for which we have no ground-truth

boxes. Finally, S must not predict any box in the rest of the

image in P. Let us recall that the loss is applied everywhere

in P, as we have the ground truth from T in that area.

5. Experiments

Online distillation. In this work, we perform the distilla-

tion of the teacher network T into the student network S in

an online manner as in [7]. The reason for using that process

is threefold. First, this allows S to continuously adapt to the

latest weather and lighting conditions. Second, in a real-life

deployment of the system, the online distillation will indeed

be performed continuously. Hence, in order to have an un-

derstanding of how S behaves as it trains and detects people

in real time, it is worth testing S under similar conditions.

Third, training S adaptively allows us to study the evolu-

tion of the performance of the network as it learns through

time. As we have only one video sequence with both the

thermal and the fisheye recordings, this also enables us to

evaluate S multiple times rather than measuring its perfor-

mance only once, on a unique (and maybe abnormally hard

or easy) small set of frames.

In the online distillation process, all the frames of the

fisheye camera CS are treated by S , which runs in real time.

Meanwhile, some frames of the video feed of the thermal

camera CT are input to T , which provides boxes converted

into surrogate ground-truth bounding boxes in the area P of

the frame captured by CS . These boxes are accumulated in

an online dataset with 5-minutes memory, and the dataset

is used to train a copy of S in a separate thread. The train-

ing is performed on the whole frames CS(t) as described in

the previous section, using our data augmentation and mo-

tion detection processes outside P. When this copy of S has

trained during one epoch on the online dataset, its weights

are updated and transferred into the initial network S that

performs the detection on all the frames. Consequently, the

weights of this network evolves through time to continu-

ously adapt to the latest video conditions.

Quantitative evaluation. To assess the performance of

the student network S over the course of the video, we

manually annotated the ground-truth bounding boxes for all

the players of one frame every 10 seconds of the fisheye

video. We compute the performance of S on a set of frames

with the Average Precision (AP) metric particularized for

one class. Following practice for the Pascal VOC dataset

[10], each bounding box predicted by S is matched with

the ground-truth box with which it has the largest intersec-

tion over union (IoU). We consider predicted boxes with an

IoU larger than some threshold t IoU as true positives, the

others as false positives, and the ground-truth boxes left un-

matched are false negatives. If several true positives are as-

sociated with the same ground-truth box, only one of them

is kept as a true positive, while the others are rather consid-

ered as false positives. We note the number of true positives

(resp. false positives, false negatives) TP (resp. FP, FN).

Then, we compute the precision and recall as

P =
TP

TP + FP
and R =

TP

TP + FN
.

We compute the points (P,R) for various thresholds on the

confidence scores of the boxes to obtain the PR curve. Fi-

nally, we compute the area under the PR curve as suggested

in [10] to obtain the AP for that set of frames. Despite

its limitations [5], this kind of evaluation process has been

widely adopted in the community.

In order to determine an appropriate value of t IoU for

evaluating the performance of S , we examine the efficiency

of T in predicting the boxes in P. For that purpose, we com-

pute the AP of T on the last 15 minutes of video, for several

values of t IoU ranging from 0 to 1, for the frames where

ground-truth annotations are available. This allows us to

determine how good T is at centering its bounding boxes

on the players. The performance of T in P as a function of

t IoU is shown in Figure 7. We can see that T is not per-

fect in P, which conditions the performances that can be ex-

pected from S . To evaluate S , we choose t IoU = 0.25, as

T displays reasonable performances in P with that thresh-

old. Given the small size of the boxes, it also makes sense



Figure 7: Performances of T in P on the last 15 minutes of

video as a function of t IoU. This quantifies how accurately

T centers its bounding boxes on the players. We can see that

T is not perfect. We decide to evaluate the performances

of S for t IoU = 0.25, as we consider it as the largest t IoU

for which T still displays satisfying performances (AP >

70%).

Figure 8: Evolution of the performances of the student net-

work S through the video in PPP, PPP, and in the whole frames.

We can see that the network improves over time and that it

manages to perform well both in P and in P.

to examine the performance of S for a relatively low value

of t IoU. Let us recall that the boxes outputted by the net-

work are independent of any particular choice of threshold.

It serves only for quantitative evaluation purposes.

Following [7], we evaluate the performance of the stu-

dent network S progressively. Every 10 seconds, S predicts

the bounding boxes of the frames for which we have manual

annotations within a running temporal window that covers

the next 3 minutes of video. For this set of frames, we com-

pute the AP. The evolution on the AP through time with

Figure 9: Results on the player counting task averaged

over a 1-minute window, and associated standard devia-

tion. During the last 15 minutes, we have a RMSE with

the ground truth of 3.4 players, which is reasonable and

shows that our method provides a reliable estimate of the

occupancy of the football field.

t IoU = 0.25 is represented in Figure 8. We see that the

performance tends to increase, indicating that S learns to

better detect players over time. Figure 8 also reveals that

there is still room for improvement in the present challenge.

We further examine the effectiveness of our data aug-

mentation and motion detection processes to train S for de-

tecting players outside P. For that purpose, we perform a

region-specific analysis by computing the temporal evalu-

ation of the AP within P and P. The performance curves

are displayed in Figure 8. We note that S learns efficiently

to detect players in P, as the performances for P and P are

close to each other and follow the same trend. Also, further

experiments reveal that the post-processing with the mo-

tion mask M(t) is particularly helpful to increase the per-

formance in P. In that area, the AP decreases by 5 to 20%
without post-processing, while the drop is below 3% in P.

Finally, as a potential application of this system is to

monitor the use of the football field, we examine the re-

sults obtained for the task of people counting. The predicted

number of people on the field corresponds to the number

of bounding boxes predicted by S (thus on the fisheye im-

ages) after post-processing. We average the counting using

a 1-minute sliding window. The results are displayed in

Figure 9. We note that our method gives a globally reli-

able estimate of the number of people present on the field.

Quantitatively, during the last 15 minutes of video, the root

mean square error (RMSE) between the predictions and the

ground truth is as low as 3.4 players. Again, we can see

that the performance tends to increase over time since the

estimate is more accurate at the end of the video, indicat-

ing that S learns to better detect players over time. Also,



In P
With data

augmentation

Without data

augmentation

Cancel loss in

the motion

mask M(t)

Our full method.

Most players in P

correctly detected,

few false positives.

Few players

detected in P,

unusable in practice

Activate loss

everywhere

in P

Able to detect

players in P,

but not as good as

our full method

Unable to make

any detection in P,

no true positives

Cancel loss

everywhere

in P

Thousands of

detections in P,

mostly false positives

Thousands of

detections in P,

mostly false positives

Table 1: Ablation results in P. The combination of the data

augmentation and the motion detection algorithm gives the

best trade-off between true and false positive detections.

we can see in Figure 9 that the standard deviation of the

box count computed for each sliding window decreases over

time, which indicates that the network becomes more con-

sistent as it trains. Even though S tends to slightly over-

estimate the actual number of players, we can see that it

manages to provides a good overview of the use of the field.

Qualitative evaluation. To further assess the usefulness of

our data augmentation and motion detection processes, we

perform ablation studies on the components of our method.

We investigate the combination of either enabling or dis-

abling the data augmentation, with either zeroing out the

loss in the motion mask M(t), or nowhere in P, or every-

where in P. The effects observed for these setups are re-

ported in Table 1. In our experiments, we observe that the

combination of the data augmentation and of zeroing out

the loss in M(t), as detailed in this paper, leads to the best

student network S at inference time. Activating the loss ev-

erywhere in P at training time forces S to detect only the

artificial players in P and to avoid detecting the actual play-

ers of P that have not been erased by the data augmentation.

This may confuse S , leading to a decrease in its ability to

detect players in P at inference time. We notice that cancel-

ing the loss everywhere in P leads to thousands of predicted

bounding boxes in P at inference time. This makes sense

since the network is not forced to detect or not players in P

in this case. Most of these predictions are false positives,

and the system is useless in practice. As indicated in Ta-

ble 1, we also note that removing the data augmentation

always leads to mediocre networks, for similar reasons as

those already explained. In particular, activating the loss

everywhere in P makes S unable to detect any single player

in P. This results from the absence of ground-truth true pos-

itives (both artificial and real ones) in P.

Finally, examples of detections provided by S are given

in Figure 10. We can see that players located in P are de-

tected as efficiently as those located in P. This was made

Figure 10: Detections on a test frame. We can note that

players are accurately detected, even though there are a few

superfluous predicted bounding boxes.

possible thanks to our data augmentation and motion detec-

tion algorithms in the distillation approach.

6. Conclusion

In this work, we propose a novel system for monitoring

the field occupancy in low-budget football stadiums. Our

system uses a single wide-angle fisheye camera assisted by

a thermal camera to detect and count all the players on the

field. We use a network trained in a student-teacher distilla-

tion approach. The student network is locally supervised by

a teacher network that easily detects players on the thermal

camera. These detections are then projected into the fish-

eye camera using camera registration and serve as surrogate

ground truths. Since both cameras have different modalities

and fields of view of the scene, the student cannot be fully

supervised by the teacher. Therefore, we develop a custom

data augmentation process, combined with motion informa-

tion provided by a background subtraction algorithm, to in-

troduce surrogate ground truths outside their common field

of view. In our case, we perform the distillation in an on-

line fashion, i.e. our student is continuously trained to adapt

to the latest video conditions, while performing the player

detection in real-time. We show that our system is able to

accurately detect players both inside and outside the com-

mon field of view, thanks to our custom supervision.
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[33] Vito Renò, Nicola Mosca, Massimiliano Nitti, Tiziana Do-

razio, Donato Campagnoli, Andrea Prati, and Ettore Stella.

Tennis player segmentation for semantic behavior analy-

sis. In IEEE International Conference on Computer Vision

(ICCV) Workshop, pages 718–725, Dec. 2015. 2
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