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Abstract

Anomaly detection in surveillance videos has been re-

cently gaining attention. Even though the performance of

state-of-the-art methods on publicly available data sets has

been competitive, they demand a massive amount of train-

ing data. Also, they lack a concrete approach for contin-

uously updating the trained model once new data is avail-

able. Furthermore, online decision making is an important

but mostly neglected factor in this domain. Motivated by

these research gaps, we propose an online anomaly detec-

tion method for surveillance videos using transfer learning

and any-shot learning, which in turn significantly reduces

the training complexity and provides a mechanism which

can detect anomalies using only a few labeled nominal ex-

amples. Our proposed algorithm leverages the feature ex-

traction power of neural network-based models for transfer

learning, and the any-shot learning capability of statistical

detection methods.

1. Introduction

The rapid advancements in the technology of closed-

circuit television (CCTV) cameras and their underlying in-

frastructure has led to a sheer number of surveillance cam-

eras being implemented globally, estimated to go beyond 1

billion by the end of the year 2021 [17]. Considering the

massive amounts of videos generated in real-time, manual

video analysis by human operator becomes inefficient, ex-

pensive, and nearly impossible, which in turn makes a great

demand for automated and intelligent methods for an effi-

cient video surveillance system. An important task in video

surveillance is anomaly detection, which refers to the iden-

tification of events that do not conform to the expected be-

havior [2].

A vast majority of the recent video anomaly detection

methods directly depend on deep neural network architec-

tures [32]. It is well known that these deep neural network

models are data hungry. As a result, they require many la-

beled nominal frames and long hours of training to produce

acceptable results on a new data set. Moreover, most of

them are not suitable for online detection of anomalies as

they need the knowledge of future video frames for appro-

priate normalization of detection score.

Motivated by the aforementioned domain challenges and

research gaps, we propose a hybrid use of neural networks

and statistical k nearest neighbor (kNN) decision approach

for finding video anomalies with limited training in an on-

line fashion. In summary, our contributions in this paper are

as follows:

• We significantly reduce the training complexity by

leveraging transfer learning while simultaneously out-

performing the current state-of-the-art algorithms.

• We propose a novel framework for statistical any-

shot sequential anomaly detection which is capable of

learning continuously and from few samples.

• Extensive evaluation on publicly available data sets

show that our proposed framework can transition ef-

fectively between few-shot and many-shot learning.

2. Related Works

Anomaly detection methods for video surveillance can

be broadly classified into two categories: traditional and

deep learning-based methods. Traditional methods [6, 21,

29, 37] extract hand-crafted motion and appearance fea-

tures such as histogram of optical flow [3, 4] and histogram

of oriented gradients [6] to detect spatiotemporal anoma-

lies [29]. The recent literature is dominated by the neu-

ral network-based methods [8, 9, 18, 20, 26, 28, 35] due

to their superior performance [35]. For instance, in [19],

Convolutional Neural Networks (CNN), and Convolutional

Long Short Term Memory (CLSTM) are used to learn ap-

pearance and motion features. More recently, Generative

Adversarial Networks (GANs) have been used to generate

internal scene representations based on a given frame and

its optical flow to detect deviation of the GAN output from

the nominal data [18, 25]. However, there is also a signif-

icant debate on the shortcomings of neural network-based



methods in terms of interpretability, analyzability, and reli-

ability of their decisions [12]. For example, [23, 30] pro-

pose using a nearest neighbor-based approach together with

deep neural network structures to achieve robustness, inter-

pretability for the decisions made by the model, and defense

against adversarial attack. Also, deep neural networks for

visual recognition typically require a large amount of la-

belled examples for training [16], which might not be avail-

able for all possible behaviors/patterns. Hence, recently re-

searchers have begun to address the challenge of few-shot

learning [14, 31, 33, 34]. A line of few-shot learning meth-

ods is based on the idea of transfer learning, i.e, using a pre-

trained model learned from one domain for another domain

[15, 22, 36].

3. Proposed Method

An anomaly is construed as an unusual event which does

not conform to the learned nominal patterns. However,

in general, for practical implementations, it is unrealistic

to assume the availability of sufficient training data for all

possible nominal patterns/events. Thus, a practical frame-

work should be able to perform any-shot learning of nom-

inal events. This presents a novel challenge to current ap-

proaches mentioned in Section 2 as their decision mech-

anism is extensively dependent on Deep Neural Networks

(DNNs). DNNs typically require a large amount of train-

ing data with sufficient number of samples for each type of

nominal event or exhibit the risk of catastrophic forgetting

[13]. Also, in general, the type of anomaly that the detector

might encounter is broad and unknown while training the al-

gorithm. For example, an anomalous event can be justified

on the basis of appearance (a person carrying a gun), motion

(two people fighting) or location (a person walking on the

roadway). To account for all such cases, we create a feature

vector xt
i for each object i in frame Xt at time t, where xt

i

is given by [w1xmotion, w2xlocation, w3xappearance]. The

weights w1, w2, w3 are used to adjust the relative impor-

tance of each feature category and are set as [0.9,0.5,1] re-

spectively.

3.1. Transfer Learning

Most existing works propose training specialized data-

hungry deep learning models from scratch, however this

bounds their applicability to the cases where abundant data

is available. Also, the training time required for such mod-

els grows exponentially with the size of training data, mak-

ing them impractical to be deployed in scenarios where the

model needs to continuously learn. Hence, we propose

to leverage transfer learning to extract meaningful features

from video.

Object Detection: To obtain location and appearance

features, we propose to detect objects using a pre-trained

real-time object detection system such as You Only Look

Once (YOLO) [27]. YOLO offers a higher frames-per-

second (fps) processing while providing better accuracy as

compared to the other state-of-the-art models such as SSD

and ResNet. For online anomaly detection, speed is a crit-

ical factor, and hence we currently prefer YOLOv3 trained

on the MS COCO dataset in our implementations. For each

detected object in image Xt, we get a bounding box (lo-

cation) along with the class probabilities (appearance). In-

stead of simply using the entire bounding box, we moni-

tor the center of the box and its area to obtain the location

features. In a test video, objects diverging from the nomi-

nal paths and/or belonging to previously unseen classes will

help us detect anomalies, as explained in Section 3.2.

Optical Flow: Apart from spatial information, temporal

information is also a critical aspect of videos. Hence, we

propose to monitor the contextual motion of different ob-

jects in a frame using a pre-trained optical flow model such

as Flownet 2 [10]. We hypothesize that any kind of mo-

tion anomaly would alter the probability distribution of the

optical flow for the frame. Hence, we extract the mean, vari-

ance, and the higher order statistics skewness and kurtosis,

which represent asymmetry and sharpness of the probability

distribution.

Combining the motion, location, and appearance fea-

tures, for each object detected in a frame, we construct a

feature vector as shown in Fig. 1, where Mean, Variance,

Skewness and Kurtosis are extracted from the optical flow;

Cx, Cy, Area denote the coordinates of the center of the

bounding box and the area of the bounding box (Section

3.1); and p(C1), . . . , p(Cn) are the class probabilities for

the detected object (Section 3.1). Hence, at any given time

t, with n denoting the number of possible classes, the di-

mensionality of the feature vector is given by D = n+ 7.

3.2. Any-Shot Sequential Anomaly Detection

Anomaly detection in streaming video fits well to the se-

quential change detection framework [1] as we can safely

assume that any anomalous event would persist for an un-

known but significant period of time. The eventual goal

is to detect anomalies with minimal detection delays while

satisfying a desired false alarm rate. Traditional paramet-

ric change detection algorithms which require probabilis-

tic models cannot be implemented directly here as no prior

knowledge about the anomalous events is available. More-

over, it is unrealistic to assume that the available training

data includes sufficient number of frames for every possible

nominal event. For example, while monitoring a street, the

number of frames available for a car would be much more

than a truck.

Training: In the N -shot video setting, given a set of N

nominal frames, we leverage our transfer learning module

to extract the training set SM = {x1, ..., xM}, where M

is the number of detected objects, and xi ∈ R
D is a D-



Figure 1. Proposed few-shot learning framework. At each time t, neural network-based feature extraction module provides motion (optical

flow), location (center coordinates and area of bounding box), and appearance (class probabilities) features to the statistical anomaly

detection module, which automatically sets its decision threshold to satisfy a false alarm constraint and makes online decisions.

dimensional feature vector. Assuming that the training data

does not include any anomalies, {x1, . . . , xM} correspond

to M points in the nominal data space, distributed according

to an unknown complex probability distribution. To deter-

mine the nominal data patterns in a nonparametric way, we

use k-nearest-neighbor (kNN) Euclidean distance to cap-

ture the interactions between the nominal data points due

to its essential traits such as analyzability, interpretability,

and computational efficiency, which deep learning-based

models sorely lack. Given the informativeness of extracted

motion, location, and appearance features, anomalous in-

stances are expected to lie further away from the nomi-

nal training (support) set, which will lead to statistically

higher kNN distances for the anomalous instances in the

test (query) set with respect to the nominal data points. The

training procedure of our detector is given as follows:

1. Normalize the training set SM using the min-max ap-

proach and partition it into two sets SM1
and SM2

such

that M = M1 +M2, where M1 and M2 are the sizes

of the partitions respectively. One way is to select the

first M1 instances for SM1
and the remaining instances

for SM2
such that M1 < M2.

2. Then for each feature vector xi in SM1
, we compute

the kNN distance di with respect to the points in SM2
.

3. For a significance level α, e.g., 0.05, the (1−α)th per-

centile dα of kNN distances {d1, . . . , dM1
} is used as a

baseline statistic for computing the anomaly evidence

of test instances.

Testing: During the testing phase, for each object i de-

tected at time t, the sequential anomaly detection algorithm

constructs the feature vector xt
i and computes the kNN dis-

tance dti with respect to the training instances in SM2
. Then,

the instantaneous frame-level anomaly evidence δt is com-

puted as

δt = (max
i

{dti})
D
− (dα)

D. (1)

Finally, following a CUSUM-like procedure [1] we update

the running decision statistic st as

st = max{st−1 + δt, 0}, s0 = 0. (2)

We decide that there exists an anomaly in video if the

decision statistic st exceeds the threshold h. After the

anomaly decision, to determine the anomalous frames, we

find the frame st started to grow, say τstart, and also de-

termine the frame st stops increasing and keeps decreas-

ing for a certain number, e.g., 5, of consecutive frames, say

τend. Finally, we label the frames between τstart and τend
as anomalous, and continue testing for new anomalies with

frame τend + 1 by resetting sτend = 0.

Existing works consider the decision threshold h as a de-

sign parameter, however for a practical anomaly detection

algorithm, a clear procedure for selecting it is necessary. In

[7], we provide an asymptotic (M2 → ∞) upper bound on

the false alarm rate:

FAR ≤ e−ω0h, (3)



where ω0 > 0 is given by

ω0 = vm − θ −
1

φ
W

�

−φθe−φθ
�

, (4)

θ =
vm

evmdm
α

.

In (4), W(·) is the Lambert-W function, vm = πm/2

Γ(m/2+1)

is the constant for the m-dimensional Lebesgue measure

(i.e., vmdmα is the m-dimensional volume of the hyperball

with radius dα), and φ is the upper bound for δt. Although

the expression for ω0 looks complicated, all the terms in

(4) can be easily computed. Particularly, vm is directly

given by the dimensionality m, dα comes from the training

phase, φ is also found in training, and finally there is a built-

in Lambert-W function in popular programming languages

such as Python and Matlab. Hence, given the training data,

ω0 can be easily computed, and the threshold h can be cho-

sen to asymptotically achieve the desired false alarm period

as follows

h =
− log(FAR)

ω0
. (5)

4. Experiments

Most of the recent works evaluate their performance on

three publicly available benchmark data sets, namely the

UCSD pedestrian data set, the ShanghaiTech campus data

set and the CUHK avenue data set. Even though each data

set has its own set of challenges, all the data sets have a

common nominal definition. This makes them susceptible

to trivial algorithmic designs which can achieve competitive

results as there is a very obvious shift between the nominal

and anomalous distributions. Hence, to make the problem

more challenging and test the any-shot learning capabili-

ties of different state-of-the-art algorithms, we also test on

a modified version of the UCSD data set. For performance

evaluation, following the existing works [5, 11, 18], we use

the frame-level Area under the Curve (AuC) metric.

Any-shot learning: As compared to the original UCSD

data set, where a person riding a bike is considered as

anomalous, in this case we assume that it is a nominal be-

havior with very few training samples. However, the re-

maining anomalous events occurring in the dataset such as

a person riding a skateboard or a cart passing through are

still considered as anomalous. Our goal here is to compare

the any-shot learning capability of the proposed and state-

of-the-art algorithms and see how well they adapt to new

patterns. In this case, in addition to the available training

data, we also train on a few samples of a person riding a

bike. In Fig. 2, it is seen that the proposed algorithm clearly

outperforms the state-of-the-art algorithms [11, 18] in terms

of any-shot learning performance. It is important to note

that for video applications, 10 shots correspond to less than

a second in real time.
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Figure 2. Comparison of the proposed and state-of-the-art algo-

rithms Liu et al. [18] and Ionescu et al. [11] in terms of any-shot

learning. The proposed algorithm is able to transition well be-

tween few-shot and many-shot learning.

Methodology CUHK Avenue UCSD Ped 2 ShanghaiTech

Conv-AE [8] 80.0 85.0 60.9

ConvLSTM-AE[19] 77.0 88.1 -

Stacked RNN[20] 81.7 92.2 68.0

GANs [24] - 88.4 -

Liu et al. [18] 85.1 95.4 72.8

Ours 86.4 97.8 71.62

Table 1. AuC result comparison on three datasets.

Benchmark Datasets: To show the competitive perfor-

mance of the proposed algorithm with large training data,

we compare our results on the entire data sets to a wide

range of methods in Table 1. We should note here that our

reported result in all the data sets is based on online deci-

sion making without seeing future video frames. A com-

mon technique used by several recent works [11, 18] is to

normalize the computed statistic for each test video inde-

pendently, which is not suitable for online detection.

5. Conclusion

For video anomaly detection, we presented an online

anomaly detection algorithm which consists of a transfer

learning-based feature extraction module and a statistical

decision making module. The first module efficiently mini-

mizes the training complexity and extracts motion, location,

and appearance features. The second module is a sequential

anomaly detector which enables a clear procedure for se-

lecting decision threshold through asymptotic performance

analysis. Through experiments on publicly available data,

we showed that the proposed detector significantly outper-

forms the state-of-the-art algorithms in terms of any-shot

learning of new nominal patterns.
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