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Abstract

In this paper, we propose an embarrassingly simple

approach for one-shot learning. Our insight is that the

one-shot tasks have domain gap to the network pretrained

tasks and thus some features from the pretrained net-

work are not relevant, or harmful to the specific one-

shot task. Therefore, we propose to directly prune the

features from the pretrained network for a specific one-

shot task rather than update it via an optimized scheme

with complex network structure. Without bells and whis-

tles, our simple yet effective method achieves leading per-

formances on miniImageNet (60.63%) and tieredImageNet

(69.02%) for 5-way one-shot setting. The best trial can

hit to 66.83% on miniImageNet and 74.04% on tieredIm-

ageNet, establishing a new state-of-the-art. We strongly ad-

vocate that our method can serve as a strong baseline for

one-shot learning. The codes and trained models will be re-

leased at http://github.com/corwinliu9669/

embarrassingly-simple-baseline.

1. Introduction

Deep learning (DL) has achieved great success in many

computer vision tasks such as image recognition [8, 24, 13],

image generation [7, 2, 34] and segmentation [33, 9, 31,

17, 28]. Despite the achievement, deep learning based ap-

proached still struggle to obtain the ability to adapt to a

totally unseen environment. For instance, they can hardly

recognize images that does not share training categories

with no-further information [32] or limited training exam-

ple provided [26].

One-shot learning [26, 29] aims to solve this problem,

assuming only the existence of one or a few labeled data for

each category. One-shot learning, as a special case, restricts
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the number of label data for each category to 1. Such an

assumption breaks one of the necessary conditions of tra-

ditional neural network models and requires the capacity

of rapidly learning from few-shot instances without over-

fitting. Though such capacity seems hard for machine learn-

ing algorithms, it is observed that humans have one-shot

learning ability. That is, one can handle a new concept with

only one or a few corresponding instances are provided. For

example, child can recognize the concept of “panda” after

seeing several pandas’ pictures. Humans’ few-shot learn-

ing capacity comes from the relative learned knowledge as

well as rapid learning. To simulate human’s learning pro-

cess, one-shot learning has access to a base class dataset

with a large amount of labeled images to learn the neces-

sary knowledge. Then we focus on learning from few-shot

labeled instances on a novel class dataset whose classes are

disjoint (but more or less relevant) from the base dataset.

One-shot learning has been studied for a long time, [5]

proposes to tackle this problem via a probabilistic frame-

work. With the revolution of deep learning, a resurgence

of research in one-shot learning comes. At the beginning

stage, a general procedure is to train a network using multi-

class classification loss as an extractor and classify images

from novel class using this extractor. For instance [12] uti-

lizes a siamese structure to construct a similarity evaluation

network. However, with the rise of meta-learning [22], this

branch seems to be overlooked. For meta-learning, the key

idea lies in simulating the test phase so that the trained net-

work can have a better ability to adapt to novel class data.

Follow [22], plenty of great works have been proposed such

as MAML [6]. Afterwards more and more works tend to

combine meta-learning and metric learning. ProtoNet [25]

selects a meta-learning strategy and utilize a nearest neigh-

bour classifier. Based on ProtoNet, TADAM [21] and Re-

lationNet [26] try to improve previous method in terms of

metric. In spite of the success of these methods, only us-

ing meta-learning leads to a drawback as mentioned in [3].

Meta-learning based method tends to focus on local features



which can cause a problem called mean shift. Additionally,

we notice that some work [10, 18] imports the global la-

bel as additional loss which has significant overhead over

purely using meta-leaning. These phenomenon enlightens

us to revisit the pretrain-based method.

By revisiting the pretrain-based method, we propose a

very simple baseline. As first stage, we utilize the base class

data to train network. The pretrained network is then frozen.

During test phase, we try different classifiers such as lo-

gistic regression (LR), support vector machine (SVM) and

nearest neighbour (NN) for classification. Furthermore, we

compare these procedures with ones in machine learning.

We find that one important step is overlooked. To guaran-

tee that features have a similar scale, we should normalize

the output of pretrained network. Empirically we observe

significant enhancement via normalization.

Furthermore, inspired by human learning process, we

then propose an inspiring way to select the features ex-

tracted by the deep neural networks based on the logic for

humans when recognizing objects. In fact, we know a lot of

features such as shape, color, size. But when we face a spe-

cific problem such as distinguish between lemon and lime,

we will not use all these features. Instead, we know that one

significant difference is that they have different colors, thus

dropping others and focusing on color. This intuition can

be also useful for one-shot learning. Currently we find that

some meta-learning based methods attempt to enhance the

one-shot learning performance through modifying the em-

bedding or finding some combination of them. In fact the

embedding of deep network always has a high dimension,

we argue that not all of them are useful for classification of

novel class data. The network is trained based on base class

data, so embedding may contain some domain-specific in-

formation that degenerates one-shot learning. According to

this intuition, we try to investigate the contribution of these

embedding dimensions via a random pruning strategy. In-

terestingly we observe that by cutting negative dimensions,

a large boost can be achieved.

To summarize, our contributions are two-fold: (i) We re-

visit one-shot learning using a common supervised train-

ing paradigm. Without the assistance of meta-learning, we

can get accuracy of 60.63% for miniImageNet and 69.02%

for tieredImageNet under one-shot 5-way setting. (ii) We

explore the redundancy of the output feature of pretrained

network, and find an interesting phenomenon that offers us

a new insight for improving one-shot learning. The best tri-

als can achieve 66.83% on miniImageNet and 74.04% on

tieredImageNet.

2. Methodology

2.1. Problem setup

Different setups are used in train and test by us. When

training, we use many-shot recognition manner. Denote the

images and annotations as X and Y , respectively.

Training. During training stage, we have {C}Ni=1 cat-

egories with sufficient annotations. For each class Ci

from the N categories, we have ni image-label pairs as

{(xCi

j , yCi

j )}ni

j=1 for each class.

Testing. For testing phase, we follow a 5-way 1-shot set-

ting. Suppose that we have {K}Nt

i=1 categories. During test

phase, we sample support set and query set from these data.

First of all we sample 5 classes from the Nt classes. Then

for each of them we sample 1 image-annotation pair for Ki

as (xKi , yKi) as the support set. And for the query set, we

sample m samples that are assumed to have no annotation

from them as {xKi

j }mj=1, here we set m = 15 as common.

2.2. Baseline

For our baseline, we train a ResNet-12[19]. Here we

denote the layer before fc layer as φ(·), it is composed of

convolution layers, pooling layers and maxpooling layers

while it ends with a global average pooling layer. Besides

we denote the fc layer as Ψ(·) which acts as the classifier.

The output embedding of the network is φ(x) and the logit

is Ψ(φ(x)). Here Ψ(·) has a softmax activation function.

For training phase, the output feature is a 512-dimension

vector after the global average pooling. For this stage,

we apply a cross-entropy loss which is widely used in

image recognition [8]. We denote the loss function

as L. For a batch B of samples, the loss term is
1
B

PB

i=1 L(Ψ(φ(x)), yi). After training the network, we

remove the final fc layer for specific classification and the

weights of φ(·) are kept unchanged.

When testing, we only use extractor φ(·). We adopt three

different classifiers: LR, SVM and NN. For LR and SVM,

we use the extractor to get the processed feature as 512-

dimension vector. For the support set, we use them to train

classifier. And the trained classifier is used to predict query

set. For the NN classifier, we use support set to get tem-

plate and classify query samples according to the euclidean

distance between them and the template.

Additionally, we find that for a standard machine learn-

ing paradigm, normalization is a very important step.

Though we use batch normalization [11], this operation is

used to alleviate the problem of mean shift and get a bet-

ter loss landscape. The scale of these features may be not

suitable. For deep learning, in accompany with a fc layer

can solve the problem by itself. Here we decide to add a

normalization operation. For a output embedding φ(x), we



calculate its l2 norm as kφ(x)k2, and normalize the embed-

ding as
φ(x)

kφ(x)k2

. The normalized features are then fed into

classifiers during testing phase.

2.3. Random pruning

As is known to all, the model used for image recognition

tends to have a relatively large capacity. Pruning some of

them even leads to little changes in terms of model perfor-

mance. Here we want to judge whether all of them are im-

portant for one-shot learning tasks. Inspired by SNIP [15],

we try to explore whether there exists a subset of the em-

bedding that is suitable for every specific task. In detail,

for each task, we make several trials to find a 0 � 1 mask.

Suppose that we have a rate p 2 (0, 1). For each mask B,

we want that p of the mask elements are 0 and the other

elements are 1. After getting the mask, we multiply it to

the embedding as φ0(x) = φ(x)B, here the operation is

element-wise. Normalization is then applied to φ0(x). For

each task, we pick the mask with the best accuracy. Note

that we here just want to explore the property, so no train-

ing or other skills are used. A random trial is applied.

3. Experiments

3.1. Settings

Dataset. We perform experiments on two widely-used

datasets, miniImageNet and tieredImageNet. Specifically

there are 60000 images in miniImageNet, belonging to 100

categories. 64 of them are for training, while 16 and 20 of

them are used for validation and testing respectively. Each

of the categories owns 600 images. The split follows the

manner in [22]. tieredImageNet dataset contains 779,165

images in all. There are 608 classes in total, where 351

classes are used for training, 97 for validation and 160 for

testing. All these images are resized to 84⇥84. We apply

random horizontal flip as augmentation when training.

Implementation details. We train the network using

SGD [1] with initial learning rate of 0.1 which decays by

0.1 every 30 epochs. The whole training takes 100 epochs.

The momentum term is set to be 0.9 and 5e-4 for weight

decay. We validate the network using NN classification ac-

curacy of validation set. During testing, we follow a 5-way

1-shot setting, and sample 15 queries for each class. We test

the result for 1200 episodes.

3.2. Results

Comparison with alternatives. For comparison we

pick some classical meta-learning based or metric-

learning based method : ProtoNet[25], RelationNet[26],

MatchingNet[27] and MAML [6] as mentioned in [4]. We

directly use the results in [4]. The result is shown in Table 1.

Method miniImageNet

MatchingNet 54.49

ProtoNet 51.98

MAML 54.69

RelationNet 52.19

Our Baseline 60.63

Table 1. Comparison on miniImageNet.

We further pick some newly-proposed method such as

TADAM [21], SNAIL [19], CAN [10], MetaOptNet[14]

and LEO [23]. We show results for miniImageNet and

tieredImageNet in Table 2. Our baseline does have signifi-

cant performance gap compared with these methods.

Method miniImageNet tieredImageNet

TADAM [21] 54.49 –

SNAIL [19] 55.71 –

TapNet [30] 61.65 –

DC [18] 62.53 –

CAN [10] 63.85 69.89

MetaOptNet [14] 62.64 65.99

LEO [23] 61.76 66.33

CTM [16] 64.12 68.41

Our Baseline 60.63 69.02

Best Prune Trial 66.83 74.04

Table 2. Comparison on miniImageNet and tieredImageNet with

better methods.

Effect of pretraining We try different ways to choose

pretrain model, whose results are shown in Tab. 3. In ad-

dition to that using validation set is better than using part

of training set, there exists a gap between using many-shot

metric and one-shot metric.

Effect of normalization. To verify the effect of normal-

ization, we try to compare the situation with and without

normalization. The result is shown in Table 4. It is clear that

Logistic Regression performs the best. Besides, with the as-

sistance of normalization, the performance boosts greatly.

For NN the 5-way 1-shot on miniImageNet increases from

55.59% to 60.06%. Besides, we find that before using

normalization, NN has worse performance than other two

counterparts. When normalization is added, their perfor-

mance are at the same level. It is quite in accordance

with our intuition. Based on these few information, there

should be no significant difference for these classification

method. Among these methods, LR outperforms other vari-

ants which is in accordance with [20].



Method miniImageNet

Metric 1 60.06

Metric 2 59.51

Metric 3 60.59

Table 3. This table shows result using different metrics when se-

lecting best moedl. Metric 1 uses validation part of train classes to

get classification accuracy. Metric 2 uses validation part of train

classes to get meta test accuracy. Metric 3 uses validation classes

to get meta test accuracy.

Method miniImageNet tieredImageNet

NN 55.59 58.45

SVM 55.62 58.69

LR 57.41 63.15

NN + normalization 60.06 67.30

SVM+ normalization 59.95 67.27

LR+ normalization 60.63 69.03

Table 4. Results of different variants of our baseline.

Figure 1. The left figure is tsne plot for the embedding of Res-12

and the right one shows the plot of a picked pruning. 50% of the

out embedding dimensions are set to be zero. We pick 5 classes

and 20 instances for each of them. It is obvious that the embedding

space becomes more separable with a good pruning strategy.

Discussion of the dataset. We find that on miniImageNet,

our simple baseline is outperformed by some newly-

proposed method. However, when it comes to

tieredImageNet, the gap reduces sharply as shown in Ta-

ble 2. We wonder that when we discuss the one-shot learn-

ing problem, what size of base class data is suitable. For

different settings, we should prefer different strategies.

3.3. Results of random pruning

As shown in Table 2, we pick a best trial for one-shot

learning. And we find that if we can find the right mask for

each task, the performance can be enhanced greatly from

60.63 to 66.83 for miniImageNet. A right way to find this

kind of mask can be very helpful. For better understand-

ing, we add a visualization result shown in Figure 1. For

an effective trial, we find that the red class and green class

become more separable after pruning. It is in accordance

Figure 2. This figure shows the visualization result for some picked

images. The left figure shows the input images, while the right one

is the visualization of one of the pruned channels correspondingly.

We find that by only pruning this channel can improve the result

by 1 point. It is obvious that this channel puts emphasis on some

wrong areas which can explain the mechanism to some extent.

with the increase of accuracy.

To verify whether the boost is caused by reduction in re-

dundancy, we compare the best trial with PCA. The results

are illustrated in Table. 5. It is clear that using PCA does im-

prove the performance slightly, but the extra enhancement is

overwhelming. We think that this phenomenon is valuable

for deeper investigation.

Method miniImageNet

Our Baseline 60.63

PCA 61.40

Best Prune Trial 66.83

Table 5. This table shows comparisons between PCA and best trial

Furthermore, we combine our prune method with

MetaOptNet as shown in Table 6. For both miniImageNet

and tieredImageNet, the best prune trial can improve 1-shot

learning by a significant margin. It indicates that right prune

mask exists not only for the simple baseline.

Method miniImageNet tieredImageNet

MetaOptnet 62.64 65.99

Best Prune Trial 66.36 69.71

Table 6. This table shows prune results on MetaOptNet.

4. Conclusion

In this paper, we propose an embarrassingly simple ap-

proach for one-shot learning. Without complex network

structure or optimization scheme, we directly prune the fea-

tures from the pretrained network for a specific one-shot

recognition task. Extensive experiments show the effective-

ness of our approach. Future work could leverage reinforce-

ment learning to learn a better pruning mask.
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