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Abstract

We address the problem of learning cross-modal represen-

tations. We propose an instance-based deep metric learning

approach in joint visual and textual space. The key novelty

of this paper is that it shows that using per-image semantic

supervision leads to substantial improvement in zero-shot

performance over using class-only supervision. We also pro-

vide a probabilistic justification and empirical validation

for a metric rescaling approach to balance the seen/unseen

accuracy in the GZSL task. We evaluate our approach on

two fine-grained zero-shot datasets: CUB and FLOWERS.

1. Introduction

Deep learning-based approaches have demonstrated supe-

rior flexibility and generalization capabilities in information

processing on a wide variety of tasks, such as vision, speech

and language [15]. However, it has been widely realized that

the transfer of deep representations to real-world applications

is challenging due to the typical reliance on massive hand-

labeled datasets. Learning in the low-labeled data regime,

especially in the zero-shot [24] and the few-shot [25] setups,

have recently received significant attention in the literature.

In the problem of zero-shot learning (ZSL), the objective is

to recognize categories that have not been seen during the

training [14] via modality alignment. This is an especially

relevant problem as machine learning is challenged with the

long tail of classes, and the idea of learning from pairs of im-

ages and sentences, abundant on the web, looks like a natural

solution. Therefore, in this paper we specifically target the

fine-grained scenario of paired images and their respective

text descriptions. The uniqueness of this scenario is in the

fact that the co-occurance of image and text provides a rich

source of information. The ways of leveraging this source

have not been sufficiently explored in the context of ZSL.

In this paper, we specifically target the fine-grained vi-

sual description scenario, as defined by Reed et al. [20].

Concretely, given a training set S = {(vn, tn, yn) | vn ∈
V , tn ∈ T , yn ∈ Y , n = 1 . . . N} of image, text and

label tuples, we are interested in finding representations

fφ : V → Z of image, parameterized by φ, and fθ : T → Z
of text, parameterized by θ, in a common embedding space

Z . Furthermore, generalized ZSL (GZSL) problem is de-

fined using the sets of seen Ytr and unseen Yts classes, such

that Y = Ytr∪Yts and Ytr∩Yts = ∅. The training set only

contains the seen classes, i.e. Str = {(vn, tn, yn) | vn ∈
V , tn ∈ T , yn ∈ Ytr} and the task is to build a classifier

function g : Z × Z → Y . This is different from the ZSL

scenario focusing on g : Z×Z → Yts. The most acute prob-

lem in GZSL setup is the accuracy imbalance between seen

and unseen classes. To measure and control the imbalance,

three metrics are commonly used to assess the classification

performance in the GZSL scenario: the Top-1 accuracy on

the seen categories (s), the Top-1 accuracy on the unseen

categories (u) and their harmonic mean, H = u · s/(u + s).
The contributions of this work can be characterized under

the following two themes.

Instance-based training loss. Zero-shot learning ap-

proaches rely heavily on class-level modality alignment [30].

We propose a new composite loss function that balances

instance-based pairwise image/text retrieval loss and the

usual classifier loss. The retrieval loss term does not use

class labels. We show that most of the GZSL accuracy can

be extracted from the instance-based retrieval loss.

Metric rescaling. GZSL approaches suffer from imbal-

anced performance on seen and unseen classes [16]. Previ-

ous work proposed to use a heuristic trick, calibrated stack-

ing [4] or calibration [5], to solve the problem. We provide

a sound probabilistic justification for it.
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Figure 1: Proposed method. Each batch consists of randomly sampled instances, i.e. pairs of images and their corresponding

texts. Images are embedded via ResNet and texts are embedded via a CNN/LSTM stack. Image and text features are projected

via a fully connected layer into the same dimensional space. The negative distances between text and image features are fed

into softmax to train on the image and the text retrieval tasks. In addition, image and text embeddings are trained on auxiliary

image and text classification tasks on the class labels corresponding to instances.

2. Proposed Method

To build g, most approaches to joint representation learn-

ing rely on class labeling to train a representation. For exam-

ple, all the methods reviewed by Xian et al. [30] require the

access to class labels at train time. We hypothesise that in the

fine-grained learning scenario, such as the one described by

Reed et al. [20], a lot of information can be extracted simply

from pairwise image/text co-occurrences. The class labels

really only become necessary when we define class proto-

types, i.e. at zero-shot test time. Following this intuition, we

define a framework based on projecting texts and images into

a common space and then learning a representation based

on a mixture of four loss functions: a pairwise text retrieval

loss, a pairwise image retrieval loss, a text classifier loss and

an image classifier loss (see Fig. 1 and Algorithm 1 in Ap-

pendix A). The framework enables us, among other things,

to experiment with the effects of train-time availability of

class labels on the quality of zero-shot representations.

Pairwise cross-modal loss function is based solely on

the pairwise relationships between texts and images. Sup-

pose d is a metric d : Z × Z → R
+, vi is an image and

τ = {tj′} is a collection of arbitrary texts sampled uniformly

at random, of which text tj belongs to vi. We propose the

following model for the probability of image vi and text tj
to belong to the same object instance:

pφ,θ(i = j|vi, tj , τ) =
exp(−d(fφ(vi), fθ(tj)))∑

tj′∈τ exp(−d(fφ(vi), fθ(tj′)))
.

The learning is then based on the cross-entropy log-loss

defined on the batch of size B:

JTR(φ, θ) = −
1

B

B∑

i,j=1

ℓi,j log pφ,θ(i = j|vi, tj , {tj′}
B
j′=1),

where ℓi,j is a binary indicator of the true match (ℓi,j =
1, if i = j and 0 otherwise). Note that the expression above

has the interpretation of the text retrieval loss. Exchang-

ing the order of image and text in the probability model

JTR(φ, θ) leads to the image retrieval loss, JIR(φ, θ). The

two losses are mixed using parameter λ ∈ [0, 1] as shown

in Algorithm 1 in Appendix A. The pairwise retrieval loss

functions are responsible for the modality alignment. In

addition to those, we propose to include the usual image and

text classifier losses responsible for reducing the intraclass

variability of representations. The classifier losses are added

to the retrieval losses using a mixing parameter κ ∈ [0, 1] as

shown in Algorithm 1 in Appendix A.

2.1. Balancing Accuracy for Seen and Unseen

Let us define class prototype p(y) based on the set of

texts Ty belonging to class y, p(y) = 1

|Ty|

∑
ti∈Ty

fθ(ti). In

GZSL, the nearest neighbor decision rule for a given image

v and its features zv = fφ(v) has the following form:

ŷ = argmin
y∈Y

d(zv,p(y)) . (1)

To formalize the problem, we first introduce yv, the true

class label of image v. Mathematically, the main GZSL pain

point is that P{ŷ ∈ Ytr|yv ∈ Yts} is significantly greater



Table 1: Generalized zero-shot Top-1 classification accuracy.

CUB FLOWERS

u s H u s H

CADA-VAE [21] n/a n/a 53.4 n/a n/a n/a

Xian et al. [31] 50.3 58.3 54.0 59.0 73.8 65.6

Xian et al. [32] 48.4 60.1 53.6 56.8 74.9 64.6

Felix et al. [6] 47.9 59.3 53.0 61.6 69.2 65.2

Atzmon et al.[3] n/a n/a n/a 59.6 81.4 68.8

Ours 59.3 52.6 55.8 73.0 73.6 73.3

Table 2: Zero-shot Top-1 classification accuracy.

CUB FLOWERS

f-CLSWGAN [31] 57.3 67.2

f-VAEGAN-D2 [32] 61.0 67.7

cycle-(U)WGAN [6] 58.6 70.3

Ours 66.7 76.8

than P{ŷ ∈ Yts|yv ∈ Ytr}. In other words, the problem is

that a given image is more likely to be confused with one

of the seen classes if it belongs to an unseen class than vice

versa. We propose the following probabilistic representation

of the event space for the decision rule in Equation (1):

P{ŷ ∈ Ytr|yv ∈Yts} = P

ß

min
y∈Ytr

d(zv,p(y))

< min
y∈Yts

d(zv,p(y)) | yv ∈ Yts

™

. (2)

To balance P{ŷ ∈ Ytr|yv ∈ Yts} and P{ŷ ∈ Yts|yv ∈
Ytr}, we introduce a positive scalar α ∈ R

+ and scale all

the distances corresponding to the seen prototypes by 1 + α,

giving rise to the scaled distance dα:

dα(zv,p(y)) =

®

(1 + α)d(zv,p(y)), if y ∈ Ytr

d(zv,p(y)), otherwise

The error probability classifying unseen classes as seen ones

for the classifier based on dα(zv,p(y)), P{ŷα ∈ Ytr|yv ∈
Yts}, is then a monotone non-increasing function of α and

we can reduce it by increasing α (please refer to Appendix B

for a proof). Consider now P{ŷα ∈ Ytr|yv ∈ Ytr}, which

is a probability that we classify an image v from one of the

seen classes as still one of the seen classes. Using exactly

the same chain of arguments as in Appendix B we can show

that the probability is a non-increasing function of α. Hence

the probability P{ŷα ∈ Yts|yv ∈ Ytr} = 1 − P{ŷα ∈
Ytr|yv ∈ Ytr} is a non-decreasing function of α. Therefore,

we expect that by varying α > 0 we can balance the error

rates P{ŷα ∈ Ytr|yv ∈ Yts} and P{ŷα ∈ Yts|yv ∈ Ytr}.
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Figure 2: H against α on the validation set, the average and

95% confidence intervals of 10 repeats. H exhibits a distinct

inverted U-shape w.r.t. α. CUB (left) and FLOWERS (right).

3. Related Work

ZSL approaches aim at recognizing objects belonging to

classes unseen during training [14, 18]. This has been ex-

tended to the GZSL framework in which the decision space

consists of both seen and unseen classes [22, 30]. The classi-

cal zero-shot approaches build a joint visual-semantic space,

relying on a linear cross-modal compatibility function (e.g.

dot-product between query embedding and semantic proto-

types or a variation of a hinge loss) [7, 2, 1, 20]. Non-linear

variants of the compatibility have also been explored [27, 22].

Extending previously proposed cross-modal transfer ap-

proaches based on auto-encoders [11] and cross-domain

learning [9], more recent line of work [21, 31, 32, 6, 23] re-

lies on combining these approaches and their variations with

dataset augmentation tools such as GAN [8] and VAE [12].

It is argued that the use of those tools helps to resolve one

of the prominent problems in GZSL scenario: classifying

images from unseen classes as one of the seen classes. There

exist approaches that try to tackle this same problem via

temperature calibration [16] originally proposed by Hinton

et al. [10]. Chao et al.[4] and Das et al. [5] proposed ap-

proaches to seen/unseen accuracy balancing that are very

similar to ours, based on heuristic arguments. We extend

this line of work here by providing a probabilistic justifica-

tion for the balancing effect observed when applying metric

rescaling. Atzmon et al. [3] propose a more sophisticated

way to deal with seen/unseen imbalance via adaptive con-

fidence smoothing and gating. In this work, we show that

the simpler metric rescaling approach can still be used to

achieve impressive results on the GZSL task.

4. Experimental Results

Datasets. We focus on learning embeddings for fine-

grained visual descriptions and test them in ZSL/GZSL sce-

nario. To test the quality of trained embeddings we focus

on datasets that provide paired images and text descriptions,

such as Caltech-UCSD-Birds (CUB) [26] and Oxford Flow-

ers (FLOWERS) [17], that were augmented with textual de-

scriptions by Reed et al. [20]. We use the GZSL splits pro-

posed by Xian et al. [30]. The attribute-based datasets, such

as SUN [19] and AWA [13] do not contain this information

and are out of the scope of the current paper.
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Figure 3: H against λ, average of 10 repeats. λ = 0 corre-

sponds to the case of disabled text retrieval loss. CUB (left)

and FLOWERS (right).

Table 3: Generalized zero-shot Top-1 classification accuracy.

CUB FLOWERS

α λ κ u s H u s H

0.0 0.5 0.5 38.3 65.3 48.3 55.1 84.6 66.7

0.0 0.5 0.0 39.3 57.5 46.7 54.0 78.1 63.8

X 0.5 0.0 53.8 49.6 51.6 71.7 67.2 69.4

X 0.0 0.5 47.4 36.6 41.3 51.5 60.5 55.6

X 1.0 0.5 53.9 53.8 53.8 69.5 73.9 71.6

X 0.5 0.5 59.3 52.6 55.8 73.0 73.6 73.3

Architecture and training details. see Appendix D.

Our key empirical results are shown in Tables 1 and 2.

Our results are based on the settings of λ = 0.5, κ = 0.5
and α selected on the validation sets of CUB and FLOWERS

datasets. Clearly, the combination of the proposed training

method and the rebalancing of the metric space results in

very impressive performance, especially taking into account

the simplicity of our method. In the rest of the section we

further analyze the stability with respect to the choices of λ
and κ and provide more details on the selection of α.

The seen/unseen accuracy balancing. Fig. 2 confirms

that H exhibits inverted U-shape behavior as a function of

α on the validation sets of CUB and FLOWERS datasets, as

expected based on results of Section 2.1. Once the value of

α is determined by maximizing H on validation set, we train

the representation on the full train+val subset and report re-

sults on the test split (the usual practice in GZSL). Validation

set construction is detailed in Appendix C.

Ablation studies. Fig. 3 studies the importance of image

and text retrieval losses. We see that all Top-1 accuracies

(H, s, u) are stable in the range λ ∈ [0.2, 0.9]. Removing

text retrieval loss (λ = 0) results in the most significant

drop. Indeed, at the batch level, retrieving the correct text

given an image is related to identifying the correct class

encoded by a text prototype during GZSL inference step.

Fig. 4 studies the interplay between the retrieval and the

classification losses. We again observe that there exists a

reasonably stable range of κ ∈ [0.2, 0.6]. κ = 1 results in

the catastrophic performance drop: the classification losses

alone do not enforce the necessary modality alignment.

Table 3 further studies the effects of different loss terms.

The best result is achieved when all loss terms are active
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Figure 4: H against κ, average of 10 repeats. κ = 0 cor-

responds to the case of classification loss having weight 0.

CUB (left) and FLOWERS (right).

and when the metric rescaling is on (the last line in the ta-

ble: λ, κ = 0.5 and α checked). Comparing this to the case

with no metric rescaling (first line, α = 0), we see that the

rescaling helps to greatly decrease the gap between seen and

unseen classification accuracy, both on CUB and FLOWERS.

Interestingly, we only use images and texts from the train-

ing set to achieve it. Going to the second line in the table

(the image/text classification loss is inactive, κ = 0) and

comparing it to the first one, we assess the effect of the im-

age/text classification loss. It barely affects the performance

on unseen set, but it significantly boosts the classification

accuracy on the seen set (around 8% on both datasets). How-

ever, it improves GZSL accuracy only when applied together

with metric rescaling (please refer to lines 1 and 6 in Ta-

ble 3). Our interpretation is that the image/text classifier

loss reduces the intraclass variability and enforces tighter

embedding clustering. Yet, this also leads to overfit on clas-

sification task. This is accounted for by metric rescaling that

enables the learnings from the image/text classification task

be transferred effectively into the GZSL task. Finally, an

interesting observation can be made by comparing line 3 of

Table 3 with performance of algorithms in Table 1. In this

case our training relies only on retrieval losses computed

without class labels solely based on the pairwise relation-

ships between texts and images. The learned representation

is competitive against the latest GAN/VAE based approaches

on CUB and is state-of-the-art on FLOWERS. We conclude

that when very fine-grained modality outputs are available

(image and text pairs being a very prominent example), the

high-quality representations may be learned without relying

on manually supplied class labels.

5. Conclusions

We propose and empirically validate two contributions for

learning fine-grained cross-modal representations. First, we

confirm the hypothesis that in the context of paired images

and texts, a deep metric learning approach can be driven

by an instance-based retrieval loss resulting in impressive

GZSL classification results. This demonstrates that high-

quality deep representations can be trained relying largely

on pairwise modality relationships. Second, we mathemat-

ically analyze and empirically validate a simple method of

balancing seen/unseen accuracy in the GZSL task.
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