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Abstract

Zero-shot image classification leverages side informa-

tion including label attributes and semantic class hier-

archies to transfer knowledge about fine-grained training

classes to fine-grained zero-shot classes. In this paper, we

consider the problem of zero-shot learning of fine-grained

classes given a mixture of images with fine-grained and

coarsened labels. We show how probabilistic hierarchi-

cal classification models can be used to simultaneously ac-

commodate fine and coarse-grained labels in the zero-shot

learning setting. We show that this approach is robust even

to significant levels of coarsening.

1. Introduction

Zero-shot learning (ZSL) is one of the most extreme

forms of learning from limited labeled data. It enables

predicting that test images belong to classes for which no

labeled training images are available. ZSL methods ac-

complish this by introducing a source of side information

about classes such as class attribute vectors [7, 3, 17] or

a semantic class hierarchy [1, 16, 10]. However, current

ZSL methods focus on the problem of learning to transfer

knowledge about fine-grained training classes to other fine-

grained zero-shot classes using this side information.

In this paper, we consider the problem of zero-shot learn-

ing of fine-grained classes where some instances have hier-

archically coarsened labels. A label is coarsened when it

corresponds to a set of possible classes instead of a single

class [9]. We define a label to be hierarchically coarsened if

the set of classes it specifies correspond to a sub-tree within

a semantic class hierarchy. For example, an instance may

be labeled “Dog” instead of an exact breed of dog to indi-

cate that the true label of the instance is only known to lie

somewhere within the sub-tree rooted at the “Dog” class.

This work is motivated by the observation that hierarchi-

cally coarsened labels are typically easier and cheaper to

obtain than exact, fine-grained labels (e.g., it is much easier

for a non-expert to recognize that an image contains a dog

than it is to specify the precise breed of dog). This makes

the integration of large-scale coarsely labeled data sets with

smaller-scale fine-grained labeled data sets a potentially at-

tractive zero-shot learning strategy.

We present a principled approach to zero-shot learn-

ing that can leverage coarsened labels using a conditional

random field (CRF)-based probabilistic hierarchical classi-

fier [12] whose structure is defined using a given semantic

class hierarchy. We use a zero-shot parameter prediction

approach based on graph convolutional networks (GCNs)

[11, 16, 10] to predict the CRF model parameters for zero-

shot classes based on parameters for the training classes.

This approach significantly generalizes the recent state-of-

the-art ZSL method of [16], which is based on parame-

ter prediction applied to a flat multi-class logistic regres-

sion model. As a further contribution, we propose two new

benchmark data sets for this problem based on the ImageNet

data set [14]. Our results show that the proposed approach

can robustly incorporate coarsely-labeled training data, out-

performing baseline methods even in the presence of high

volumes of coarsened labels.

2. Approach

Notation: Let H = (Y,R) be the given semantic hierarchy

where Y is the set of all possible classes and R is a set of

“is-a” relations between classes. If (y, y′) ∈ R for y, y′ ∈
Y , we say that y′ is a sub-class of y. The relations in R are

assumed to form a directed tree with a root class y0 that is a

super-class of all other classes (e.g., the “entity” class). We

define YL to be the set of all leaf classes of H. These are

the most fine-grained classes in Y . We define YI to be the

internal classes of H.

In the zero-shot setting, the fine-grained classes in YL

can be further partitioned into two sets: Yzs and Ytr. Yzs

are the zero-shot classes for which by definition we have

no labeled training images. Ytr is the complementary set

of fine-grained classes for which we have labeled training

images. We assume that every class in YI has at least one

descendent in Ytr. We define A to be a set containing label

attribute vectors ay for all classes in y ∈ Y .

Under general label coarsening [9], the labels z ⊂ YL

correspond to a subset of fine-grained classes. In this work,



we consider hierarchical coarsening only. We denote the

set of classes in the sub-tree of H rooted at class y by

S(y). The set of all hierarchically coarsened labelings is

then defined to be Z = {S(y)|y ∈ YI ∪ Ytr}. Finally, Let

Dtr = {(xn, zn)|1 ≤ n ≤ N} be a data set of training

instances where xn is a training image and zn ∈ Z is the

corresponding coarsened class label.

Zero-Shot Learning Problem: Given H, A, and Dtr, our

goal is to learn a probabilistic classifier P (Y = y|X = x)
that is defined over the set of all fine-grained classes YL.

If all of the coarsened labels in Dtr are singleton sets such

that zn = {yn} for yn ∈ Ytr, then this problem reduces

to the standard zero-shot learning scenario where we seek

to transfer knowledge about fine-grained training classes to

fine-grained zero-shot classes.

However, when the coarsened labels are mix of single-

ton and non-singleton sets, then we obtain a more gen-

eral zero-shot learning problem where we seek to transfer

knowledge from a mixture of fine and coarsely labeled im-

ages to fine-grained zero-shot classes. This more general

zero-shot learning problem is the focus of this work. We

now present a principled probabilistic model and zero-shot

learning framework for addressing this problem.

Probabilistic Hierarchical Classification: The classifica-

tion model that we use in this work is an instance of the CRF

model family [12]. We define a joint probability distribution

over all classes in H conditioned on an input feature vector

x. The CRF contains one binary label variable per class in

H. We denote a full binary labeling of the hierarchy by the

vector-valued random variable Y and a realization of this

variable by y ∈ {0, 1}|Y|. We introduce the notation y(c)
to refer to the label vector with ones on the unique shortest

path from class c to the root and zeros elsewhere. The con-

ditional probability distribution induced by this CRF over

the vector of label variables y given an input x is specified

through the energy function Eθ as shown below.

pθ(y|x) =
exp(−Eθ (y,x))∑

c∈H exp (−Eθ(y(c),x))
, (1)

Eθ(y,x) = φG(y) +
∑

c∈H

y(c)wT
c φ

F (x) (2)

The model parameters θ = {wc|c ∈ Y} correspond to the

set of weights vectors wc associated with each class c. φF is

a feature function mapping input images to feature vectors.

The global factor φG(y) ensures that joint label configura-

tions y respect the “is-a” semantics of the label hierarchy.

In particular, the only valid label configurations are those

of the form y(c) for c ∈ Y . The CRF is explicitly normal-

ized over this set of valid joint labelings, whose cardinality

is exactly |Y|.
Given the above definitions, we can easily construct the

conditional probability associated with a coarsened label

z ⊂ Z by marginalizing over the paths from the classes

in z to the root of H as shown in Equation 3. The model is

learned by maximizing the conditional likelihood function

in Equation 4.

pθ(z|x) =
∑

c∈z

pθ(y(c)|x) (3)

L(θ;Dtr) =

N∑

n=1

log pθ(zn|xn) (4)

Zero-Shot Parameter Prediction with GCNs: To enable

zero-shot prediction using a CRF model we follow a similar

approach to [16, 10] which infer classifier parameters for

zero-shot classes using a GCN. We first remove the zero-

shot classes from H forming a restricted hierarchy H−zs.

We then estimate maximum conditional likelihood parame-

ters ŵMLE
c for the classes in H−zs. Next, we apply a GCN-

based parameter prediction approach to predict the full set

of CRF class weights. Specifically, the GCN learning pro-

cedure takes as input the class attribute vectors ac associ-

ated with all classes c in H and the graph defined by the se-

mantic hierarchy H and uses them to predict the CRF model

parameters ŵc associated with all classes.

A GCN consists of layers of the form: Hi =
g(AHT

i−1
Vi) where A is the normalized adjacency matrix

of the (undirected) semantic hierarchy H, Vi is the set of

weights for layer i, and g is an activation function. H0 is

the input matrix of class attribute vectors ac for each class

c. After a series of such layers, the model predicts output

vectors ŵc for all classes c in H. To learn the GCN, we min-

imize the squared loss function
∑

c∈Ytr

||ŵMLE
c − ŵc||

2

2
.

After training the GCN, we use it to predict parameters

ŵGCN
c for every class in H. While [16, 10] replace the

MLE parameters ŵMLE
c with the GCN-inferred parameters

ŵGCN
c for all classes, we instead retain the MLE parame-

ters ŵMLE
c for training class and internal nodes and use the

ŵGCN
c GCN-inferred parameters for zero-shot classes only,

which we find improves performance.

As discussed by [16], the GCN model is easier to train

when the outputs of the GCN are L2-normalized. In gen-

eral, the MLE parameters of the base model do not have unit

norm, so the GCN-predicted parameters must be scaled in

order to achieve reasonable performance. To that end, we

calculate the final predicted parameters using the formula:

ŵ∗
c = [c ∈ Yzs] · γ · ŵGCN

c + [c 6∈ Yzs] · ŵ
MLE
c . We set

the scale parameter γ to the mean of the 2-norm of the MLE

parameter vectors ŵMLE
c for c ∈ Ytr.

Implementation Details: In the experiments that follow,

we use a pre-trained ResNet101 [8] model trained to clas-

sify the 1,000 ImageNet classes as the image feature func-

tion φF (x), resulting in a D = 2048 dimensional feature

vector. For the label attribute vectors ac, we trained a 300-

dimensional Subword Information Skip Gram model [2] on

all of English Wikipedia using the fastText library. Hyper-



Dataset Training Classes Training Images Zero-Shot Classes Zero-Shot Images Superclasses

Small Hierarchy 53 ∼69,000 41 ∼47,000 8

Large Hierarchy 1,000 ∼1,300,000 897 ∼1,100,000 376
Table 1. Statistics for benchmark hierarchies. Training and zero-shot classes are leaves. Superclasses are non-leaf classes. Labeled images

are available for training and zero-shot classes only. Labeled zero-shot class images are used for testing only.

parameters were chosen using a grid-search based selection

process which used a simulated zero-shot partitioning of the

training classes. In all cases we used ReLU activation func-

tions and dropout regularization. Optimization of the GCN

models was performed using Adam and the CRF models

were trained using SGD with momentum.

3. Benchmark Datasets

In this section, we present the hierarchical zero-shot

benchmark data sets used in our evaluation. We construct

benchmarks using the ImageNet dataset [14].

Existing Benchmarks: The most commonly used Ima-

geNet subset is the 1,000 ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) classes. However, the

full ImageNet graph is made up of about 32,000 classes of

which 21,000 have images. One common approach to gen-

erate zero-shot test sets from these 21,000 classes is use the

distance from the 1,000 ILSVRC training classes. For ex-

ample, popular sets are the “2-hops” and “3-hops” test sets,

which consist of sets of classes which are 2 and 3 tree hops

away from the 1,000 training classes, respectively [7].

Unfortunately, little attention has been paid to the struc-

ture of these commonly used test sets. For example, the

ILSVRC 2-hops set consists almost entirely of children or

parents of the ILSVRC training nodes. Furthermore, the

ILSVRC 3-hops set often exhibits a nested structure where

zero-shot classes are parents of other zero-shot classes. This

is especially problematic for the approaches of [16, 10]

since their methods output a flat classifier over the seen and

unseen classes. They are therefore implicitly learning a flat

classifier over a set of nested classes. We instead propose to

restrict the zero-shot classes to be leaf classes in a semantic

hierarchy H extracted from WordNet.

Small Benchmark Hierarchy: As a simplified baseline,

we extend the 65 node hierarchy presented by [5]. We

change this hierarchy by removing the four leaf nodes that

do not appear in the 1,000 ILSVRC classes. We do this

so that we can use a pre-trained ResNet model without the

need to fine-tune. Furthermore, we choose 41 classes which

are siblings of the training leaves in the larger WordNet hi-

erarchy to use as zero-shot classes.

Large Benchmark Hierarchy: We also construct a large

benchmark semantic hierarchy for ImageNet that includes

all 1,000 of the ILSVRC classes. We start with the full

WordNet graph of nouns [13], of which ImageNet is a sub-

graph. We then iteratively remove leaf nodes from the

graph until the only remaining leaves are the 1,000 ILSVRC

classes. This results in a graph which contains non-tree

edges (i.e., some nodes have more than one parent). We

enforce a tree structure by running Chu-Liu/Edmonds’ al-

gorithm [6], which finds an optimal spanning tree given a

general graph as input. We then contract all nodes which

have exactly one child. We generate a set of 897 zero-shot

classes that (1) have at least 1000 images and (2) are sib-

ling nodes of the 1,000 ILSVRC classes. Table 1 displays

summary statistics for these two benchmark hierarchies.

4. Related Work

In terms of hierarchical classification models, the hierar-

chy and exclusion (HEX) graph model framework of [4]

is the most closely related work. The CRF model that

we leverage is equivalent to that of [4] when only hierar-

chy edges are included. This results in efficient linear-time

marginalization and normalization. [4] consider learning

HEX graph models from coarsened labels, but do not con-

sider the zero-shot learning problem as defined in this work.

In terms of zero-shot learning, the most closely related

work is that of [16], which can be viewed as a simplified

special case of our approach. [16] use a GCN to predict the

parameters of a flat, multi-class logistic regression classifier

over fine-grained classes. The hierarchical CRF model that

we use is the key to enabling principled incorporation of hi-

erarchically coarsened labels, which [16] do not consider.

This strictly generalizes the use of a multi-class logistic re-

gression classifier. As noted earlier, we also retain the MLE

parameters for the training classes and explicitly re-weight

the GCN parameter predictions to improve performance.

The recent approach of [10] builds upon [16] by design-

ing a new GCN architecture for this parameter prediction

problem. At a high level the approach is the same, with only

the GCN changing. In our initial experiments, we found that

the approaches of [10] and [16] performed similarly.

Finally, generative models including VAEs have seen in-

creasing use in zero-shot learning. The cross-alignment and

distribution-alignment variational autoencoder (CADA-

VAE) [15] learns a separate VAE for each modality of the

data (e.g., images and attributes) and uses a cross-alignment

loss and a Wasserstein distance to align the latent spaces of

the VAEs. A classifier is then trained in the aligned latent

space using encodings of images and attributes. CADA-

VAE is a strong a baseline for fine-grained zero-shot classi-

fication, but does not leverage hierarchical information.



Figure 1. Results on fine-grained classification. (Left) small hierarchy. (Right) large hierarchy. The right-most three bars in each plot show

the CRF+GCN under increasing levels of coarsening. The left-most four bars show results without coarsening.

5. Experiments and Results

In this section, we present experiments and results.

Experimental Details: We use logistic regression com-

bined with graph convolutional networks (LR+GCN, which

uses our modified parameter prediction procedure) and

CADA-VAE as a baselines. We also use a modification of

CADA-VAE that includes an additional semantic hierarchy-

based embedding of each class (CADA-VAE+H). The

hierarchy-based class embeddings are created from the class

hierarchy following the approach of similar to [1] which

constructs a node embedding as a normalized vector of

node adjacency information. We compare to the proposed

combination of conditional random field models with graph

convolutional networks (CRF+GCN). All models used the

same image features and label attribute embeddings.

We perform experiments with both the small and large

benchmark hierarchies. All test results use the more chal-

lenging generalized zero-shot prediction procedure where

the true test labels are in Yzs, but the model makes free pre-

dictions over the full set of leaf classes YL = Yzs ∪ Ytr

[3].

For the larger benchmark hierarchy, the best performing

architecture for both the CRF and logistic regression was a

six layer GCN with output dimensions: 2048 → 2048 →
1024 → 1024 → 512 → D. For the smaller hierarchy,

the best performing GCN for the CRF was 3 layers with

output dimensions 2048 → 1024 → D. Lastly, the best

performing GCN for the logistic regression model was a 2-

layer GCN with output dimensions 2048 → D.

Experiment 1: Fine-Grained Prediction from Fine-

Grained Labeled Training Instances: We first consider

the case of fine-grained prediction within the leaves of the

hierarchy H when learning using only fine-grained training

labels. The results are shown in Figure 1 for the small and

large benchmarks (left four bars of each figure). We see

that the LR+GCN yields significant improvement relative

to CADA-VAE without hierarchical information, which is

consistent with the ImageNet results of [15]. Further, we

see that adding hierarchical class embeddings to CADA-

VAE leads to improved performance on both hierarchies,

confirming the result of [1]. The CRF+GCN method, which

makes more extensive use of the hierarchy through the CRF

model, makes further improvements over LR+GCN and

CADA-VAE on both problems.

Experiment 2: Fine-Grained Prediction from Coarsely

Labeled Training Instances: In this experiment, we simu-

late a dataset in which varying amounts of data have coars-

ened labels. As in [4], we consider re-labeling varying

fractions of the training instances with the parent label of

their true class during training. We note that only the

CRF+GCN method can make use of the coarsened labels

during training (right 3 bars of each figure). We learn it

under coarsening, assess its fine-grained generalized zero-

shot test accuracy, and compare to the baseline methods

learned on all training data without coarsening. Remark-

ably, the CRF+GCN is able to maintain stable performance

with up to 50% of training labels coarsened. Further, we

can see that the CRF+GCN method with up to 90% coarsen-

ing out-performs LR+GCN with no coarsening on the small

benchmark. Similarly, the CRF+GCN method with up to

50% coarsening maintains its advantage over the LR+GCN

method with no coarsening on the large benchmark.

6. Conclusions

We have presented a novel approach to zero-shot learn-

ing that is able to effectively leverage large volumes

of coarsely labeled training instances by combining the

strength of a hierarchical probabilistic classifier with a

graph convolutional parameter prediction approach that also

leverages class hierarchy information. Our results show

that our proposed model out-performs prior state-of-the-art

zero-shot image classification methods in the standard set-

ting, while maintaining very strong zero-shot performance

in the presence of significant volumes of coarsened labels.
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