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Abstract

We present a self-supervised task on point clouds, in or-

der to learn meaningful point-wise features that encode lo-

cal structure around each point. Our self-supervised net-

work, operates directly on unstructured/unordered point

clouds. Using a multi-layer RNN, our architecture predicts

the next point in a point sequence created by a popular and

fast Space Filling Curve, the Morton-order curve. The final

RNN state (coined Morton feature) is versatile and can be

used in generic 3D tasks on point clouds. Our experiments

show how our self-supervised task results in features that

are useful for 3D segmentation tasks, and generalize well

between datasets. We show how Morton features can be

used to significantly improve performance (+3% for 2 pop-

ular algorithms) in semantic segmentation of point clouds

on the challenging and large-scale S3DIS dataset. We also

show how our self-supervised network pretrained on S3DIS

transfers well to another large-scale dataset, vKITTI, lead-

ing to 11% improvement. Our code is publicly available.1

1. Introduction

Given their massive success with 2D data, deep learning

algorithms are a natural option to solve 3D computer vision

problems. The most common form of 3D data comes in the

form of unstructured 3D point clouds. To that extent, Point-

Net [9] paved the way to applying deep learning directly to

point clouds and served as a gateway for a variety of works

in this area. These works generally fall into 2 categories:

point-wise networks and point convolutions. In the former,

point features are extracted usually through fully-connected

or 1D convolutions layers, and later aggregated using sim-

ple global feature pooling or more complex RNN architec-

tures. Point convolution methods define convolution kernels

that operate on point neighborhoods directly.

We propose learning a new type of point-wise feature by

using points and a structured neighborhood around them.

∗equal contribution
1https://github.com/alitabet/morton-net

Figure 1. Self-Supervision of 3D Point Clouds. We propose to

learn a point-wise feature representation by leveraging space fill-

ing curves, namely the Morton- or Z-order. Given this ordering,

we setup a self-supervised task that aims to predict a point (the

red point) from the sequence points (the orange points). Features

learned from this self-supervision can be used to improve perfor-

mance in point cloud semantic segmentation.

We define this neighborhood based on a predefined mean-

ingful geometric ordering for 3D points, namely the well-

known Morton-order (also known as Z-order) Space Filling

Curve (SFC). Given this ordering, a self-supervised task of

point prediction can be exploited to extract local point-wise

features, which can be later used in the common 3D tasks

of semantic segmentation (refer to Figure 1).

Contributions: We summarize our contributions as three-

fold. (1) We propose a self-supervised task and accom-

panying network to learn point-wise features in 3D point

clouds; we denote these learned features as Morton features.

(2) Since Morton features are learned in a self-supervised

manner, we show how they can be easily incorporated in

popular 3D tasks. Specifically, we show how they can be

used in semantic segmentation pipelines to substantially in-

crease their performance by +3% on the challenging S3DIS

[1] dataset. (3) We show how Morton features trained on

S3DIS successfully transfer to a different dataset, vKITTI

[4], where we improve by 11% in semantic segmentation.

2. Related Work

Deep Learning for Point Clouds. We summarize ap-

proaches that operate directly on unordered point clouds.

PointNet [9] pioneered the way for deep learning meth-

ods to be applied to unordered point clouds. The authors
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Figure 2. Learning Morton Features. Our architecture aims to learn local features of unstructured 3D point clouds. Our model is trained

in a self-supervised fashion to predict the displacement to the next point in a Z-ordered sequence. Given an unstructured point cloud,

we first generate multiple Z-ordered sequences that end at each point (e.g. the red point xk). We encode each point xi in the sequence

(except xk) into a higher dimensional vector vi with a series of 1D convolutions, batch normalization, and ReLU. The sequence of vectors

(v1, v2, . . . , vk−1) are then fed into a multi-layer RNN, whose final state h is transformed by a fully connected layer to produce the final

displacement prediction y. We regress y to the ground truth displacement (xk − xk−1) for each Z-ordered sequence.

show the benefit of using this data modality as opposed

to either voxelized or multi-view methods. PointNet takes

point cloud chunks, computes point features, and aggre-

gates those features with an order-invariant operation like

max pooling. Pooled features are used to either label the

whole chunk (classification) or each point (segmentation).

Inspired by this line of work, new research presents bet-

ter ways to compute and aggregate point features by either

looking at more local context [10, 4] or using more com-

plex RNN based methods [6, 16]. Recent approaches try

to leverage better point neighborhoods [17, 7], or construct

complex point based kernels [12].

Self-Supervision. Self-supervision is a form of unsuper-

vised learning, where supervision originates from the data

itself. The principal idea is to set a task that only depends

on the data available. This task serves as a proxy to learn

semantic representations. With images, self-supervision has

been applied to learn relative patch locations from the same

image [2], learn colorization [18], design examplar CNNs

[3], and learn image rotations [5]. In video, examples of

self-supervision work are learning the next frame in a video

sequence [14] and tracking by colorization [15]. For 3D

data, few works use unsupervised methods to learn volu-

metric representations of 3D data [13, 11]. In this paper,

we present a new method to compute meaningful point fea-

tures for unstructured point clouds. We compute these fea-

tures through a self-supervised task that does not require

semantic labels. Our features can represent the local struc-

ture around each point. We show how these features can be

incorporated to perform point cloud semantic segmentation,

and how they are generalizable between datasets.

3. Methodology

In this section, we formulate a self-supervised proxy task

to learn point features (Figure 2). We highlight the pro-

cess to generate the self-supervised training data from any

point cloud, and apply it to the large-scale and dense S3DIS

dataset [1]. Finally, we detail our proposed model architec-

ture to solve the self-supervised task.

3.1. Predict­the­Next­Point Self­Supervised Task

Given a k-long Z-ordered sequence (x1, x2, . . . , xk), the

task is to predict xk from the previous (k − 1) points in

the sequence. To stabilize the learning process, we con-

sider the equivalent task where we predict the displacement

xk − xk−1 given the (k − 1)-long subsequence (x1, x2, . . . ,

xk−1). The Z-order gives us a stable structure to learn from

any unstructured point cloud. We turn to self supervision

to learn this task since it does not require annotated data.

Next, we detail how Z-ordered sequences can be generated

from an unstructured point cloud.

3.2. Z­ordered Sequence Generation

Let Sr(x) be the set of points that lie in a neighborhood

of radius r around the point x. We refer to Sr(x) as the

support of x. Given a point x in our 3D point cloud, we

generate Z-ordered sequences that end at x in the following

way: we order all points in Sr(x) according to their Z-order

[8], then we randomly sample (k − 1) points from Sr(x)
that have a smaller Z-order compared to that of x. Finally,

we construct a Z-ordered sequence of length k that ends

at x, i.e. the (k − 1) sampled points plus x. We generate

m different Z-ordered sequences in the same manner for

every point x in the point cloud. Our sequence generation

procedure guarantees that we cover each point with multiple

sequences, allowing us to capture the different aspects of

local structure in the point cloud.

3.3. Proposed Architecture

The input to our model is a (k − 1)-long Z-ordered se-

quence of 3D points, (x1, x2, . . . , xk−1), and the expected



Rand.
Coordinate-wise Ours

x y z k = 20 k = 60 k = 100

36.6 37.6 36.9 37.9 34.0 46.6 84.0

Table 1. Ours vs. Baselines. Test accuracy comparison between

our architecture and four baselines (random ordering and three

coordinate-wise orderings) on the predict-the-next-point task. We

show the results for different sequence lengths k. All baselines use

k = 100. Ours with k = 100 gives the best results.

output is the displacement to the next point, i.e. (xk−xk−1).
We encode each 3D point xi into a higher dimensional vec-

tor vi using a series of spatial encoding layers, each of

which consists of a set of 1D convolutions followed by

batch normalization and a ReLU activation function. Then,

we feed the high dimensional vector sequence (v1, v2, . . . ,

vk−1) to a multi-layer RNN. Finally, we transform the last

RNN hidden state using a fully connected layer to produce

a 3D final output y, i.e. an estimate of the spatial displace-

ment needed to reach the next point in the sequence. Figure

2 gives an overview of our proposed architecture.

3.4. Implementation Details

We select the minimum radius r for which we have at

least 2 × k points in the support set Sr(x). We experiment

with different sequence length values, namely k = 20, 60,

and 100. We empirically set the number of sequences per

point to m = 5. For our architecture, we use 4 encoding

layers with 64 1D-convolution kernels in each. We choose

a GRU with 4 layers and hidden state size of 200, and use

the hidden state as our Morton features. We use an Adam

optimizer, train for 40 epochs, and set the initial learning

rate to 10−3. We decrease the learning rate with a decay

factor of 0.9 when the validation loss does not improve for

2 epochs. We pick the model with the best validation loss.

4. Experiments

We train our model on the Predict-the-Next-Point task

(Section 3.1) on the S3DIS dataset [1]. We choose S3DIS,

since it is a large-scale dataset with high density point

clouds and a large number of object instances. These char-

acteristics translate into a large variety of Z-ordered se-

quences for our model. We incorporate the learned Mor-

ton features into point cloud semantic segmentation. We

show how Morton features trained on S3DIS enhance se-

mantic segmentation on the same dataset and transfer well

to vKITTI [4], a dataset of outdoor scenes.

4.1. Dataset Details

S3DIS [1]. The Stanford Large-Scale 3D Indoor Spaces

(S3DIS) dataset consists of indoor 3D point clouds of 6
large areas. The indoor scans cover an area of 6020 me-

ters and contain over 215 million points. The data is se-

mantically separated into 272 rooms and annotated with 12
semantic elements and an additional label for clutter. S3DIS

is typically used for indoor semantic segmentation.

vKITTI [4]. Virtual-KITTI (vKITTI) is a synthetic large

outdoor dataset with 13 semantic classes from urban scenes.

vKITTI imitates data from the real-world KITTI dataset. It

contains data from 50 high resolution scenes. This dataset

is used for a variety of tasks, where the most common one

for point clouds is semantic segmentation.

4.2. Learning Morton Features

Experimental Settings. We study the performance of our

model on the self-supervised task on S3DIS. We discard the

semantic label information in S3DIS and only use the unla-

belled point clouds. We train our model on a subset of the

original data. In particular, we select 8 rooms from the train-

ing subset and 2 from the testing subset. This constitutes

less than 4% of all rooms. We first generate the k-long Z-

ordered sequences for all these rooms, and later subsample

40% of the training sequences for computational efficiency.

Baseline Methods. To demonstrate the effectiveness of

learning from Morton-ordered sequences, we train base-

line models on the same predicting-the-next-point task from

sequences ordered using different mechanisms. The Ran-

dom Sequence Baseline is trained on sequences of points

that are randomly ordered. We choose this model for refer-

ence, so as to show that learning this self-supervised task

is more meaningful when the sequence is ordered. The

Coordinate-Ordered Sequence Baselines train three mod-

els on point sequences ordered according to their x-, y-,

and z-coordinates. We choose these models to show that

Morton-order is a better ordering choice.

Evaluation Metric. To measure the accuracy of our model

and the baselines in predicting-the-next-point, we consider

a prediction to be correct if it is within a ball of radius ρ

from the correct next point in the sequence. In other words,

if the ground truth displacement is (xk − xk−1), and the the

model predicts a displacement value y, then the prediction

is correct if and only if ‖y − (xk − xk−1)‖2 ≤ ρ. We set

ρ = 0.02 in our experiments and report the performance as

the average accuracy on the testing sequences.

Results. Table 1 reports the test accuracy of our model

against the baselines on S3DIS. Our model is consistently

superior to both baselines. This shows the importance of

the Z-order in learning local point features from unstruc-

tured point clouds. Additionally, we show the effect of the

parameter k (the sequence length) on the accuracy. As k in-

creases, our model becomes more accurate in predicting the

next point. We attribute this correlation between k and ac-

curacy to the fact that with longer Z-ordered sequences, our

model has access to a bigger support set Sr(x) and thus can

encode more complex local structures around each point.

However, while increasing k beyond 100 would result in a

more accurate model, the increase in performance comes at



Method mIoU mAcc ceiling floor wall beam column window door table chair sofa book. board clutter

PN [9] 41.1 49.0 88.8 97.3 69.8 0.05 3.92 49.3 10.8 58.9 52.6 5.8 40.3 26.3 32.2
[9] + Morton features 44.4 63.1 90.3 97.9 74.6 0.11 9.55 47.4 17.7 64.2 57.9 1.42 43.2 33.5 40.1

RSNet [6] 51.9 59.4 93.3 98.4 79.2 0.0 15.8 45.4 50.1 67.9 65.5 52.5 22.5 41.0 43.6
[6] + Morton features 55.0 61.2 92.5 98.5 81.4 0.0 24.2 47.6 50.0 70.8 76.7 31.6 58.2 38.5 45.1

Table 2. Semantic Segmentation on S3DIS. Results of applying Morton features to the S3DIS semantic segmentation task for test Area

5. The first sub-table shows results using PointNet and PointNet with Morton features. The second sub-table compares RSNet with and

without Morton features. Performance is measured by mean intersection of union (mIoU) and mean accuracy (mAcc) across classes. We

see clear improvement in mIoU when adding Morton features to both PointNet and RSNet. Bold represent best numbers on each sub-table.

the cost of making the model computationally expensive,

since RNNs process data sequentially. Thus, we choose

k = 100 for all remaining experiments.

4.3. Morton Features for 3D Tasks

We now use our trained model in 2 different experiments:

semantic segmentation on S3DIS and semantic segmenta-

tion on vKITTI. In each experiment we choose a point cloud

method and enhance it with Morton features. We show this

enhancement provides significant boost in the method’s per-

formance. Our aim is to demonstrate the power of the Mor-

ton features we learned by showing that: (1) they are effec-

tive for 3D point-based semantic segmentation and (2) they

generalize well across different datasets.

Experimental Settings. We use our model (with k = 100)

trained on S3DIS to extract features for semantic segmen-

tation in S3DIS and vKITTI. Using the procedure detailed

in Section 3.2 to extract features, we generate Z-ordered se-

quences for the two datasets, pass these sequences to our

model, and aggregate the hidden state of the RNN. Here,

we use the same model pre-trained on the unlabelled point

clouds of S3DIS and do not finetune on other datasets.

Evaluation Metrics. We measure performance in all exper-

iments using the mean point intersection over union (mIoU)

across classes (the preferred metric for semantic segmenta-

tion) and the mean accuracy (mAcc).

Models. For the choice of segmentation algorithms, we se-

lect the classical PointNet [9] and RSNet [6], all with read-

ily available code. For PointNet, we concatenate our pre-

computed Morton features to those extracted in PointNet

before the point classifier. In RSNet, we concatenate our

pre-computed Morton features with their point features be-

fore they are fed to their RNN layers.

Results on S3DIS. Table 2 presents our results for seman-

tic segmentation on S3DIS. We use the same data process-

ing as in [6], and evaluate results on Area 5. We note how

augmenting both PointNet and RSNet with Morton features

boosts their performance by over 3 points in mIoU. These

results show training our model with S3DIS translates to

meaningful information about local point structure, which

can be used to significantly improve semantic segmenta-

tion performance.We notice significant boost in classes like

Method OA mIoU mAcc

PN [9] 79.7 34.4 47.0
PN + Morton features 91.8 45.4 63.5

Table 3. Semantic Segmentation on vKITTI. Results of apply-

ing Morton features to the vKITTI semantic segmentation task.

Adding Morton features to PointNet significantly increases its per-

formance. Bold numbers represent the best numbers.

bookcase, table, and chair, where we believe the local in-

formation from Morton features provides information oth-

erwise inaccessible to the networks.

Results on vKITTI. In this experiment, we use our model

pre-trained on S3DIS to extract features on vKITTI point

clouds, and use these features in a semantic segmentation

pipeline. Experiments in vKITTI are done using the 6-fold

cross-validation splits suggested by [4]. Table 3 shows em-

pirical evidence for a critical strength of our model. By

adding Morton features to PointNet (simple model), we im-

prove its performance by 11 points in mIoU. We believe

one of the reasons why semantic segmentation is challeng-

ing in vKITTI is the low sampling density of points in this

dataset. Since Morton features are trained using a very

dense dataset (S3DIS), they include local information that

is otherwise missed during preprocessing in vKITTI. This

information transfers well when computing features on a

different, more sparse dataset. Although we do not perform

specific ablation studies to prove this fact, we believe this

additional information is responsible for the performance

increase brought about by incorporating Morton features.

5. Conclusion

We presented a self-supervised approach to learning lo-

cal point-wise features from 3D point clouds. We showed

the importance of learning from Morton-ordered sequences,

and demonstrated the effectiveness of Morton features for

3D tasks. We showed significant improvement when aug-

menting other methods with our features, and showed that

our features can generalize well to a different dataset. Al-

though we only used them for segmentation, we believe that

Morton features are generic and effective in encoding local

point structure to enhance other 3D tasks.
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