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Figure 1: Self-supervised object detection and retrieval. Using unlabeled videos, and based on the natural correlation

of speech and vision, our model learns the appearance and names of objects without any manual labeling involved. NN:

Neural-Network

Abstract

Learning an object detection or retrieval system requires

a large data set with manual annotations. Such data are

expensive and time-consuming to create and therefore dif-

ficult to obtain on a large scale. In this work, we pro-

pose using the natural correlation in narrations and the

visual presence of objects in video to learn an object de-

tector and retriever without any manual labeling involved.

We pose the problem as weakly supervised learning with

noisy labels, and propose a novel object detection and re-

trieval paradigm under these constraints. We handle the

background rejection by using contrastive samples and con-

front the high level of label noise with a new clustering

score. Our evaluation is based on a set of ten objects with

manual ground truth annotation in almost 5000 frames ex-

tracted from instructional videos from the web. We demon-

strate superior results compared to state-of-the-art weakly-

supervised approaches and report a strongly-labeled upper

bound as well. While the focus of the paper is object detec-

tion and retrieval, the proposed methodology can be applied

to a broader range of noisy weakly-supervised problems.

1. Introduction

Existing machine learning techniques still lag far behind

human ability to learn from minimal supervision, and of-

ten require a tremendous amount of labeled data. Although

huge progress has been made in the field, with the recent

weakly-supervised training methods [3, 8, 23, 30, 25] com-

ing close to results achieved in fully-supervised approaches

[17, 10], the size, quality, and availability of labeled data

are currently becoming a major bottleneck. One possible

approach to break past this limitation is the self-supervised

learning paradigm. Examples of self-supervised learning

include reinforcement [13] and pretext-based learning such

as Jigsaw [15] and Colorization [28]. Yet these methods

require a reward function, or introduce rare tasks.

The huge and increasing amount of online videos brings

several opportunities for training deep neural networks in

the self-supervised regime. Large-scale video data sets such

as the YouTube-8M [1] and the How2 data set [16] can

be leveraged for this purpose. In this paper, we explore a

method for self-supervised learning, tackling the challeng-

ing tasks of visual object detection and retrieval. To this

end, we exploit the How2 data set by taking advantage of

the multi-modal information it provides (video and auto-

matic closed captions). Fig. 1 describes the targeted prob-

lem in this paper.
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Given unlabeled training videos, the audio channel can

be used as a ”free” source of weak labels, allowing a convo-

lutional network to learn objects and scenes. For instance,

by seeing and hearing many frames where the word ”gui-

tar” is mentioned, it should be possible to detect the guitar

due to its shared characteristics over different frames. Yet,

self-supervised learning from the videos themselves is quite

hard when performed in the wild, as the audio and the visual

contents may often appear completely unrelated. Neverthe-

less, the results in Section 4 show that our approach is able

to fairly successfully reduce the level of this source of noise,

detecting frames that contain a desired object, and localiz-

ing the objects in the relevant frames – all this in hard sce-

narios of large variation in object appearance, typical mo-

tion blur in video frames and in the presence of strong label

noise.

We pose the self-supervised object detection problem as

a noisy, weakly-labeled binary learning task. To ground a

certain category of object, we consider the large corpus of

How2 [16] instructional videos covering a wide variety of

topics across 13,000 clips (about 300 hours total duration),

with word-level time-aligned subtitles. We extract candi-

date frames from time intervals corresponding to the sub-

title, containing the object’s name (synced with the speech

mentioning the name of the object). This set of frames com-

prises our positive set, yet it is noisy labeled as the object

might not appear in all of the selected frames. Creating a

negative set (that most likely lacks the object of interest)

allows discriminating between the object and background,

essentially solving the object detection problem. The task

is similar to weakly supervised object detection (WSOD),

yet is distinct from it in two ways: 1) the high level of la-

bel noise and 2) its binary nature (i.e., each model is trained

to detect a single object). We show that the performance of

state-of-the-art weakly supervised models is degraded when

handling noisy labeled data. Furthermore, most of the time

these models fail to converge at all, when trained for single-

class detection.

We argue that a single-class detection model is essen-

tial for a scalable and robust multi-class object detection

system for a number of reasons. Firstly, adding a new ob-

ject does not require training from scratch on the entire data

set. Secondly, a multi-class detection model of a very large

set of objects (e.g., tens of thousands) is hard to train (con-

vergence duration, data size, etc.). Thirdly, a single object

detector should not require multi-class training data as is

the case for WSOD models (cf. Table 2). Lastly, multiple

single-class detectors applied in parallel act as an ensemble

of models and are capable of obtaining better predictive per-

formance than could be obtained from a single multi-class

detector (Section 5.2).

Contribution. The key contribution of this paper is three-

fold:

• We introduce a methodology capable of detecting and

retrieving objects and their names, learned from con-

tinuous videos without any manual labeling.

• We pose the object detection and retrieval problem as

weakly-labeled binary learning task, but with noisy la-

bels, and propose a novel noise robust model for ac-

complishing it.

• Our model incorporates a novel cluster scoring method

that distills the detected regions separating them from

the surrounding clutter, even with extreme weak-label

noise and only binary weakly-labeled data.

2. Related Work

2.1. Self­Supervised multimodal learning

These approaches target learning from a large number

of unlabeled videos [2, 4, 9, 18, 20, 27, 29, 21] capital-

izing on the natural synchronization of the visual and au-

dio modalities, to learn models that discover audio-visual

correspondence. Particularly, [2, 9, 29, 21] use video and

sound (not speech) to discover the relevant audio track for

a certain region in a frame. In [2] the authors also suggest

an object localization (in both modalities), yet by activa-

tion heat maps (in low resolution) and not as detection. The

computer vision and NLP communities have begun to lever-

age deep learning to create multimodal models of images

and text. Grounded language learning from video has been

studied in [18, 20, 27] by learning joint representations of

text sentences and visual cues from videos. For instance,

in [27] words and objects are related using a trained ob-

ject detector from an external source, and therefore is not

self-supervised. Sun et al. [20] target a different problem

of speech recognition and [18] studies correspondence be-

tween words and concepts in human actions. The work in

[14] presents an unsupervised alignment method for natu-

ral language instructions in videos, with the specific goal of

automatically align the video segments to the correspond-

ing protocol sentences, and track hands in video and de-

tect the blobs touched. Recently, [19, 12] proposed a self-

supervised joint visual-linguistic model to learn high-level

features from instructional videos. The closet work to our

study is [7] that attempts to map word-like acoustic units in

the continuous speech, to semantically relevant regions in

the image. However this method is not self-supervised as

the captions are manually created for the image samples.

2.2. Weakly­supervised object detection

Weakly supervised learning and particularly of object

detection has attracted high interest as it’s potential to re-

duce the annotation labour, involved in creating the weak
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Figure 2: Schematic flow of the proposed self-supervised object detection or retrieval training scheme. We collect key frames

based on speech-to-text transcript. A frame is labeled with object X if the noun X was mentioned by a speaker. For every

object we also collect non-object frames from videos the noun X was not mentioned in. We cluster the data in the region

proposal feature space and refine those clusters iteratively based on a newly suggested potential score function. Finally, we

sample training data in a non-uniform manner based on the potential score, and thus reduce noise, to train a neural network

(NN) region classifier.

labels. Particularly, weakly supervised object detection

(WSOD) [3, 8, 23, 30, 25] uses only image-level anno-

tations to train object detectors (and no bounding boxes

around objects). While weakly supervised methods accept

well curated and ”clean” labels (correct labels for all the

images in the train-set), our problem involves a ”noisy” la-

beled data set, where many of our selected and self-labeled

frames are falsely labeled. In this study we suggest a novel

approach for weakly and noisily labeled object detection

problem. We compare our method to two different state-of-

the-art weakly supervised object detection models [23, 30],

showing superior results for both.

2.3. Noisy labels

Many noisy labeled methods target the training of deep

neural networks on large-scale weakly-supervised web im-

ages, which are crawled from the internet by using text

queries, without any human annotation [5, 31]. Although

our selected frames are expected to have fairly clean labels

by construction, they still contain considerable noise, i.e.

many extracted frames lack the object in the scene. Deep

learning with noisy labels is practically challenging, as the

capacity of deep models is so high that they can totally over-

fit the data with the noise [5, 6, 31]. Handling extreme noise

levels for image classification has been shown in [6], (tested

on MNIST and CIFAR) for up to 50% noise level. However,

our problem addresses a more challenging problem of ob-

ject detection with weak labels, that furthermore involves

higher noise level of up to 68% .

3. Method

The proposed self-supervised scheme is described in Fig.

2 with the pipeline summarized in Algorithm 1. Our input

Algorithm 1: Self-Supervised Object Detection

Input: Unlabeled videos X

Output: Trained object detector D for object O

1 Extract transcript for all videos in X . Section 3.1;

2 Extract positive & negative frames for O. Section 3.1;

3 Extract N region proposals per frame. Section 3.1;

4 Compute feature representation. Section 3.1;

5 for idx in Range(0, MAX EPOCHS): do
/* W-DEC */

6 if idx == 0 then

7 Initialize cluster centers using uniform K-Means;

8 else if idx %% I == 0 then

9 Re-initialize cluster centers using Weighed

K-Means and Sk (1). Section 3.3;

10 Train clustering net for one epoch. Section 3.3;

/* detection network */

11 Compute Sk (1) per cluster. Section 3.2;

12 Run DSD per frame per cluster. Section 3.4;

13 Train region classifier for one epoch. Section 3.5;

comprises a large set of unlabeled videos with speech tran-

scription from instructional video corpus of How2 [16]. In

the following, we detail the key steps of our method.

3.1. Extraction of key frames

For a given object name, let’s say a guitar, we extract a

single key frame from each center of temporal period where

the object was mentioned. While this is not ideal, it works

fairly well for selecting frames that contain the object. We

now dub these selected images as our (noisy) positive set,

labeled as Yl = 1. We construct also a balanced negative

set, Yl = 0, containing frames randomly selected from dis-
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Bike Dog Drum Guitar Gun Horse Pan Plate Scissors Tire Total/Average

No. of frames 419 1243 457 442 182 597 351 341 200 305 4537

Obj. instances 715 551 312 564 111 327 154 147 92 526 3499

Noise level % 28.4 59.5 53.4 35.1 61.5 47.1 68.4 67.7 58.5 22.6 55.4

SS recall % 85 97 98 94 95 99 94 97 83 83 92.5

Table 1: Data set: Statistics of the selected frames. Noise level refers to the percentage of selected frames without the object

present and SS recall to Selective Search [24] recall at IoU ≥ 0.5.

Bike Dog Drum Guitar Gun Horse Pan Plate Scissors Tire mAP

Supervised (single-class) 42.7 60.0 51.8 55.4 49.0 73.2 43.8 38.7 32.0 48.6 49.5

PCL (single-class) [23] F 3.2 F 6.6 0.2 11.3 10.9 13.7 0.6 11.1 7.2*

SPN (single-class) [30] 2.5 F 0.0 0.0 F F F F F 0.0 0.8*

Ours (single-class) 24.4 14.3 23.3 18.3 9.6 27.8 20.4 12.0 8.2 18.3 17.7

SPN (multi-class) [30] 13.6 12.1 29.8 12.6 0.7 22.9 6.1 7.3 0.0 13.6 11.9

Ours (multi-class) 22.8 14.1 19.7 17.5 9.4 27.5 17.4 8.3 6.8 16.1 16.0

Table 2: Evaluation on HowTo10 test set: Average precision over 3-folds at IoU ≥ 0.5. PCL [23], SPN [30] : Weakly

Supervised. F: Failed to converge, *: Without the failed objects. single-class: a binary model is trained & tested separately

for each object to distinguish between object and background. multi-class: standard multi-class detection. Best results

comparing to Weakly Supervised are in bold.

parate videos, that the object was not mentioned in. These

frames will most likely be without the object of interest, but

will include elements contained in the surroundings of our

object instances in the positive frames, such as faces, hands,

tables, chairs, etc. For each image (positive and negative)

we extract N region proposals using Selective Search [24].

Regions are labeled as positive or negative according to the

corresponding frame label, yli = Yl (similar to the bag and

instance labels in multi-instance learning paradigm [11]).

Using a pre-trained back-bone such as Inception-ResNet-

v2 CNN [22], we map each candidate region to a feature

space, represented by zli.

3.2. Potential score

The purpose of our learning approach is to find a com-

mon theme across positive regions that is less likely to exist

in negative counterparts. To this end, we cluster the regions

in the embedded space. Clusters with dense population of

positive regions are likely to contain the object of interest.

We therefore associate a positive ratio score to each cluster,

defined as the ratio between the positive and the total num-

ber of samples in the cluster (note that regions are labeled

according to their corresponding frame). Yet, high positive-

ratio clusters are noisy, so that real object clusters are not

always distinguishable. Specifically, we search for a target

cluster, satisfying the following properties: (1) High posi-

tive ratio ; (2) Low cluster variance, for tendency to include

a single object type; and (3) Cluster members that come

from a wide variety of videos, since we expect the object to

have a common characteristics among various videos. The

latter property also copes with the high temporal correlation

in a single video, that may create dense clusters. We formal-

ize these constraints using the following softmax function

Sk, to which we refer as the potential score, i.e. score of

cluster k containing the object:

Sk = σ

(

τ
P 2

k · logUk

Vk

)

k ∈ {0..K − 1}. (1)

Here, σ(·) is the softmax function, K denotes the total num-

ber of clusters, τ ∈ R is the softmax temperature, Pk is

the positive-ratio (according to the raw weak labels, since

the ground truth labels are not accessible), Vk is the clus-

ter distance variance, and Uk denotes the number of unique

videos. All parameters are normalized to unit sum. Our

observations showed the following importance order in the

potential score components: positive-ratio Pk, the cluster

variance Vk, and lastly the number of unique videos Uk.

For this reason Pk is squared and we take the log of Uk.

3.3. Weighed Deep Embedded Clustering

Following feature extraction, we cluster our region pro-

posals using a weighed variant of Deep Embedded Clus-

tering (DEC) [26] we call W-DEC. The original DEC is

a method that simultaneously learns feature representa-

tions and cluster assignments using deep neural networks

by building a mapping from the data space to a lower-
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Figure 3: Self-supervised retrieval results. Our model is able to learn and retrieve the appearance and names of objects

without any manual labeling involved. This is done simply by ”watching and listening” to unconstrained unlabeled videos

from the How2 data set [16] that includes 300 hours of instructional videos. Above, are the retrieval results of ten objects

(eight top instances per object from left to right). Top to bottom: Bike, Dog, Drum, Guitar, Gun, Horse, Pan, Scissors, Tire

and Plate. Green and red boxes represent success and failure, respectively, with regards to IoU=0.5. Yellow box represents

ground truth of the predicted instance. For better object instance variety, objects from unique videos are presented.

dimensional feature space in which it iteratively optimizes

a clustering objective. While DEC is a general cluster-

ing model, W-DEC drives the clustering toward true pos-

itive samples (with respect to the ground truth) without any
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ground truth labels. It does so by applying the following

modifications: Firstly, while DEC initializes cluster cen-

ters once using K-means, W-DEC re-initializes cluster cen-

ters using weighed K-means every I epochs (e.g., I = 3),

with the weights set by the potential score function Sk (1)

normalized by the number of positive samples in the clus-

ter. This re-initialization is an important step since it breaks

down candidate object clusters to smaller, yet higher quality

clusters. Secondly, following [26], we further suggest the

weighed Student’s t-distribution as a similarity measure:

qi,j =
(1 + ||zi − µj ||

2)−1 · w(i, j)
∑

j′ (1 + ||zi − µj′ ||2)−1 · w(i, j′)
(2)

with indices i and j referring to the sample and the cluster,

respectively, zi denoting the region embedding of sample

i, and µj being the centroid of cluster j. Here and in the

sequel, we drop the frame index l for simplicity. We set the

weights according to the region label yi ∈ {0, 1} as

w(i, j) =

{

0.5, if yi = 0

1, otherwise
(3)

The newly added w(i, j) simply weighs weakly-labeled

positive samples in candidate object clusters higher. This

simple weighing factor further refines those clusters while

not completely ignoring the negative data set distribution.

We use the new measure in (2) to drive the clustering to the

target distribution pij =
q2ij/fj∑
j′

q2
ij′

/fj′
with fj =

∑

i qij , us-

ing the Kullback-Leibler divergence loss (see [26] for more

details). In practice, we apply the weighing to clusters with

the positive ratio above a certain threshold (we refer to these

clusters as candidate object clusters). In our implementa-

tion, only cluster centers were optimized while keeping the

embeddings fixed.

3.4. Dense Subgraph Discovery

A frequent shortcoming of weakly-supervised ap-

proaches is their inability to distinguish between candidates

with high and low object overlap. However, for training a

high-performance object detector, regions with tight spatial

coverage of the object are required, i.e., high Intersection-

over-Union (IoU). To address this issue, we use the Dense

Subgraph Discovery (DSD) algorithm [8] on top of W-

DEC. This model defines an undirected unweighed graph

for a set of region proposals in a given image. The nodes

correspond to region proposals and the edges are formed by

connecting each proposal (node) to its multiple neighbors,

which have mutual IoU larger than a pre-defined threshold.

For our use case, we found that simply extracting the top

10% of the most connected nodes works well. Unlike [8],

we further make use of the remaining regions as ”hard neg-

ative” examples, which we found to be beneficial.

3.5. Sampling and training of the detector

Each cluster is assigned a potential score as defined in

(1). This score is likely to correlate with cluster purity, i.e.,

the ratio of regions in a cluster that contains instances of the

object. We then train a detector fed by the following sam-

ples: for positive samples we consider the regions selected

by W-DEC followed by DSD and sample regions with high

potential score Sk. Our sampling distribution is the nor-

malized score Sk. Note that sample scores are associated

with their corresponding cluster k. This sampling strategy

allows sampling from several clusters, since object regions

may be distributed among multiple clusters. This sampling

regime continuously reduces the noise level in the positive

set, that is necessary to reach a high accuracy detector (a

region classifier). Negative samples are sampled uniformly

from the negative frames and are combined with the rejected

regions from DSD, and are used as hard negatives. Our de-

tector is a multilayer perceptron with three fully connected

layers trained to separate between object and background,

using cross-entropy loss.

4. Experiments

4.1. Data set

Our evaluation is based on the How2 data set [16] that

includes 300 hours of instructional videos with synchro-

nized closed captions in English. Processing caption text

in the data set, we extract all object nouns and choose 10

top references to be manually annotated for testing purposes

only. We call this data set (and its annotations) of 10 objects

HowTo10 and will release it publicly. We include in our

corpus challenging nouns such as Bike that corresponds to

both Bicycle and Motorbike, or Gun that refers to Pistol, Ri-

fle and Glue Gun. This results a total of 4,537 frames from

the videos, with an average of 453 frames per-object. Our

transcript-based frame selection introduces 55% noisily la-

beled frames on average (i.e., only 45% of object frames are

correctly labeled and contain the object of interest on aver-

age). The statistics of our data set and the recall rate for the

Selected Search region proposal, are shown in Table 1.

4.2. Comparison to SoTA models and upper bound

We compare our results to two different state-of-the-art

weakly-supervised models - PCL [23] and SPN [30] in a

setting of a single-class detection, as well as multi-class de-

tection. For each model we use the code from the authors’

GitHub. For SPN code we found that during test time the

authors discard predictions that don’t match the image-level

labels. For a fair evaluation and comparison, we do not use

image-level labels during test time. For the single-class test,

to mimic the self-supervised scenario, we fed both models

with noisy positive samples as well as clean negative sam-

ples. For each object category, the models were trained
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(a) Drum

(b) Bike

(c) Guitar

Figure 4: Potential score. Object & Background samples

are denoted by red and blue, respectively. Opacity repre-

sents score (darker points have higher score). Object sam-

ples (red) are more likely to be darker and, thus sampled as

positive regions, reducing the label noise.

on two classes: the positive class with noisy labels, and

the negative class labeled as background. For the multi-

class comparison, both models were trained and tested with

multi-class labeled data. As an upper bound reference, we

report the performance of the fully-supervised binary de-

tection version of our method, where the detector, namely

object region classifier, is trained with ground truth labels.

These comparisons emphasize the challenge of learning ob-

ject detection from our unlabeled and unconstrained videos,

manifesting motion blur, extreme views (far-field and close-

ups), and large occlusions. Qualitative retrieval examples

are shown in Fig. 3.

4.3. Evaluation

We randomly split our data into 80%-20% train-test sets

containing mutually exclusive frames, and evaluate the per-

formance on 3 random folds. The training and test sets con-

tain on average 362 and 91 frames per object, respectively.

Since our task is self-supervised, we allowed frames from

the same video to participate in both train and test sets. For

quantitative evaluation, we manually annotated the bound-

ing boxes of 10 object categories. Note that annotations

were used only for the testing and were not available at

training, to keep the method annotation-free. As the eval-

uation criterion, we use the standard detection mean av-

erage precision (mAP) at intersection-over-union (IoU) of

0.5. For the case of single-class detection, training and test-

ing were performed for each object category separately, ac-

cording to the ”pseudo-labels” acquired from the transcript

and on the selected frames of the current object (i.e., the

noisy positive set). For a fair comparison to WSOD multi-

class models, we tested each of our single-class models on

all frames. Note that since the positive set is noisy (see

Table 1), the evaluation was in fact also applied to frames

without the objects.

4.4. Detection results

To the best of our knowledge, this is the first self-

supervised object detection method trained and evaluated

using standard evaluation practices. The results are sum-

marized in Table 2, for single-class and multi-class detec-

tion. For single-class detection, the performance of stan-

dard WSOD methods suffer greatly. In fact most of the

times it fails to converge at all. However, since our model

does not explicitly rely on discriminative parts, it is able to

perform well even with single-class noisy data. Our single-

class model attains a mAP of 17.7%, while PCL [23] and

SPN [30] reach mAP of 7.2% and 0.8% (computed only

on converged objects), respectively. While SPN attains an

mAP of 11.9% for the multi-class detection task, our model

obtains 16.0%, mAP, showing ∼34% relative improvement.

This is an outcome of lack of robustness of SPN to label

noise. Interestingly, when SPN is trained only on clean la-
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beled data (with correct weak labels), it only reaches 13.5%

mAP. This indicates the difficulty involved in object detec-

tion in our HowTo10 data set (due to variety, size, video

artifacts, etc.). Yet, this is still lower than the 16.0% mAP

that our model attains, when trained on noisy data. Since

the detection part of our model is basic, we attribute this to

the fact that multiple single-class models optimized sepa-

rately perform better (as ensemble), or as good as a single

multi-class model that is optimized for all objects at once -

a setting which SPN fails to converge with. As the upper

bound, we present the results from our trained region clas-

sifier (see Fig. 2) when fed with true region labels (starting

with the SS Recall as in Table 1). Although we are still

far from this extreme labeling scenario, we believe that our

results and labeled data can motivate others to tackle the

challenging task of self-supervised detection.

4.5. Retrieval results

Our model is able to learn and retrieve the appearance

and names of objects without any manual labeling involved,

simply by ”watching and listening” to unconstrained un-

labeled videos from the How2 data set [16]. To retrieve

the top n instances, for a given object, we choose the clus-

ter with highest potential score (choosing other top scor-

ing clusters is possible as well). Filtering out regions using

DSD, we extract the n closest samples to the cluster’s cen-

ter. Qualitative retrieval results for 10 objects for n = 8 are

shown in Fig. 3.

4.6. Implementation details

For clustering, we use K = 50, and set τ = 50 in (1).

We set the positive ratio threshold as Pk ≥ 0.6. In our

region classifier we use 3 FC layers (1024,1024,2) with a

ReLU activation in layers 1-2 and a softmax activation for

the output layer. Dropout is used for the two hidden lay-

ers with probability of 0.8. The classifier is trained with

the cross-entropy loss function. We use ADAM for opti-

mization with a learning rate of 10−4. The learning rate is

decreased by a factor of 0.6 every 6 epochs. We train our

model for 35 epochs for all objects. All experiments were

done on a Tesla K80 GPU. After initial feature extraction,

a single epoch duration (W-DEC, DSD & detector training)

is around 15 minutes, amounting to nearly 9 hours for an

object.

5. Analysis

5.1. Potential score function

In this section we demonstrate the effectiveness of

our potential score function (1) in producing semantically

meaningful clusters. In the absence of ground truth labels

during training, we use the potential score function as an

approximation. An effective approximation allows us to ig-

nore noisy images/regions during training. We visualize the

correlation of the potential score function with ground truth

labels using t-SNE for three different objects in Fig. 4.

5.2. Single­class detection and scalability

Scaling is an important aspect of any system. Specifi-

cally, detection systems must be scalable in two ways: 1)

data size and 2) number of objects. We argue that a self su-

pervised single-class detection model is in fact scalable in

both ways. It is known that self-supervision allows learn-

ing from abundant unlabeled data extracted from the web.

However, the availability of data is just the first part. A

model must be capable of utilizing a big data set for a prac-

tical task. Scaling a multi-class object detection model for

a large number of objects is hard, as it requires a big com-

plex model that must be trained from scratch on the entire

data set every time a new object is added. On the other

hand, using multiple single-class models in parallel instead

allows adding new objects more easily. Training is done

with a smaller model and on a small portion of the data.

Unfortunately, WSOD models, which are also capable of

using (weakly-labeled) web data, struggle with single-class

detection (as we show in Table 2). As opposed to standard

WSOD models, the proposed self-supervised model is capa-

ble of training a single-class detector since it does not rely

on discriminative regions explicitly. Therefore, it is better

scalable both in the data size and in the number of objects.

6. Summary

We have presented a model for the challenging tasks of

self-supervised object detection and retrieval using unla-

beled videos. Considering a large corpus of instructional

videos with closed captions, we select frames that corre-

spond to the transcript where the object name is mentioned.

We pose the problem as weakly binary and noisily-labeled

supervised learning. Our object detection is based on a

model that captures regions with a common theme across

the selected frames, distinguished from frames from dis-

parate videos. This new region-level and single-class ap-

proach shows promising results in the detection of objects

with high appearance variability and multiple sub-classes

arising from the language ambiguities. Additionally, being

self-supervised and single-class, it is easily scalable with

the number of objects and size of data set. We evaluate our

method in terms of detection mean average precision for

single-class, as well as multi-class detection. We report an

upper bound performance and demonstrate superior results

compared to top performing weakly-supervised approaches.

Our model handles noisy labels in the weak setting, and is

capable of detecting objects in challenging scenarios with-

out any human labeling.
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