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Abstract

With recent advances in sensing, multimodal data is be-

coming easily available for various applications, especially

in remote sensing (RS), where many data types like multi-

spectral imagery (MSI), hyperspectral imagery (HSI), Li-

DAR etc. are available. Effective fusion of these mul-

tisource datasets is becoming important, for these multi-

modality features have been shown to generate highly ac-

curate land-cover maps. However, fusion in the context

of RS is non-trivial considering the redundancy involved

in the data and the large domain differences among mul-

tiple modalities. In addition, the feature extraction mod-

ules for different modalities hardly interact among them-

selves, which further limits their semantic relatedness. As a

remedy, we propose a feature fusion and extraction frame-

work, namely FusAtNet, for collective land-cover classifi-

cation of HSIs and LiDAR data in this paper. The pro-

posed framework effectively utilizses HSI modality to gener-

ate an attention map using “self-attention” mechanism that

highlights its own spectral features. Similarly, a “cross-

attention” approach is simultaneously used to harness the

LiDAR derived attention map that accentuates the spatial

features of HSI. These attentive spectral and spatial repre-

sentations are then explored further along with the original

data to obtain modality-specific feature embeddings. The

modality oriented joint spectro-spatial information thus ob-

tained, is subsequently utilized to carry out the land-cover

classification task. Experimental evaluations on three HSI-

LiDAR datasets show that the proposed method achieves the

state-of-the-art classification performance, including on the

largest HSI-LiDAR dataset available, University of Hous-

ton (Data Fusion Contest - 2013), opening new avenues in

multimodal feature fusion for classification.
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Figure 1. Generic schematic of a multimodal fusion based classifi-

cation task. The objective is to effectively combine the two modal-

ities (hereby HSI and LiDAR) such that the resultant representa-

tion has rich, fused features that are relevant and robust enough for

accurate classification.

1. Introduction

With the advent of advanced sensing technologies, si-

multaneous acquisition of multimodal data for the same un-

derlying phenomenon is possible nowadays. This is espe-

cially important in remote sensing (RS), owing to presence

of satellite image data from several sources like multispec-

tral (MSI), hyperspectral (HSI), synthetic aperture radar

(SAR), panchromatic (PCI) sensors etc. as well as light de-

tection and ranging (LiDAR), to name a few. Each source

provides different kind of information about the same ge-

ographical region, which can aid in tasks relating to total

scene understanding. For example, the detailed spectral in-

formation from HSI is commonly used to discriminate var-

ious materials based on their reflectance values, finding ap-

plications in agricultural monitoring, environment-pollution

monitoring, urban-growth analysis, land-use pattern [1, 2].

Similarly, LiDAR data is used to obtain the elevation in-

formation, which is useful to distinguish objects within the

same material [3]. Since the attributes of these modalities

complement each other, they are extensively used in a cu-

mulative fashion for multimodal learning in remote sensing

domain [4, 5].

In the recent past, many ad-hoc and conventional tech-

niques have been introduced for the fusion of HSI and Li-

DAR modalities due to their ability of digging the latent

representations and features from the raw data [6, 7]. Be-

sides, the concerned fusion strategies have been applied for



different application scenarios as visible in [8, 9, 10, 11, 12],

where conventional methods such as support vector ma-

chines (SVM), random forests (RF), rotation forests (RoF)

etc. have been actively used for classification. [13] proposes

an in flight fusion of LiDAR and HSI data. The intensity of

HSI data is corrected with the help of cross-calibrated return

intensity information obtained from airborne laser scanner

(ALS).

Similarly, in the present era, deep learning is being ac-

tively used in the domain of multimodal fusion [14, 15].

The deep learning approach generally follows a multi-

stream architecture where each stream corresponds to a sin-

gle modality. These extracted features are then concate-

nated to be used as joint representation for further classifi-

cation. Convolutional neural networks (CNNs) especially

have been widely utilised as feature extractors in remote

sensing community and shown to be more powerful than

the conventional techniques for supervised inference tasks

[16]. Although the multistream deep architectures have pro-

duced excellent performance measures, a key disadvantage

to such an approach, however, is that the feature extraction

of different modalities is carried out individually instead of

utilising features from both modalities jointly. This causes

some important shared high-level features from both the

modalities to be missed out. Another key point is the fact

that such a method may make different features significantly

unbalanced, and the information may not be equally repre-

sented [17]. Given the multi-source feature embeddings,

feature aggregation is an important stage. Simple concate-

nation or pooling of individual extracted features may have

redundant information and thus the system might be prone

to overfitting. Lastly, having large number of features by

just concatenation may increase the dimensionality and due

to lack of large labelled data, the model may suffer from

curse of dimensionality [16]. Limited training samples or

imbalanced data, along with the need of to avoid any hu-

man intervention in selecting features, have encouraged re-

searchers to search for better joint feature learning methods.

Recently, the usage of attention learning mechanism has

shown remarkable performance gain for different visual in-

ference tasks [18, 19, 20]. Ideally, the attention modules

highlight the prominent features while suppressing the irrel-

evant features through a self-supervised learning paradigm.

However, in most of these research works, attention based

learning is carried out only on a single modality and hence

only similar kind of features are highlighted. Therefore, we

are left with the task of designing such a network that takes

the attention mask from one modality and use it to enhance

the representations of other modality (Fig. 1). Based on

this premise, the idea of multimodal attention is envisioned,

where a complementing modality not only synergistically

adds relevant information to the existing modality but also

highlights such features that went “unnoticed” by the at-
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Figure 2. Self-attention vs cross-attention for multimodal fusion.

The self-attention module (left) works only on single modality

where both the hidden representations as well as the attention mask

are derived from the same modality (HSIs). On the other hand, in

the cross-attention module (right), the attention mask is derived

from a different modality (LiDAR) and is harnessed to enhance

the latent features from the first modality.

tention map derived from the existing modality. Inspired

by these discussions, we propose FusAtNet, an attention

based multimodal fusion network for land-cover classifica-

tion given an HSI-LiDAR pair as input, as illustrated in Fig.

3. Our method involves extracting spectral features using

“self-attention” in HSI and incorporate multimodal atten-

tion using the proposed “cross-attention” mechanism that

uses LiDAR modality to derive an attention mask that high-

lights the spatial features of the HSI (Fig. 2). This inter-

action between spectral and spatial features leads to an in-

termediate representation which is further refined through

self-attention based learning. This rich final representation

is henceforth directed for classification. The key contribu-

tions are summarised as follows:

• To the best of our knowledge, ours is one of the first

approaches to introduce the notion of attention learn-

ing for HSI-LiDAR fusion in the context of land-cover

classification.

• In this regard, we introduce the concept of “cross-

attention” based feature learning among the modali-

ties, a novel and intuitive fusion method which utilises

attention from one modality (here LiDAR) to highlight

features in the other modality (HSI).

• We demonstrate state-of-the art classification perfor-

mance on three benchmark HSI-LiDAR datasets out-

performing all existing deep fusion strategies along

with thorough robustness analysis.

2. Related work

By definition, the task of image fusion aims at synergisti-

cally combining images from different related modalities to

generate a merged representation of the information present

in the images, improving visual inference performance over

the individual images. Growing interest from the multime-

dia community is reflected in various works like [21] where

audio-visual crossmodal representation learning was pro-

posed, in [22] where RGB-depth multimodal features were

fused for scene classification and in shared cross modal im-

age retrieval [23]. It is also an emerging topic in medical



image classification. For example, whereas [24] fuses infor-

mation from MRI/PET, [25] utilises 4 different modalities

utilising CNN as feature extractors for image segmentation.

Unsupervised methods like [26] generate joint latent repre-

sentation from data of different modalities using deep belief

networks.

Remote sensing has been utilising several classical mul-

timodal fusion methods such as decision fusion [27], kernel

based fusion [28], PCA [29], intensity-hue-saturation (IHS)

[30], wavelet based fusion methods [31] etc. for various ap-

plications in order to improve the classification performance

of even the most conventional models.

In addition to classical methods, deep learning is be-

ing actively used in remote sensing field both for fea-

ture attention and multimodal learning. In feature atten-

tion, [19] presents a novel spectral-attention framework to

highlight the reflectance characteristics of the hyperspec-

tral image for better classification performance. Similarly,

[20] introduces a spectral-spatial attention network using

residual learning (to tackle vanishing gradient [32]) and

convolution-deconvolution framework (to extract distinct

spatial features) which collectively assist in robust classi-

fication. From the perspective of multimodal fusion in re-

mote sensing, deep learning normally involves concatena-

tion of extracted features from unimodal networks, and then

sending them for classification. The entire model is trained

in an end to end fashion. For example, [33] concatenated

the Kronecker product of LiDAR derived features with the

spectral features obtained from the HSI and used them for

classification using a CNN model. [34] and [35] use a two

stream model of image fusion where in one stream, a 3D-

CNN is used to extract the spectral-spatial features from the

HSIs while a 2D-CNN is used to extract the depth features

from LiDAR dataset. It is important to note that the LiDAR

data has been rasterised in the image domain as a digital

elevation model (DEM) and digital surface model (DSM).

The features are concatenated and sent to a deep neural net-

work for fusion and finally classification. [36] proposed

an adaptive technique of HSI-LiDAR fusion. Initially, the

LiDAR and HSI features are extracted using a two-stream

CNN where each stream corresponds to each modality. The

streams follow the similar architecture and contains cas-

caded residual blocks (inspired from Face Alignment Net-

work (FAN) [37] and hourglass networks [38]) to keep both

the original and extracted features from fusion. The ex-

tracted features are then combined with original features

using an adaptive technique based on squeeze and excita-

tion networks [39] where, instead of simply concatenating

the features, each feature is assigned a specific weight. The

weighted tensors are flattened and concatenated and sent to

a fully connected layer for classification.

As already mentioned, the existing techniques for HSI-

LiDAR fusion overlook the aspect of attention based feature

learning. On the other hand, FusAtNet incorporated dif-

ferent attention learning modules within its framework for

better cross-modal feature extraction. Additionally, we in-

troduce the notion of cross-modal attention which is a novel

paradigm in the realm of feature fusion.

3. Proposed method

The objective of this work is to perform pixel based clas-

sification by harnessing the spectral and spatial information

constituted in HSIs and the depth and intensity information

encoded in LiDAR.

To accomplish this task, we consider HSI and LiDAR

patches X = {xiH , xi
L}

n
i=1 that are centered around the

ground truth pixels Y = {yi}ni=1. Here, xiH ∈ R
M×N×B1

and xi
L ∈ R

M×N×B2 where, B1 and B2 denote the num-

ber of channels in HSI and LiDAR modalities respectively,

while n denote the number of available groundtruth sam-

ples. The groundtruth labels yni ∈ {1, 2, ...,K}, where K

represent the number of groundtruth classes. The patches

are sent to the proposed FusAtNet model which get pro-

cessed as they pass through various modules that are dis-

cussed ahead in section 3.2.

3.1. Model overview

The intent behind this research work is to synergisti-

cally explore the specral-spatial properties of HSI and spa-

tial/elevation characteristics of LiDAR modality using the

“cross-attention” framework. The work of the attention

modules is to selectively highlight the hotspots in the ex-

tracted hyperspectral features in order to increase the in-

terclass variance and thus improve the classification accu-

racy. This is achieved in two steps: firstly, the HSI fea-

tures are passed through a feature extractor and spectral at-

tention module, and their combination is used to empha-

size the spectral information in the HSI features. Simulta-

neously, the LiDAR features are passed through a spatial

attention framework and the resultant mask accentuates the

spatial characteristics of HSI. Secondly, the highlighted fea-

tures are reinforced with the original features and passed

through modality extraction and modality attention mod-

ules, the outputs of which are combined to judiciously high-

light the important sections of the two modalities. The re-

sultant features are then sent to the classification module.

3.2. Network architecture

The comprehensive architecture of FusAtNet is dis-

played in Fig. 3 and all the experiments adhere to the

same. FusAtNet essentially contains six modules that

are used in three phases. In the first phase, hyperspectral

feature extractor FHS , spectral attention module AS and

spatial attention module AT are used to jointly extract

and highlight the spatial-spectral features from the HSI.

In the second phase, modality feature extractor FM and



Figure 3. Schematic of FusAtNet (presented on Houston dataset). Initially, the hyperspectral training samples XH are sent to the feature

extractor FHS to get latent representations and to spectral attention module AS to generate spectral attention mask. Simultaneously, the

corresponding LiDAR training samples XL are sent to spatial attention module AT to get the spatial attention mask. The attention masks

are individually multiplied to the latent HSI representations to get MS and MT . MS and MT are then concatenated with XH and XL

and sent to modality feature extractor FM and modality attention module AM. The outputs from the two are then multiplied to get FSS ,

which is then sent to the classification module C for pixel classification.

modality attention module AM are used to selectively

highlight the modality specific features. In the third phase,

the modality specific spectral-spatial features are sent to

the classification module C. All the modules are inherently

CNN modules where the size of all the kernels is fixed to

3×3 and non-linearity is fixed to ReLU. The modules are

discussed as follows:

Hyperspectral feature extractor FHS : FHS consists of

a 6 layer CNN and is used to extract the spectral-spatial

features from the HSIs. The first five layers contain 256

filters while the sixth layer has 1024 number of filters. All

the convolution operations are applied with zero padding.

Output of each convolution operation is operated on by

batch normalisation. The module can be represented as

FHS(θFHS
, xi

H) where, θF represent the weights of the

module. The output of FHS is a patch of size 11×11×1024.

Spectral attention module AS : AS draws its attention

mask from the HSI. The module is a CNN with 3 convo-

lution blocks, with 2 convolution layers each. In addition,

first and second convolution block are followed by a resid-

ual block each. There is a maxpooling layer after each resid-

ual block and the sixth convolution layer. The last layer of

this module is a global average pooling (GAP) layer. Over-

all, the architecture of this model is inspired from [19]. The

number of kernels in first five convolution layers is 256 and

that in the sixth one is 1024, all of which use zero padding.

Each convolution operation is followed by a batch normali-

sation layer. The model is denoted as AS(θAS
, xiH), where

θAS
are the weights of this attention module. The output

of this module is a vector of size 1×1024, which is multi-

plied with the output of FHS to get the highlighted spectral

features as denoted in Eq. (1).

MS(x
i) = FHS(θFHS

, xiH)⊗AS(θAS
, xi

H) (1)

Here, MS denotes the extracted features highlighted with

spectral attention mask and ⊗ represent the broadcasted

element-wise matrix multiplication operation (such that the

resultant product retains the size of the matrix with higher

dimension).

Spatial attention module AT : Denoted by AT (θAT
, xiL),

where θAT
denotes the weights, spatial attention module is

a 6-layer CNN that generates attention mask from the Li-

DAR modality. The first 3 layers consist of 128 filters each

while each of the last three layers has 256 number of fil-

ters. There are two residual layers, each after second and

fourth convolution layer. All the convolution layers are fol-

lowed by a batch normalisation operation. The output from



Figure 4. Houston hyperspectral and lidar dataset with classification maps. (a) True colour composite of HSI, (b) LiDAR image, (c)

Groundtruth. Classification maps from (d) SVM (H), (e) SVM (H+L), (f) Two-branch CNN (H), (g) Two-branch CNN (H+L), (h) FusAtNet

(H), (i) FusAtNet (H+L).

this module is a patch of size 11×11×1024 that is multi-

plied with the extracted features from FHS to get spatially

highlighted features MT denoted in Eq. (2) as:

MT (x
i
H , xiL) = FHS(θFHS

, xi
H)⊗AT (θAT

, xiL) (2)

Modality feature extractor FM: FM module follows the

same structure as that of FHS and can be represented as

FM(θFM
, xiH , xi

L), where θFM
are the weight of the mod-

ule. It is fed with the spectrally and spatially highlighted

features MS and MT along with the original X , the out-

put of which is a patch of size 11×11×1024 which can be

represented as in Eq. (3).

FM (xiH , xi
L) = FM(θFM

, xiH ⊕ xiL ⊕MS(x
i)⊕

MT (x
i
H , xiL))

(3)

where, ⊕ represents concatenation along channel axis.

Modality attention module AM: Architecture of AM is

similar to that of AT and is denoted by AM(θAM
, xi

H , xiL),
θAM

being the weights. The work of this module is to cre-

ate an attention mask that focuses on specific traits of each

modality and therefore the input is kept the same as that of

FM. This is represented in Eq. (4).

AM (xiH , xiL) = AM(θAM
, xi

H ⊕ xi
L ⊕MS(x

i)⊕

MT (x
i
H , xi

L))
(4)

The output of the module is an 11×11×1024 patch that is

multiplied with the output of FM, as shown in Eq. (5), and

the result is sent to the classification module.

FSS(x
i
H , xiL) = FM (xiH , xiL)⊗AM (xi

H , xiL) (5)

where, FSS are the final spectral-spatial features.

Classification module C: The input to C module are the

final spectral-spatial features FSS(x
i
H , xiL). The module is

a 6-layer fully convolutional neural network where first four

layers consist of 256 filters each while the fifth and sixth

layers respectively contain 1024 and K filters, where K is

the number of classes. The filter size for the last layer is set

to 1×1 and no padding is used in any layer. All the layers

except last one are operated on by ReLU activation function

and batch normalisation while the last layer is the softmax

layer. The module can be defined as C(θC , FSS(x
i
H , xi

L))
where, θC are classification weights. The output of C is a

vector of size 1×K.

3.3. Training and inference

The output from C is subjected to a categorical cross-

entropy loss which is backpropagated to train the FusAtNet

model in an end-to-end fashion (refer Eq. (6)).

LC = −E(xi
H
,xi

L
,yi)[y

i log C(θC , FSS(x
i
H , xiL))] (6)

where, LC is the classification loss.

During the testing phase, the given test sample (xjH , x
j
L)

is passed through the fusion module and follows the same

path as that of the training samples. The resultant output

FSS(x
j
H , x

j
L) is sent to the classification module C where it

is assigned the predicted class label.

4. Experimental setup

This section discusses about the datasets used to validate

FusAtNet and protocols followed while training the same.

4.1. Datasets

To evaluate the efficacy our method, three HSI-LiDAR

datasets have been considered.

Houston dataset: This dataset consists of a hyperspectral

imagery and a LiDAR depth raster and was introduced in

GRSS Data Fusion Contest 2013. The dataset is acquired

over the Houston university campus and surroundings by



National Airborne Centre for laser mapping (NCALM).

The HSI is composed of 144 hyperspectral bands with the

wavelengths varying from 0.38 µm to 1.05 µm with each

raster of size 349×1905 and spatial resolution 2.5 m. A

total of 15029 groundtruth samples are available that are

distributed over 15 classes and divided into training and

testing sets containing 2832 and 12197 pixels respectively

[40]. However, for our experiments, 12189 pixels are

considered in the test set since a few of the pixels were

interfering with the data preprocessing. The dataset can be

visualised in Fig. 4.

Trento dataset: This dataset is collected using AISA eagle

sensor over the rural regions in Trento, Italy. The HSI

Figure 5. Trento hyperspectral and lidar dataset with classification

maps. (a) True colour composite of HSI, (b) LiDAR image, (c)

Groundtruth. Classification maps from (d) SVM (H), (e) SVM

(H+L), (f) Two-branch CNN (H), (g) Two-branch CNN (H+L),

(h) FusAtNet (H), (i) FusAtNet (H+L).

image is composed of 63 bands with their wavelengths in

the range of 0.42 µm to 0.99 µm, while LiDAR consists of

2 rasters showing elevation data. The dimension of each

band is 166 × 600 while the spatial and spectral resolutions

are 9.2 nm and 1.0 m respectively. There are a total of 6

classes in the imagery, groudtruth of which are available

for 30214 pixels that are divided in 819 training pixels and

29395 test pixels [40]. The dataset is displayed in Fig. 5.

MUUFL Gulfport dataset: This dataset is acquired over

the campus of University of Southern Mississippi Gulf

Park, Long Beach Mississippi in November, 2010. The HSI

imagery originally contained 72 bands. However, due to

noise, initial and final four bands are omitted leading to a

total of 64 bands. The LiDAR modality consists of two el-

evation rasters. All the bands and rasters are coregistered,

acquiring the total size of 325×220. There are a total of

53687 groundtruth pixels encompassing 11 classes [41, 42].

For training, 100 pixels per class are selected leaving the

total of 52587 pixels for testing. The HSI and LiDAR im-

ageries along with the groundtruth pixels can be viewed in

Fig. 6.

Figure 6. MUUFL hyperspectral and lidar dataset with classifica-

tion maps. (a) True colour composite of HSI, (b) LiDAR image,

(c) Groundtruth. Classification maps from (d) SVM (H), (e) SVM

(H+L), (f) Two-branch CNN (H), (g) Two-branch CNN (H+L), (h)

FusAtNet (H), (i) FusAtNet (H+L).

4.2. Training protocols

Our method is compared against other conventional and

state of the art multimodal learning methods from [40] to

fuse HSI and LiDAR modalities, such as SVM [43], ex-

treme learning machines [44], CNN-PPF [45] and two-

branch CNN [40] with spectral and spatial feature extrac-

tion. The SVM (both hyperspectral and LiDAR) and ELM

(only hyperspectral) models for Trento dataset have been re-

trained and re-evaluated since the values in [40] seemed in-

correct. All the analyses have been carried out on both HSI

only (represented as (H) in the results and classified maps)

as well fused HSI and LiDAR (represented as (H+L)) data



Table 1. Accuracy analysis on the Houston dataset (in %). ‘H’ represents only HSI while ‘H+L’ represents fused HSI and LiDAR.
Classes SVM

(H)

[43]

SVM

(H+L)

[43]

ELM (H)

[44]

ELM (H+L)

[44]

CNN-PPF

(H) [45]

CNN-PPF

(H+L) [45]

Two Branch

CNN (H)

[46]

Two Branch

CNN (H+L)

[46]

Proposed

(H)

Proposed

(H+L)

Healthy Grass 81.86 82.43 82.91 83.10 82.24 83.57 83.38 83.10 83.00 83.10

Stressed Grass 82.61 82.05 83.93 83.70 98.31 98.21 84.21 84.10 84.96 96.05

Synthetic Grass 99.80 99.80 100.00 100.00 70.69 98.42 99.60 100.00 100.00 100.00

Trees 92.50 92.80 91.76 91.86 94.98 97.73 93.18 93.09 92.23 93.09

Soil 98.39 98.48 98.77 98.86 97.25 96.50 98.58 100.00 97.06 99.43

Water 94.41 95.10 95.10 95.10 79.02 97.20 99.30 99.30 100.00 100.00

Residential 76.87 75.47 89.65 80.04 86.19 85.82 85.45 92.82 93.81 93.53

Commercial 43.02 46.91 49.76 68.47 65.81 56.51 69.14 82.34 76.35 92.12

Road 79.04 77.53 81.11 84.80 72.11 71.20 78.66 84.70 85.15 83.63

Highway 58.01 60.04 54.34 49.13 55.21 57.21 52.90 65.44 62.64 64.09

Railway 81.59 81.02 74.67 80.27 85.01 80.55 82.16 88.24 72.11 90.13

Parking Lot 1 72.91 85.49 69.07 79.06 60.23 62.82 92.51 89.53 88.95 91.93

Parking Lot 2 71.23 75.09 69.82 71.58 75.09 63.86 92.63 92.28 92.98 88.42

Tennis Court 99.60 100.00 99.19 99.60 83.00 100.00 94.33 96.76 100.00 100.00

Running Track 97.67 98.31 98.52 98.52 52.64 98.10 99.79 99.79 100.00 99.15

OA 79.00 80.49 79.87 81.92 78.35 83.33 84.08 87.98 85.72 89.98

AA 81.94 83.37 82.57 84.27 77.19 83.21 86.98 90.11 88.62 94.65

κ 0.7741 0.7898 0.7821 0.8045 0.7646 0.8188 0.8274 0.8698 0.8450 0.8913

Table 2. Accuracy analysis on the Trento dataset (in %). ‘H’ represents only HSI while ‘H+L’ represents fused HSI and LiDAR.
Classes SVM (H)

[43]

SVM

(H+L) [43]

ELM

(H) [44]

ELM

(H+L) [44]

CNN-PPF

(H) [45]

CNN-PPF

(H+L) [45]

Two Branch

CNN (H) [40]

Two Branch

CNN (H+L)

[40]

Proposed

(H)

Proposed

(H+L)

Apples 90.80 85.49 91.32 95.81 92.22 95.88 98.04 98.07 99.06 99.54

Buildings 84.22 89.76 85.74 96.97 87.08 99.07 97.45 95.21 97.05 98.49

Ground 98.12 59.56 97.59 96.66 66.81 91.44 83.09 93.32 100.00 99.73

Woods 97.01 97.42 88.44 99.39 65.24 99.79 98.29 99.93 100.00 100.00

Vineyard 79.02 93.85 86.39 82.24 98.98 98.56 98.29 98.78 99.85 99.90

Roads 66.92 89.96 64.06 86.52 73.19 88.72 68.21 89.98 89.39 93.32

OA 85.56 92.30 85.43 91.32 83.52 97.48 95.35 97.92 98.50 99.06

AA 86.02 86.01 85.59 92.93 80.59 95.58 90.86 96.19 97.56 98.50

κ 0.8102 0.8971 0.8065 0.9042 0.7843 0.9664 0.9379 0.9681 0.9796 0.9875

Table 3. Accuracy analysis on the MUUFL dataset (in %). ‘H’ represents only HSI while ‘H+L’ represents fused HSI and LiDAR.
Classes SVM (H)

[43]

SVM (H+L)

[43]

ELM (H)

[44]

ELM (H+L)

[44]

Two Branch

CNN (H) [40]

Two Branch CNN

(H+L) [40]

Proposed

(H)

Proposed

(H+L)

Trees 93.91 95.97 91.99 94.89 97.07 97.40 97.74 98.10

Grass Pure 59.54 62.71 39.44 62.23 62.93 76.84 63.71 71.66

Grass Groundsurface 82.72 83.60 76.87 83.15 87.44 84.31 86.48 87.65

Dirt and Sand 79.11 78.60 74.51 57.88 90.74 84.93 87.34 86.42

Road Materials 91.20 92.72 92.14 93.33 85.30 93.41 93.07 95.09

Water 54.31 95.10 0.00 68.32 5.39 10.78 24.78 90.73

Buildings’ Shadow 58.35 71.23 63.88 47.01 67.33 63.34 72.55 74.27

Buildings 75.94 87.96 68.26 77.58 82.33 96.20 96.38 97.55

Sidewalk 43.85 41.11 24.22 32.15 54.59 54.30 56.07 60.44

Yellow Curb 11.05 11.05 0.00 0.00 24.31 2.21 7.73 9.39

Cloth Panels 88.37 88.76 89.92 78.29 90.31 87.21 92.25 93.02

OA 83.39 86.90 78.49 83.10 86.30 89.38 89.41 91.48

AA 67.12 83.37 56.48 63.17 67.97 68.26 70.74 78.58

κ 0.7790 0.8255 0.7137 0.7742 0.8197 0.8583 0.8581 0.8865

to affirm the efficacy of multimodal learning over unimodal

learning. To assess the performance of the methods, overall

accuracy (OA), producer’s accuracy (PA), average accuracy

(AA) and Cohen’s kappa (κ) have been used as evaluation

metrics. Both HSI and LiDAR data is subjected to min-max

normalisation to scale the modalities and speed up the con-

vergence.

The network uses a fixed patch size of 11×11 for all the

datasets. These patches are created around the pixel with

known groundtruth label. In addition, in order to boost the

performance of our model, we resort to data augmentation

technique (used in [5]) by rotating the training patches by

90◦, 180◦ and 270◦ in clockwise direction. All the weight

initialization are carried out using glorot initialization[47]

while the training is performed for 1000 epochs. A small

initial learning rate of 0.000005 is chosen because a higher

learning rate leads to higher fluctuations when Adam opti-

mizer is used with Nesterov momentum [48].

5. Results and discussion

Our proposed method is verified on Houston, Trento and

MUUFL datasets in Tables 1, 2 and 3 respectively. It is

clearly visible for all the cases that our method outper-

forms all the state of the art methods with a significant mar-

gin in all the avenues, be it OA (the respective accuracies

of Houston, Trento and MUUFL datasets being 89.98%,

99.06% and 91.48%), AA (respective values being 94.65%,

98.50% and 78.58%) or κ. It is also easily observed that



in case of classwise/producer’s accuracy, the performance

of our method is better than the other methods for most of

the classes and only marginally exceeded by other methods

for a few of them. For Houston dataset, it can be noted

that the accuracy for ‘commercial’ class (92.12%) is sig-

nificantly improved for our method in comparison to other

methods. This can be attributed to the fact that commercial

regions generally have a variable layout with frequent eleva-

tion changes that are effectively captured by LiDAR based

attention maps. Similarly, in case of Trento dataset, the

‘road’ class shows a notable increase in accuracy (93.32%).

This increment is also on account of variation in road pro-

file with respect to its elevation. The classification maps for

Houston, Trento and MUUFL datasets are presented in Fig.

4, 5 and 6 respectively. It can be visually verified that the

classification maps obtained from FusAtNet tend to be less

noisy and have smooth interclass transitions. It is also ob-

served in Fig. 4 that methods such as SVM and two-branch

CNN tend to classify the shadowy areas as water (in the

right portion of the maps) because of their darker tone. Our

approach largely mitigates this problem as well.

5.1. Ablation study

We further carried out different ablation studies to high-

light the individual aspects of our model. In table 4, we

evaluate our model’s performance by iteratively removing

each of the attention module. It is evidently visible that in

absence of even anyone of the attention module, the model

tends to underperform. In addition, the importance of spa-

tial characteristics of LiDAR modality is also proven since

the presence of only LiDAR based spatial attention mod-

ule gives better accuracy than HSI based spectral attention

module for all the three datasets.

Table 4. Ablation study by changing attention layers on all the

datasets (accuracy in %).
Attention layers OA (Houston) OA (Trento) OA (MUUFL)

Only AS 86.48 98.04 90.09

Only AT 88.39 98.79 91.13

Only AM 87.51 98.48 89.31

Only AS and AT 89.04 98.77 90.69

Only AT and AM 87.78 98.95 98.24

Only AS and AM 86.90 98.24 89.14

All AS , AT and AM 89.98 99.06 91.48

Table 5 displays the performance of our method when

trained without data augmentation. Since our model is quite

deep, there is a decrease in the performance when no aug-

mentation is applied on training samples. This magnitude

of this decrease is maximum in case of Houston dataset

(4.76%) since it has most number of features in compari-

son to other datasets. Hence, it requires comparatively more

iterations to converge and give better accuracy.

Furthermore, an additional ablation study is carried out

on all the datasets to check the effect of decreasing the train-

ing size and then evaluate the performance of our model as

Table 5. Ablation study for training with and without data aug-

mentation (accuracy in %).
Data OA (Houston) OA (Trento) OA (MUUFL)

No augmentation 85.22 98.32 88.81

With augmentation 89.98 99.06 91.48

displayed in table 6. As expected, the accuracy progres-

sively decreases as the number of training samples decrease,

further reinforcing the high data requirement of the deep

learning models.

Table 6. Model performance by changing the fraction of training

samples on MUUFL dataset (accuracy in %).
30% data 50% data 75% data 100% data

OA (Houston) 84.75 87.92 88.66 89.98

OA (Trento) 97.78 98.48 98.93 99.06

OA (MUUFL) 86.90 89.58 89.78 91.48

6. Conclusions and future work

We introduce a novel fusion network for HSI and Li-

DAR data for the purpose of producing improved land-

cover maps. Our network, called FusAtnet, judiciously uti-

lizes different attention learning modules to learn joint fea-

ture representations given both the input modalities. To

this end, we propose the notion of cross-attention where

the feature learning stream for a given modality is influ-

enced by the other modality. The results obtained for mul-

tiple datasets confirm the efficacy of the proposed fusion

network. Due to the generic nature of FusAtNet, it can be

extended to support a varied range of modalities with min-

imum overhead. In future, we plan to extend the network

to support more than two modalities. Besides, we also plan

to perform rigorous model engineering to limit the number

of learnable parameters without compromising the perfor-

mance, for example, using the notion of dilated convolution

in the attention modules effectively.
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