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Abstract

Object detection locates the objects with bounding boxes

and identifies their classes, which is valuable in many com-

puter vision applications (e.g. autonomous driving). Most

existing deep learning-based methods output a probability

vector for instance classification trained with the one-hot

label. However, the limitation of these models lies in at-

tribute perception because they do not take the severity of

different misclassifications into consideration. In this pa-

per, we propose a novel method based on the Wasserstein

distance called Wasserstein Loss based Model for Object

Detection (WLOD). Different from the commonly used dis-

tance metric such as cross-entropy (CE), the Wasserstein

loss assigns different weights for one sample identified to

different classes with different values. Our distance metric

is designed by combining the CE or binary cross-entropy

(BCE) with Wasserstein distance to learn the detector con-

sidering both the discrimination and the seriousness of dif-

ferent misclassifications. The misclassified objects are iden-

tified to similar classes with a higher probability to reduce

intolerable misclassifications. Finally, the model is tested

on the BDD100K and KITTI datasets and reaches state-of-

the-art performance.

1. Introduction

Object detection is a fundamental task in the computer

vision field aiming at detecting instances from the surveil-

lance video images. It is meaningful for instance segmenta-

tion [40], object tracking, pose estimation, and drone scene

analysis etc [21, 25]. A accurate object detection system

can be useful in autonomous driving, surveillance, and blind

Figure 1. The limitation of BCE/CE loss for object classification.

The ground-truth class of the object is ’Bike’. The predicted prob-

ability of ’Bike’ by Detector 1 and Detector 2 is the same. There-

fore, these two detectors have the same BCE/CE loss. However,

Detector 1 is preferable to Detector 2, because these two predic-

tions may result in different severity consequences.

guiding. The framework for object detection consists of

bounding boxes proposal, extracting local feature for each

bounding box, and classifying objects according to the fea-

ture of each bounding box proposal. Existing object de-

tection model focus on detection of certain class instances

(e.g. bike, car, bus, person, dog, and cat etc). Attributed

by the deep learning [14, 17, 1, 13, 24, 28, 22, 26, 23, 16],

object detection task reaches a high-level detection accu-
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racy, which is close to the demand of application. De-

spite many works have been done to improve the detec-

tion model, the object detection task faces many challenges

such as scale changes, viewpoints, illuminations, and rota-

tions. In addition, the deep learning based method is too

computationally intensive and high-demand in hardware.

Hence, it has drawn increasing amounts of attention in re-

cent years[36, 10, 12]. Although much work has been per-

formed to improve the detection model, the object detection

task still faces many challenges, such as scale changes, il-

luminations, and rotations. Attributed to the deep learning-

based method, the object detection task reaches high de-

tection accuracy, which is closer to the demand of appli-

cations. Recently, deep learning-based methods have been

used successfully to handle object detection tasks, and many

works have been published, including spatial pyramid pool-

ing (SPP) network [8], Fast region-based convolutional net-

work (Fast RCNN) [4], Faster RCNN[32], and YOLO [30].

Most object detection methods neglect the severity of dif-

ferent misclassifications.

As shown in Fig. 1, a ’Bike’ in the surveillance image

is detected and classified by two detectors. Because these

two detectors classify the ’Bike’ into the correct category

with the same probability value, the same classification loss

is obtained if they use the CE/BCE loss function. Never-

theless, classifying the ’Bike’ as a ’Car’ (Detector 2) would

result in the self-driving car making an action not suitable

for the current situation. However, classifying the ’Bike’

as a ’Motor’ (Detector 1) would not lead to serious con-

sequences. Therefore, Detector 1 is safer than Detector 2.

Existing methods do not discriminate these two misclassi-

fications. In this paper, we focus on avoiding unacceptable

misclassifications caused by CE/BCE loss-based object de-

tection methods.

Based on the problem insights above, we employ the

Wasserstein loss as an alternative to empirical risk mini-

mization to improve classification accuracy[27, 29, 18, 15,

19, 20]. Specifically, we calculate the Wasserstein distance

between a softmax prediction histogram and its one-hot

encoded ground-truth label. By defining the ground met-

ric based on the appearance similarity and misclassifica-

tion severity (e.g., the distance between ’Bike’ and ’Car’ is

larger than ’Bike’ and ’Motor’), classification performance

for each object can be measured related to inter-class corre-

lations. In the one-hot label setting, the exact Wasserstein

distance can be formulated as a soft-attention scheme of all

prediction probabilities and is faster computed than other

general Wasserstein distances.

The main contributions of this paper are summarized as

follows:

• In this paper, we regard classification in object de-

tection as attribute perception problem, which can

identify the severity of different misclassifications and

guide the deep network to learn more essential at-

tributes of objects for classification.

• We proposed a novel method for the formulation of the

Wasserstein loss, which detect the objects from two

level. The first level will discriminate objects from the

basic attributes like vehicle and person. The second

level discriminate the object for the detail.

• Extensive experiments are conducted on challenging

benchmarks to validate the effectiveness and generality

of the proposed Wasserstein training framework which

achieves a promising performance with different back-

bone models.

2. Related Work

Many works have been published in the past two

decades. Deep learning [7, 6, 37, 38] is successfully used in

many computer vision task. Object detection is one of the

outstanding application of deep network. It has improve the

object detection significantly and many methods [4, 10, 30]

have been proposed. Girshick et al. [5] proposed the Re-

gions with CNN (RCNN) features structure, which is the

first successful deep learning model for object detection. It

greatly improved the performance of mean Average Preci-

sion(mAP). This method generates region proposals by Se-

lective Search [34].The CNNs is used to extract local region

features of a fixed-length for classification by SVM of each

class. However, almost of the previous works are based on

cross entropy loss for optimization and do not consider the

difference of misclassification.

He et al. [5] designed Spatial Pyramid Pooling(SPP)

method to deal with the problem of the size of input im-

ages and proposed a SPPNet. It broke the constrain of CNN

models that the size of input images must be the change-

less(e.g. 224x224 in AlexNet [9]). It sufficiently improves

the efficiency of feature extraction compared with RCNN.

SVM is also selected as classifier in SPPNet. Later, Gir-

shick [4]improved the RCNN method to deal with the time

cost problem. They proposed the Fast RCNN model which

also use selective search to generate a set of object pro-

posals, but it extract the whole image feature by CNNs in-

stead of extracting the feature for every object proposals.

Then it find the corresponding region of interest and divide

the region into a H×W grid to do RoI pooling which en-

sures that the features of each region of equal length. It

worth mentioning that Fast RCNN use cross entropy loss

to do the classification task. Ren et al. [32] proposed the

Faster RCNN based on the RCNN method, which further

improved the speed of the deep learning based object de-

tection model. The Faster RCNN is a end-to-end learn-

ing framework by combining the process of proposals ex-

traction, classification and bounding box regression bene-

fitting from Region Proposal Network(RPN) and PoI pool-



Figure 2. Illustration of the Wasserstein distance. W implies the distance between categories helps the Wasserstein distance to measure

the appearance similarity of different misclassifications [27, 20, 19].

ing. RPN significantly improve the speed of detect region

proposals. Faster RCNN also use cross entropy to classify

the object of a certain classs. Lin et al. [10] proposed a

Feature Pyramid Networks(FPN) based deep network. This

framework includes bottom-up pathway, top down pathway

and lateral connection. Top-down pathway and lateral con-

nection make it easier to detect multi-scale objects by using

deeper features and shallow layer features simultaneously.

Faster RCNN with FPN significantly improved the perfor-

mance of Faster RCNN itself. Joseph Redmon et al. [30]

proposed the YOLOv1 deep network which is the first one-

stage real-time detector. It divides the image into regions

and use one neural network to generate bounding boxes and

classify the object for each region at the same time. It use a

regression model to classify the object category and predict

the bounding box coordinates. Liu et al. proposed a Single

Shot MultiBox Detector (SSD) to improve the training and

test speed. It predicts the offsets of bounding box and object

categories for default boxes of each feature map cell with

different ratios and scales. It reached a similar performance

with YOLOv3 [31]. Lin et al. [11] have proposed the Reti-

naNet method which has significantly improved one-stage

detection accuracy by introducing a novel loss called “fo-

cal loss”. Focal loss is committed to solving the problem

caused by foreground-background class imbalance and hard

examples in training set.

3. Methodology

3.1. Formulation for Object Detection

Given image I with size W × H × 3, to solve the ob-

ject detection problem one should find an effective detector

h(I,Θ), where Θ denotes the parameters. The output of the

detector is O = {o1,o2, . . . . . . ,on}, and ok = [tk; ck;pk],
where tk = (xk, yk, wk, hk) represents the location of the

k-th predicted target, ck denotes the corresponding confi-

dence score, and pk = [pk,0, pk,1, · · · , pk,N ] ∈ R
1×N rep-

resents a discrete probability distribution. pk is activated by

an activation function to predict the object category in this

bounding box. N is the number of categories in a certain

detection dataset.

In this paper, we study the classification problem in

the object detection task. Each object in an image is la-

beled with a one-hot vector for classification and a tuple

tk = (xk, yk, wk, hk) for the location. A multi-task loss

function can be formulated based on the classification and

location labels to train the deep network jointly to locate the

bounding boxes and classify the objects:

L(O) =Llocat(T,T∗) + Lconf (c
∗, c)+

Lclass(P,P∗),
(1)

where c∗ = {c∗i }, c∗i = 1 or 0 denotes the ground-truth

confidence score, indicating whether there is an object in

the predicted bounding box. T∗ = {t∗i }; t∗i denotes the

ground-truth bounding-box regression offsets. P∗ = {p∗

i }
denotes the ground-truth object category. Assuming that the

candidate bounding box ti is a positive sample belonging to

category u, the corresponding one-hot label is represented

as p∗

i = [0, · · · , 0, p∗i,u, 0, · · · , 0], p
∗

i,u = 1. The loss func-

tion in Eq. (1) consists of three items: the location loss,

confidence loss, and classification loss. YOLOv3 takes the

sum of the BCE loss as the Lclass in Eq. (1), and SSD

adopts the CE loss. Unfortunately, they treat the output di-

mensions independently [2], ignoring the different severi-

ties of the misclassification and appearance similirity in the

label space.

3.2. Wasserstein Distance-based Loss

We formulate the classification problem for object de-

tection based on the assumption that the predicted proba-

bility value of the categories, which are more similar to the

ground truth, should be larger than the others. The discrete



Figure 3. The pre-defined ground matrix for the BDD100K

dataset.

Wasserstein distance between two histograms p and t is de-

fined as:

DW(s, t) = inf
Γ

N∑

m=1

N∑

n=1

Wm,nΓm,n, (2)

where ΓN×N is the transportation matrix with Γm,n indi-

cating the mass moved from the i-th position in the source

distribution to the j-th position in the target distribution.

WN×N [33] denotes the ground-distance matrix, and the

ground metric Wm,n measures the cost of transporting a

unit from the i-th position to the j-th position. s and t are

often referred as the suppliers set and the consumers set,

respectively. We can view s as the predicted probability

distribution for classification and take t as the ground truth.

The valid transportation matrix Γ satisfies:

Γm,n ≥ 0,
∑N

n=1

Γm,n ≤ sm;

∑N

m=1

Γm,n ≤ tn;

∑N

m=1

∑N

n=1

Γm,n = min(
∑N

m=1

pm,
∑N

n=1

tn).

The Wasserstein distance between s and t is the mini-

mum transportation cost that satisfies the constraints above.

In mathematics, the Wasserstein metric is a distance func-

tion defined between probability distributions in a given

metric space. The Wasserstein distance can be the same

as the Earth mover’s distance when two discrete histogram

distributions have the same masses (i.e.,
∑N

i=1
si =

∑N

i=1
)

and symmetric matrix W. For object classification, we

can define the ground-distance matrix W by dividing the

classes into different groups using prior knowledge and

measuring the distance between different groups using a

Gaussian filter.

Inspired by the Wasserstein distance, we define the loss

function as:

L(O) = Llocation(T,T∗) + Lconf (c
∗, c)+

Lclass(P,P∗) + λLWD(P,P∗,W),
(3)

where LWD(P,P∗,W) is called the Wasserstein loss.

Theorem 1. Assume that pi and p∗

i are both one-hot

histogram distribution1, there is only one feasible optimal

transport plan [35].

According to the criteria for W, all masses must be trans-

ferred to the cluster of the ground-truth label position [35].

Then, the Wasserstein distance between softmax prediction

s and one-hot target t in Eq. (??) can be written as an inner

product as:

LWD(Pi,P
∗

i ,W) =
∑

i

< pi − p∗

i ,Wui
>, (4)

where Wui
denotes the ui-th row of W.

The ground metric term works as the weights w.r.t. mis-

match of two histograms pi − p∗

i , which takes all classes

into account following a soft attention scheme [14]. It ex-

plicitly encourages the probabilities distributed in the neigh-

boring classes of the ground-truth class in the pre-defined

ground matrix space. In contrast, the CE loss in the one-hot

setting can be a hard attention scheme; only a single class

prediction is considered resulting in a large information loss

[14].

3.3. Deep Structure of the Proposed Model

The image to be processed is first resized to 416 × 416
and goes through a convolutional neural network (Darknet-

53) for feature extraction. Darknet-53 adopts successive

convolutional layers with filters of size 3×3 and 1×1. This

network has 52 convolutional layers, 23 residual layers, and

a fully connected layer. Three candidate bounding boxes

for each anchor represented by three feature maps in the last

layer with size M×M×3×(4+1+N), (M = 13, 26, 52)
are extracted. Specifically, there are 4 offset parameters for

location, 1 parameter for confidence, and a vector of length

N for object classification. The cells related to the object

category are used to calculate the Lclass and LWD in Eq.

(3).



Table 1. Comparison of mAP for the BDD100K dataset.

YOLOv3 W0.5-y W1-y SSD W0.5-s

mAP 25.8 28.7 27.0 33.9 34.3

Table 2. Comparison of mAP for the KITTI dataset.

YOLOv3 W0.5-y W1-y SSD W0.5-s W1-s

mAP 68.3 69.2 69.4 72.8 74.7 74.4

4. Experiments

In this section, we evaluate WLOD on the BDD100K

[39] and KITTI [3] datasets, and compare it with state-of-

the-art methods.

BDD100K: BDD100K is the one of most commonly

used datasets for object detection in autonomous driving.

It contains 100k images. This dataset is divided into three

parts: 70k images for training, 10k images for validation,

and 20k images for testing.

KITTI: KITTI is also a dataset for object detection for

autonomous driving. It is small compared to the BDD100K

dataset. The KITTI dataset contains 7481 training images

and 7512 test images.

In the experiments, parameter λ is set to 0.5 (W0.5) and

1 (W1) to analyze the performance of object detection by

paying different levels of attention to appearance similarity.

In this dataset, two-dimensional (2D) bounding boxes

are annotated for ’Bus’, ’Traffic light’, ’Traffic sign’, ’Per-

son’, ’Bike’, ’Truck’, ’Motor’, ’Car’, ’Train’, and ’Rider’.

Extensive experiments are conducted to demonstrate the ef-

fectiveness of the proposed model. mAP and AP50 (the 0.5-

IoU based average precision) for each class of object on

the BDD100K are reported for model evaluation. The cate-

gories in this dataset are grouped as follows:

Group 1: 1-Bus, 2-Truck, 3-Car

Group 2: 4-Motor, 5-Bike

Group 3: 6-Rider, 7-Person

Group 4: 8-Traffic light, 9-Traffic sign

Group 5: 10-Train.

Group 1 contains all types of vehicles. ’Motor’, ’Rider’,

’Bike’, and ’Person’ are usually related to people without

protective shells, so we separate them from Group 1. The

principles of how to divide the groups is risk-free misclassi-

fication in one group. The ground distance metric between

two categories in the same group is set equally. Group 1 and

Group 2 have factors (wheels) in common; therefore, we

assign a smaller distance between them than that between

Group 1 and Group 3.

1We note that softmax cannot strictly guarantee the sum of its outputs

to be 1 considering the rounding operation. However, the difference in

setting the true class probability to 1 or the sum of the source distribution

probability is not significant in the experiments using the typical format of

the softmax output which is accurate to eight decimal places.

Table 1 shows mAP on the BDD100K validation dataset

by YOLOv3, SSD, W0.5-s (WLOD uses the backbone of

SSD and pre-defined W as in Fig. 3(b)) and W0.5-y and

W1-y (WLOD uses Darknet-53 just like YOLOv3 and pre-

defined W as Fig. 3(a)). W0.5-y improves the mAP by

nearly 3 points. The mAP of W0.5-s is also higher than that

of SSD.

Objects in the KITTI dataset are labeled with ’Car’,

’Van’, ’Truck’, ’Tram’, ’Pedestrian’, ’Person (sitting)’, Cy-

clist’, and ’Misc’. We do not take the category ’Misc’ into

account and use three-fold cross-validation on the labeled

images in KITTI. These images are randomly divided into

three folds (2495, 2493, 2493). We use the same model

setting as for the BDD100K dataset for evaluation with the

YOLOv3 and SSD methods. The categories in the KITTI

dataset are divided into three groups as follows:

Group 1: 1-Car, 2-Van, 3-Truck

Group 2: 4-Tram

Group 3: 5-Cyclist, 6-Pedestrian, 7-Person.

As shown in Table 2, the proposed method improved the

mAP obtained by YOLOv3 from 68.3% to 69.4%, and the

mAP obtained by SSD from 72.8% to 74.7%.

To intuitively present the effectiveness, we provide eight

representative examples in Fig. 4. The images in the first

rows are obtained by YOLOv3, and the images in the sec-

ond rows are obtained by W0.5-y. Some ’Truck’s are de-

tected and identified as ’Car’s by YOLOv3, in an image,

while W0.5-y classifies them correctly. In another image,

there is a ’Rider’ sitting on a ’Bike’, but it is not detected by

YOLOv3. Several images show that YOLOv3 recognizes

an object as several classes. For example, ’Bus’ is classi-

fied as a ’Bus’ and ’Truck’ at the same time, while W0.5-y

classifies it as a ’Bus’.

According to qualitative and quantitative results above,

we conclude that the proposed appearance similarity aware

loss based on the Wasserstein distance can improve the

performance of object detection in terms of mAP. In ad-

dition, the AP50 of common objects obtained by WLOD

is much higher than that obtained without the Wasserstein

loss. Therefore, the proposed method is suitable for appli-

cation in self-driving.

5. Conclusion

In this paper, we argue the object detection from a

novel angle of view that the CE/BCE loss based on one-

hot label will weak the attribute perception of the detec-

tor. We explicitly encourage classifying the objects into

categories similar to the ground-truth, and suppressing the

severity of the misclassification for self-driving with addi-

tional Wasserstein loss by a ground matrix. We also in-

crease the predicted probability value of the ground-truth

category simultaneously with the stricter overall optimiza-

tion. The proposed method is demonstrated of effectiveness



Figure 4. The output by YOLO (first line) and WOLD0.5-y (second line).

on the BDD100K and Drone2019 datasets for autonomous

driving .
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